Robust Alternating AdaBoost*

Héctor Allende-Cid!, Rodrigo Salas?, Héctor Allende!,
and Ricardo Nanculef!

! Universidad Técnica Federico Santa Marfa,
Dept. de Informética, Casilla 110-V, Valparaiso-Chile
vector@inf.utfsm.cl, hallende@inf.utfsm.cl, jnancu@inf.utfsm.cl
2 Universidad de Valparaiso, Departamento de Ingenierfa Biomédica, Valparaiso-Chile
rodrigo.salas@uv.cl

Abstract. Ensemble methods are general techniques to improve the ac-
curacy of any given learning algorithm. Boosting is a learning algorithm
that builds the classifier ensembles incrementally. In this work we pro-
pose an improvement of the classical and inverse AdaBoost algorithms
to deal with the problem of the presence of outliers in the data. We
propose the Robust Alternating AdaBoost (RADA) algorithm that al-
ternates between the classic and inverse AdaBoost to create a more stable
algorithm. The RADA algorithm bounds the influence of the outliers to
the empirical distribution, it detects and diminishes the empirical prob-
ability of “bad” samples, and it performs a more accurate classification
under contaminated data.

We report the performance results using synthetic and real datasets,
the latter obtained from a benchmark site.

Keywords: Machine ensembles, AdaBoost, Robust Learning Algorithms.

1 Introduction

Boosting algorithms, since the mid nineties, have been a very popular technique
for constructing ensembles in the areas of Pattern Recognition and Machine
Learning (see [2], [6], [8]). Boosting is a learning algorithm to construct a pre-
dictor by combining, what are called, weak hypotheses. The AdaBoost algorithm,
introduced by Freund and Schapire [6], builds an ensemble incrementally, plac-
ing increasing weights on those examples in the data set, which appear to be
“difficult”. The Inverse AdaBoost [6] is a variant of the classic approach but with
exactly the opposite philosophy, it decreases the weights of difficult objects.

In real engineering and scientific applications, data are noisy and present
outlying observations. Assumptions of the underlying data generation process
no longer holds and the model estimates are badly affected obtaining a poor
performance. For example, outliers may occur in recording data.

* This work was supported in part by Research Grant Fondecyt 1061201 and 1070220,
in part by the international cooperation Research Grant Fondecyt 7070262 and
7070093.

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 427-[36] 2007.
© Springer-Verlag Berlin Heidelberg 2007

428 H. Allende-Cid et al.

In this work, we start by empirically demonstrating that the typical boosting
algorithm, AdaBoost, is seriously affected by outliers. Similar results were re-
ported in [I] and [2] for this algorithm and in [7] for bagging, another method to
build ensembles [4]. Since AdaBoost forces each learner to focus on the difficult
examples, learning rounds can strongly depend on isolated examples more than
on local patterns of the featured space. Learning such outlying observations could
seriously compromise the generalization ability of the final obtained learner. In-
verse Boosting on the other hand, systematically ignores difficult examples and
hence tends to be more robust than AdaBoost. However this is usually achieved
at the expense of a lower performance.

Following this analysis, we propose an improvement of the classical and in-
verse AdaBoost algorithms to deal with the problem of the presence of outliers in
the data. This consists in Robust Alternating AdaBoost (RADA), an algorithm
capable to alternate between the classic and inverse AdaBoost to create a more
stable algorithm. The RADA algorithm bounds the influence of the outliers to
the empirical distribution, detects and diminishes the empirical probability of
“bad” samples, and will perform a more accurate classification under contami-
nated data.

This paper is organized as follows. In section @l we briefly introduce Ad-
aBoost and Inverse AdaBoost algorithms. In section [3] we make an analysis of
the sensitivity of AdaBoost to the presence of outliers. Our proposed algorithm
is illustrated in section [l In section [fl we compare the performance of the classic
AdaBoost, inverse AdaBoost and our proposed algorithm called RADA. The last
section is devoted to concluding remarks.

2 Boosting Algorithms

The AdaBoost Algorithm [6], introduced in 1995 by Freund and Schapire, has
a theoretical background based on the “PAC” learning model [9]. The authors
of this model were the first to pose the question of whether a weak learning
algorithm that is slightly better than random guessing can be "boosted” in a
strong learning algorithm. The classic AdaBoost takes as an input a training set
Z = {(x1,y1)-.-(¥n,yn)} where each w; is a variable that belongs to X C R?
and each label y; is in some label). In this particular paper we assume that
Y = {-1,1}. AdaBoost calls a weak or base learning algorithm repeatedly in
a sequence of stages t = 1...T. The main idea of AdaBoost is to maintain a
sampling distribution over the training set. This sample set is used to train the
learner at round ¢. Let Dy (i) be the sampling weight assigned to the example i
on round ¢. At the beginning of the algorithm the distribution is uniform, that
is distribution Dy(i) = ! for all i. At each round of the algorithm however,
the weights of the incorrectly classified examples are increased, so that the fol-
lowing weak learner is forced to focus on the “hard” examples of the training
set. The job of each weak or base learner is to find a hypothesis h; : X — {-1,1}

Robust Alternating AdaBoost 429

appropriate for the distribution D;. The goodness of the obtained hypothesis
can be quantified as the weighted error:

e = Priop [he(@:) #yil = Y Dili) (1)
ithe (i) £y
Notice that the error is measured with respect to the distribution D; on which
the weak learner was trained. Once AdaBoost has computed a weak hypothe-
sis hy, it measures the importance that the algorithm assigns to h; with the
parameter.

(2)

0 0.2 0.4 0.6 0.8 1
€
Fig. 1. Graph of the « variable given by equation () with the robust parameter values
r =2,3,4, compared to the AdaBoost «

Figure [T shows the graph of a;. After choosing «; the next step is to update
the distribution D; with the following rule,

th D, (i)e_atyiht(xi)
where Z; is a normalization factor. The effect of this rule is that, when a exam-
ple is misclassified its sampling weight for the next round is increased, and the
opposite occurs when the classification is correct. This updating rule makes the
algorithm to focus on the “hard” examples, instead in the correctly classified ex-
amples. After a sequence of T" rounds have been carried out, the final hypothesis
H is computed as

Di1(i) =

T
Hr(z) = sign (Z atht($)> (3)

The other Boosting variant considered in this paper is the Inverse AdaBoost.
This algorithm is more robust than the classic approach because it focuses on the
correct classified examples, and tries to diminish the influence of the incorrect

430 H. Allende-Cid et al.

examples in the distribution, however the classifiers will tend to be more and more
similar, eliminating any diversity in the process []. Inverse Boosting is a variant
similar to the “hedge” algorithm, first proposed in [6]. The philosophy is com-
pletely the opposite to classic boosting. Instead of increasing the sampling prob-
ability of the hard examples, we decrease it, thereby gradually filtering them out.
Each learner is created to reinforce the knowledge acquired by previous learners,
and hence the capability of the algorithm to discover new patterns is low.

3 Empirical Robustness Analysis of AdaBoost

In this section we empirically show that the classic AdaBoost algorithm lacks of
robustness and stability under the presence of outlying data.

Suppose that the weak learner h;,. at stage t* correctly learns almost all its
training samples Z;+ obtaining a very low classification error [l (e =~ 0),
in this case the oy« parameter (2)) will approach to infinity. This mean that
the weak learner hy« will receive a very high weight in the strong hypothesis
Hyp(x) and the ensemble decision will strongly depended on this weak learner.
If there exists a sample in Z, say (z;,y;), that was misclassified by the weak
learner hy«, then the expression exp(—oy-y;h¢-(x;)) will tend to infinity as long
as oy- tends to infinity. Then, the sample (z;,y;), will obtain a very high weight
0 << Dy41(j) =~ 1 for the next round. Due to the high probability of the data
(x,y;), it will be sampled several times during the bootstrap step and the weak
hypothesis will learn it. If this sample is a “bad” sample (for example an error)
or an outlier, an undesired effect of overfitting, poor generalization, very complex
model and learning bad data will occur.

If we even construct a robust weak learner (see [I]) it will also be affected by a
“bad sample” where most of the data in the bootstrap sample behaves different
than the majority of the original sample.

To empirically show the behavior of AdaBoost we create the following syn-
thetic case. We randomly generated 41 samples, where the 20 samples of the
class —1 were generated with a gaussian distribution N'(—2, 1), 20 samples with
of the class 1 were generated with a gaussian distribution A/(2,1) and we ar-
bitrarily introduce an additional “bad” sample at location © = 5 with target
y = —1. We bootstrapped only the original 40 samples and construct a weak
learner hq, where

PR E R G D et
1(z) =) -1
-1 X —2| > | X -2

where xH_ 711 Yo axgk], kE={-1,1}, and .I‘Ek] is the bootstrapped sample i of
the class k. Figure [2 shows the empirical distribution at stage 1, 2 and 3 (from
left to right), where the first row is the empirical distribution of the AdaBoost
algorithm, while the second row is the Robust Alternating AdaBoost algorithm.

Robust Alternating AdaBoost 431

Note that in the first round all the samples weight are equal to 411, but in the sec-
ond round, the misclassified sample number 41 considerably increased its weight
over 0.5 in the AdaBoost algorithm while our proposal remains lower. Due to
the high weight of this sample, in the next round, the bootstrap sample is com-
posed mostly by this data. The weak learner of stage two learns the outlying
sample but at the same time degrades the performance of the strong hypothe-
sis misclassifying other three data that were correctly classify previously. This
phenomenon does not occur to our proposal, remaining more stable.

0.5 0.5 0.5
0.4 0.4 0.4

=03 =03 =03

0.2 0.2 0.2
01 01 0.1
plmasmamanen a4 mem peman o o ol

=5 0 5 =5 0 5 =5 0 5
x x x

05 05 0.5
0.4 0.4 0.4
=03 =03 = 03
02 02 0.2|
01 0.1 01
L muasmiame) Sy 8
% o 5 % o 5 % o 5
x x x

Fig. 2. Empirical Distribution of the AdaBoost (first row) and the Robust Alternating
AdaBoost (second row) algorithms at stages 1 (left), 2 (middle) and 3 (right)

4 Robust Alternating AdaBoost

In this section we improve the classical and inverse AdaBoost algorithms to deal
with the problem of the presence of outliers in the data. Our proposal mainly
consists in creating a variant of the AdaBoost algorithm that will alternate
between the classic and inverse AdaBoost to create a more stable algorithm that
will perform a more adequate classification.

In the previous section we empirically showed that the empirical distribution
D, (i) of the data sample was strongly affected by the presence of outliers. The
actualization of the empirical probability D;1 (i) of the sample (z;,y;) depends
on its weight of the previous stage D;(i), the result of the classification h;(x;)
compared to the target y; and the variable «y. If the weak learner has a very
low error ¢, then the oy variable becomes very large as it is shown in figure [l
Furthermore if the weak learner misclassifies the sample (z;,y;), then the new
probability weight D;41(7) will considerably increase its value. This could mean
that if the sample corresponds to an outlying observation that was misclassified
by a good learner, it will receive a high probability distribution and will be
more probable to be selected more than once, and the next weak learner hsyq
will mostly learn this isolated observation. The resulting model could overfit the
training data, it could be more complex with several weak learners composing
the strong hypothesis, or worst, it could learn erroneous data samples.

432 H. Allende-Cid et al.

To overcome this drawback of the classic AdaBoost, we bound the value of the
ay variable by taking the r-th square root to low values of €, i.e., we compute

Q¢ as:
é{/ln(lj‘)ﬁ—aw €@ <7
o = . (4)

éln(lzf*> € =

where a, = } In (1;7) -2 {/ln (i”) is a constant needed so that equation ()

is continuous.

Applying equation (@) will prevent that the empirical distribution consider-
ably grow in one step for any sample. However the empirical distribution is
updated at each stage, and after few iterations the probability weight of the
samples that were repeatedly misclassified will have bigger values compared to
other samples. For this reason we introduce an inverting variable 3(i) and an
age variable age(i) for each sample i = 1..n. The variable 5(7) has an initial
value of one, meaning that the algorithm behaves for the sample as the classical
AdaBoost, i.e., increases its empirical distribution when it is misclassified and
decreases its value otherwise. If the value of §(¢) is -1, then the algorithm behaves
for the sample as the inverse AdaBoost, i.e., decreases its empirical distribution
when it is misclassified and increases its value otherwise. The variable age(7)
counts the number of times that the sample i was sequentially misclassified, if
this number exceeds the threshold 7 then the value of 5(i) is inverted to —1. In
other words, the weight of the misclassified sample grows until the number of
iterations reaches a limit 7 and then begins to decrease. If the (i) was inverted
to —1 and the sample was correctly classified in further stages, then the value
of (i) is inverted back to 1.

Algorithm [I shows our proposed Robust Alternating AdaBoost algorithm.

5 Experimental Results

In this section we empirically show the performance of our Robust Alternating
AdaBoost (RADA) model proposal compared to classical Adaboost (ADA)
and Inverse Adaboost (IADA) models (see [6] and [§] respectively for further
details about these models) in both Synthetic and Real data sets, the latter was
obtained from a benchmark site.

The data of both, synthetic and real data sets, were separated in training
and test sets. All the results reported were obtained for each model as the mean
value of the metrics computed for 20 runs with the same sets of data.

For the synthetic experiment we have created a synthetic data set {(x;, y;)} 4,
as an independent sample obtained from a mixture of gaussian distributions la-
beled with the class {—1,1}. For the class y = —1, the random variable X[~ is
a mixture of three gaussian distributions with mean u[fl] = —10, u[;l] =0 and
,ug_l] = 10 and standard deviation O'Z[_l] = o0 = 1,7 = 1..3 respectively. For the
class y = 1, the random variable X! is a mixture of two gaussian distributions

Robust Alternating AdaBoost 433

Algorithm 1. Robust Alternating AdaBoost

1: Given is the training data set Z = {(x1,vy1),..., (n,yn)} with n elements, where
;€ Xand y; € Y ={-1,1}.
2: Initialize the parameters. Pick the age threshold 7, the bound threshold A\ and the
robust parameter r. Let T = 0.
Initialize the empirical distribution D1 (i) = !, the inverting variable 3(i) = 1 and
the age variable age(i) = 0 for each data sample (x;,v:),7 = 1..n.
repeat
Increment T by one.
Take a bootstrap sample Zr from Z with distribution Dr.
Train the weak learner hr : X — {—1,1} with the bootstraped sample Zr as
the training set.
8: Compute the weighted error er of the weak hypothesis hr as

W

er = Priwpg[hr(zi) # i

9: Compute ar with equation

»

1§/ln(17€T)+a7 er <7y

€T

;ln(l_eT) er >y

€T
10: Update the empirical distribution as
Dr(i _ Ny .
Drir(i) = PZO) o (carB@uinr @)
Zr

where Zr is the normalization factor.
11: The strong hypothesis Hr(x) at stage T is given by

Hr(x) = sign (Z aihy (x))

12: Classify the training data set Z = {(z1,y1), ..., (Tn, yn)} with the strong hypoth-

esis Hr(x).
13: if sample (z;,y;) is correctly classified by Hr(z) (i.e, Hr(zi)y; > 0) then
14: Let age(i) = 0 and 3(3) = 1.
15: else
16: Increment age(i) by one.
17: if age(i) > 7 then let 3(i) = —1 and age(i) = 0
18: end if

19: until The stopping criterion is met
20: Output: The strong hypothesis Hr(z)

with mean u[ll] = -5, u[;] = 5 and standard deviation 01[1] =o0o=11=1,2
respectively. For each gaussian we generated 20 examples, i.e., the class y = —1
has 60 samples while the class y = 1 has 40 data. The observational process was
obtained by including additive outliers: ZI* = X¥ 4V U/ where XI¥ k= —1,1,
are the gaussian variables generated as was previously explained, V' is a zero-

one process with P(V # 0) =6, 0 < § < 1, and U has distribution N(0, o)

434 H. Allende-Cid et al.

Table 1. Summary results of the performance evaluation of the ADA, TADA and
RADA algorithms

Algorithm % Outliers T CFE — Train Min — Train CFE — Test Min — Test

ADA 0 9.8 21.45 £ 7.82 3.00 23.60 £ 8.60 8.00
TADA 0 8.7 20.95 £ 1.10 20.00 23.25 £+ 1.02 22.00
RADA5B 0 7.3 2450 £ 6.51 9.00 24.30 £ 7.58 10.00
RADA10 0 8.7 2285 +£ 6.67 9.00 22.10 £ 6.80 11.00
RADA20 0 7.1 23.00 + 7.44 7.00 24.55 £ 7.79 10.00
ADA 5 18.8 6.15 £ 2.70 3.00 9.20 £+ 3.49 5.00
TADA 5 14.9 12.90 + 7.74 3.00 15.05 £ 7.96 4.00
RADASB 5 18.6 6.55 £ 4.81 2.00 9.10 £+ 4.87 5.00
RADA10 5 17.7 5.35 + 2.43 2.00 8.00 + 2.27 5.00
RADA20 5 17.2 590 £+ 2.59 2.00 9.60 £+ 3.30 5.00
ADA 10 17.4 10.70 £ 2.34 8.00 6.85 £ 4.57 1.00
TADA 10 10.0 19.80 £ 7.78 7.00 16.65 £ 10.66 2.00
RADA5B 10 17.5 11.10 £ 3.65 8.00 6.10 £+ 4.40 1.00
RADA10 10 18.2 11.80 £ 5.23 5.00 6.00 £ 6.64 1.00
RADA20 10 16.8 11.25 £ 2.67 8.00 5.45 £+ 3.71 1.00
ADA 20 13.5 20.50 + 8.52 13.00 17.25 £ 8.48 8.00
TADA 20 12.7 21.00 £ 7.17 14.00 17.55 £ 7.23 9.00
RADA5 20 13.5 18.55 + 6.90 14.00 16.55 £ 8.46 7.00
RADA10 20 16.3 18.65 £ 5.72 13.00 15.25 + 6.95 9.00
RADA20 20 15.6 18.75 £+ 5.34 15.00 16.30 £ 6.42 9.00

with variance of, > o%. The generating process was affected with § = 0%,
5%, 10% and 20% of outliers and oy = 9* . The test set was generated similar
to the training set. The classifier used in the algorithms is the Bayesian Classifier
(QDA) (see [5).

Table[lshows the summary results of the performance evaluation of the ADA,
TADA and RADA algorithms, where for the latter the robustifying r parameter
has the values r = 0.05,0.10 and 0.20. As we can observe in the CE-Test col-
umn, the algorithm with better generalization ability was the RADA algorithm
with its variants outperforming in most of the experiments the ADA and IADA
algorithms with statistical significance. Nevertheless that the ADA obtained good
results in the training set, the RADA algorithm with its variants obtained lower
error in the test set. Note that in the contaminated cases one of the RADA vari-
ants always obtained the best strong hypothesis (see column Min-Test). We also
observed that when the percentage of outliers was increased all the models became
more complex and the performance was degraded. When the percentage of out-
liers was 0%, the algorithm with best performance and lowest standard deviation
was IADA, however in the contaminated data sets, it obtained the worst perfor-
mance. We can also notice, that RADA10 and RADA20 obtained better results
than RADAS, implying that the robust r parameter influences in the performance
of the RADA algorithm under contaminated data. The IADA algorithm obtained
the simplest model because its mean T" value was lower than the other algorithms,
this implies that the minimum value was reached with less rounds.

Robust Alternating AdaBoost 435

Table 2. Summary results of the performance evaluation of the ADA, TADA and
RADA algorithms

Dataset Algorithm T CE —Train Min —Train CE —Test Min — Test

ADA 6.2 1.64 £+ 0.82 0.24 3.33 £ 0.29 2.93

TADA 89 252+ 0.33 1.96 3.24 £ 0.27 2.93

Breast RADA5 4.2 1.86 £+ 0.77 0.49 3.41 £ 041 2.56
Cancer RADA10 8.3 2.04 £ 0.53 0.98 3.30 £ 0.27 2.56
RADA20 7.3 1.93 £0.51 0.98 3.13 £ 0.37 2.56

ADA 247 2233 + 1.04 21.30 23.50 £ 1.27 20.52

TADA 9.7 22.47 + 0.68 21.96 23.49 £+ 0.69 21.82

Diabetes RADA5 22.1 22.23 £+ 0.81 21.09 23.40 £ 1.24 21.82
RADA10 31.9 21.87 + 0.81 20.87 22.80 + 1.08 21.50
RADA20 30.0 22.58 £ 0.75 21.74 23.14 £ 0.90 22.15

ADA 244 29.18 + 2.25 25.60 40.14 + 3.51 38.41

TADA 315 35.77 + 3.06 30.44 46.96 £ 3.88 39.86

Liver RADA5 24.6 29.95 + 2.97 26.57 39.57 £ 3.15 35.51
Diseases RADA10 21.1 29.78 £ 2.45 25.12 39.02 + 3.84 31.88
RADA20 23.1 30.80 & 2.47 25.12 39.86 + 3.67 34.78

In the real experiment we test the algorithms with three real data sets obtained
from the UCI Machine Learning repository [3]. The Diabetes, Liver Diseases and
Breast-Cancer data sets were selected. Table Plshows the summary results of the
performance evaluation of the ADA, TADA and RADA algorithms, where RADA
has the same robustifying parameters as in the Synthetic Experiments.

The results are shown in table 2l As we can observe in the column CE-Test,
RADA obtained a better generalization ability than ADA and TADA. Our algo-
rithm outperforms the ADA and TADA algorithms with statistical significance.
Furthermore we notice that the algorithms with better results in the 3 different
real data sets were RADA10 and RADA20. RADAS5 has only a better perfor-
mance than ADA and IADA in the Diabetes and Liver diseases data sets. In
the CE-Train column we observe that ADA has better performance in Liver
Diseases and Breast-Cancer. In the testing phase, the RADA algorithm and
its variants outperform the ADA algorithm. Another drawback of ADA is its
standard deviation in the training phase is high compared with RADA.

6 Concluding Remarks

In this paper we have introduced the Robust Alternating Adaboost algorithm.
This algorithm has the capability to alternate between two differents views of
approaching classification problems using a midpoint approach between robust-
ness and sensitivity.

The performance of our algorithm shows better results in the simulation study
in both the synthetic and real data sets. In the real case, we investigated three
benchmark data known as Breast-Cancer, Diabetes and Liver Diseases. The
comparative study with the classic AdaBoost and Inverse AdaBoost without

436 H. Allende-Cid et al.

improvement shows that our Robust Alternating AdaBoost outperforms the al-
ternative models with statistical significance, obtaining good results in both
synthetic and real data. Further studies are needed in order to analyze the con-
vergence, and to test this algorithm with other weak learners.

References

1. Allende, H., Nanculef, R., Salas, R.: Bootstrapping neural networks. In: Monroy,
R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI),
vol. 2972, pp. 813-822. Springer, Heidelberg (2004)

2. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning 36(1-2), 105-139 (1999)

3. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996)

5. Duda, R., Hart, P., Stork, D.: Pattern classification. Wiley-Interscience, Chichester
(2000)

6. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences 55(1), 119-139
(1997)

7. Kanamori, T., Takenouchi, T., Eguchi, S., Murata, N.: The most robust loss function
for boosting. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.)
ICONIP 2004. LNCS, vol. 3316, pp. 496-501. Springer, Heidelberg (2004)

8. Kuncheva, L., Whitaker, C.: Using diversity with three variants of boosting: Ag-
gressive, conservative and inverse. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS,
vol. 2364, pp. 81-90. Springer, Heidelberg (2002)

9. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11), 1134~
1142 (1984)

	Robust Alternating AdaBoost
	Introduction
	Boosting Algorithms
	Empirical Robustness Analysis of AdaBoost
	Robust Alternating AdaBoost
	Experimental Results
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

