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Abstract. In this paper, we describe a weighted principal geodesic anal-
ysis (WPGA) method to extract features for gender classification based
on 2.5D facial surface normals (needle-maps) which can be extracted
from 2D intensity images using shape-from-shading (SFS). By incorpo-
rating the weight matrix into principal geodesic analysis (PGA), we con-
trol the obtained principal axis to be in the direction of the variance on
gender information. Experiments show that using WPGA, the leading
eigenvectors encode more gender discriminating power than using PGA,
and that gender classification based on leading WPGA parameters is
more accurate and stable than based on leading PGA parameters.

Keywords: Gender classification, facial surface normals, principal
geodesic analysis, weighted principal geodesic analysis, gender discrimi-
nating power.

1 Introduction

Humans are remarkably accurate at determining the gender of a subject based
on the appearance of the face alone. In fact, an accuracy as good as 96% can
be achieved with the hair concealed, facial hair removed and no makeup [1]. In
recent years, considerable effort has been spent on the statistical feature based
approaches [2], [3], [4], [5], [6] to gender classification. Of these, principal com-
ponent analysis (PCA) is widely used to reduce the dimensionality of the high
dimensional facial data. The aim of PCA is to locate the projections that maxi-
mize the variance of the data. However, the projections that maximize the vari-
ance usually are not the projections that separate the data into distinct clusters,
and so, PCA usually does not reveal cluster structure. Therefore, most of the
current approaches employ a second step to extract gender relevant features by
performing linear discriminant analysis (LDA) on the PCA parameters. Because
of the supervised nature of LDA, this two-step feature extraction strategy is un-
suitable for unsupervised learning. Another drawback of the current approaches
is that most of them are based on 2D intensity information. Although studies
[7] have shown that the gender is not only revealed by 2D facial texture, but
also has a close relationship with the 3D shape of the human faces, in fact, only
a few studies have investigated the role of 3D shape in gender classification [6].
The computation of 3D face shape representation is significantly more complex

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 331–339, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



332 J. Wu, W.A.P. Smith, and E.R. Hancock

than of 2D face texture. Due to the limited effectiveness and high cost of the 3D
sensors in the current market, some typical problems with range images includ-
ing missing data near dark regions and spikes in regions with high reflectivity
would also adversely affect the classification accuracy.

In this paper, we address gender classification using the parameterisation of
fields of facial surface normals or needle-maps, and propose a one-step feature
extraction method. The needle-map is a 2.5-D shape representation which is in-
termediate between the 2D intensity image and the 3D surface height function
[8]. The representation can be acquired from 2D intensity images using shape-
from-shading [9]. It therefore avoids the problems caused by the limitation of
current 3D sensors, and is invariant to illumination. To parameterize the facial
needle-maps, we use weighted principal geodesic analysis (WPGA). This is a
novel variant of principal geodesic analysis (PGA) [10], [11], which constructs a
weight matrix making use of the a priori knowledge of the gender discriminating
power of different regions of the face, and incorporate the weights into PGA.
PGA is a generalization of PCA, for data residing on a Riemannian manifold.
As a result, PGA is better suited to the analysis of directional data than PCA.
By incorporating weights into the analysis of data, we control the data variance
structure so that the variance of gender discriminating regions are larger. In this
way, the principal axis obtained after the PGA projection are in the direction
of the gender discriminating variance. So, WPGA method improves the pro-
jections separating clusters in a manner that is consistent with the projection
directions that maximize the variance. Therefore, it enables us to extract the
gender discriminating features in a single step.

The outline of the paper is as follows. Section 2 first reviews the concepts of
the Log and Exponential maps, spherical medians, and the PGA of needle-maps,
and then provides the idea of incorporating weights into PGA. Section 3 states
the probability based classification strategy. The details of how to construct the
weights and experimental results are presented in Section 4. Finally, Section 5
concludes the paper and offers directions for future investigation.

2 Weighted Principal Geodesic Analysis

The surface normal n ∈ R3 may be considered as a point lying on a spherical
manifold n ∈ S2, therefore, the intrinsic mean and PGA proposed by Fletcher
et al. [10] is suitable to analyze the variations of the surface normals.

2.1 The Log and Exponential Maps

If u ∈ TnS2 is a vector on the tangent plane to S2 at n and u �= 0, the exponential
map, denoted Expn, of u is the point, denoted Expn(u), on S2 along the geodesic
in the direction of u at distance ‖ u ‖ from n. This is illustrated in Fig. 1. The
log map, denoted Logn is the inverse of the exponential map. The exponential
and log maps reserve the geodesic distance between two points, i.e. d(n1, n2) =
d(u1, u2), where u1 = Lognn1, u2 = Lognn2.
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Fig. 1. The exponential map

2.2 Spherical Medians

It is more natural to treat the surface normal as points on a unit sphere:
n1, . . . nN ∈ S2 rather than points in Euclidian space. Instead of the Euclid-
ian mean, we compute the intrinsic mean: μ = arg minn∈S2

∑N
i=1 d(n, ni) ,

where d(n, ni) = arccos(n · ni) is the arc length. For a spherical manifold,
the intrinsic mean can be found using the gradient descent method of Pen-
nec [11]. Accordingly, the current estimate μ(t) is updated as follows: μ(t+1) =
Expμ(t)( 1

N

∑N
i=1 Logμ(t)(ni)).

2.3 PGA of Needle Maps

PGA is analogous to PCA except that each principal axis in PCA is a straight
line, while in PGA each principal axis is a geodesic curve. In the spherical case
this corresponds to a great circle. Consider a great circle G on the sphere S2.
To project a point n1 ∈ S2 onto a point on G, we use the projection opera-
tor πG : S2 −→ G given by πG(n1) = argminn∈G(n1, n)2. For a geodesic G
passing through the intrinsic mean μ, πG may be approximated linearly in the
tangent plane TμS2: Logμ(πG(n1)) ≈

∑K
i=1 V i · Logμ(n1), where V1, . . . VK is an

orthonormal basis for TμS2.
Suppose there are K training needle-maps each having N pixel locations, and

the surface normal at the pixel location p for the kth training needle-map is
nk

p. We calculate the intrinsic mean μp of the distribution of surface normals
n1

p, . . . n
K
p at each pixel location p. nk

p is then represented by its log map position
uk

p = Logμp
(nk

p). uk = [uk
1 , . . . , u

k
N ]T is the log mapped long vector of the kth

training needle-map. The K long vectors form the data matrix U = [u1| . . . |uK ].
The covariance matrix of the data matrix is L = 1

K UUT .
The numerically efficient snap-shot method of Sirovich [12] can be used to

compute the eigenvectors of L. Accordingly, we construct the matrix L̂ = 1
K UT U ,

and find the eigenvalues and eigenvectors. The ith eigenvector ei of L can be
computed from the ith eigenvector êiof L̂ using ei = Uêi. The ith eigenvalue λi

of L equals the ith eigenvalue λ̂i of L̂ when i ≤ K. When i > K, λi = 0. The m
leading eigenvectors of L form the projection matrix Φ = (e1|e2| . . . |em).
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Given a long vector u = [u1, . . . , uN ]T , we can get the corresponding PGA pa-
rameters b = ΦT u. Given the PGA parameters b = [b1, . . . bm]T , we can generate
a needle-map using: np = Expμp

((Pb)p).

2.4 Incorporating Weights into PGA

From above, we can see that PGA, which is a generalization of PCA, captures
the directions of the largest variance in the needle-maps. However these variance
usually are not associated with the differences in facial shape for different gender.
To improve the encoding of gender by the leading eigenvectors, a possible solution
is to increase the variance of the normals in the gender discriminating regions,
such as eyebrows, nose, etc. Therefore, we introduce the N × N diagonal weight
matrix W = diag(w1, . . . , wN ), which gives a weight to each position in the facial
needle-map. The positions in the gender discriminating regions are given high
weights (wh), while the other positions are given low weights (wl). In this way,
the normals in the gender discriminating regions have wh

wl
times larger variance

than the normals in the other regions. The leading eigenvectors capture the large
variance, and therefore, encode gender discriminating information.

In our experiments, the weight matrix is constructed through the angular
difference between the intrinsic means of the female facial needle-maps and male
facial needle-maps:

wk = 1 − exp[− 1
σ2 (arccos(n̄m

k · n̄f
k))2] (1)

where n̄m
k is the mean unit surface normal direction for males at the image

location where k at. n̄f
k is the corresponding mean unit normal vector for fe-

males. Using the intrinsic means reduces the influence of the differences between
identities.

Suppose, U = [u1| . . . |uK ] is the data matrix, where uk = [uk
1 , . . . , uk

N ]T is the
log mapped long vector of the kth sample data. The weighted covariance matrix
is constructed as LW = 1

K (WU)(WU)T . The snap-shot method of Sirovich are
used to compute the eigenvectors of LW . As stated in [13], 5 gender discriminat-
ing significant features will achieve the highest classification rate, we maintain
the 5 leading eigenvectors to form the projection matrix Φ = (e1|e2|e3|e4|e5).
Given a long vector u = [u1, . . . , uN ]T , the corresponding WPGA parameters
are computed as b = ΦT (Wu).

3 Classification

After the training and test facial needle-maps have been represented by their
WPGA parameters, we use the a posteriori class probabilities to classify the test
faces to one of the genders.

Let Cf and Cm denote the female and male gender classes, x denote the
WPGA parameters of a test facial needle-map. Then according to the Bayes
law, the probability that x is of class Ci is:
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P (Ci|x) =
P (x|Ci)P (Ci)∑
i∈{f,m} P (x|Ci)

(2)

We assume that the distribution of gender is Gaussian, and that the mean
and variance of class Ci are μi and σi. The a priori probabilities are P (Cf ) =
P (Cm) = 1/2. Then,

P (x|Ci) =
1

√
2πσ2

i

exp(− (x − μi)2

2σ2
i

). (3)

If P (Cf |x) > P (Cm|x), then the face is classified as female. Otherwise, the
face is classified as male.

4 Experiments and Discussion

In this section, we first show how the σ value is determined for the weight ma-
trix construction, and compare the gender discriminating power of the WPGA
leading eigenvectors with the PGA leading eigenvectors. Then, the gender clas-
sification results obtained using WPGA parameters are compared with those
obtained using PGA parameters. The Max-Planck Institute for Biological Cy-
bernetics in Tuebingen, Germany provides the database used in our experiments
[14], [15]. This database consists of 200 ground truth facial needle-maps, of which
100 are females and 100 are males. The weight matrix is constructed using all
200 faces. Gender classification is performed by randomly choosing 80 females
and 80 males as training data, and using the remaining 40 faces for test. We re-
peated the randomization 10 times and the classification results are the average
of the 10 randomizations.

4.1 Construction and Evaluation of the Weight Matrix

We first examine the selection of the value of σ for the weight matrix construc-
tion. Next, we evaluate the performance of WPGA by examining the gender
discriminating power of the eigenvectors. The discriminating power is calculated
using the criterion function introduced in [16], i.e. J(ξ) = tr(S−1

w Sb) =
∑d

k=1 λk,
where Sw and Sb are the within and between class scatter matrices, and λk,
k = 1 . . . d are the eigenvalues of the matrix S−1

w Sb.

Determination to the σ value. We construct the weight matrices for 10 dif-
ferent values of σ, and obtain 10 different WPGA projection matrices, from each
of which we select the 5 leading eigenvectors. The 10 different sets of WPGA
parameters for the 200 faces are obtained accordingly. The gender discriminat-
ing power is calculated on the 10 sets of WPGA parameters and are shown in
Fig. 2. The σ value is selected to give the largest discriminating power. From
Fig. 2, we select σ from the shoulder of the curve of discriminating power and
this occurs when σ2 = 0.11 .
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Fig. 2. Selection of σ value

Fig. 3. Construction of the weight matrix. From left to right are the intrinsic mean
of female needle-maps, the intrinsic mean of male needle-maps, and the constructed
weight matrix.

The intrinsic means of the 100 female needle-maps and the 100 male needle-
maps and the weight matrix constructed using σ2 = 0.11 are shown in Fig. 3.
From the figure, it is clear that the constructed weight matrix has high weights
in regions around the eyebrows, nose, and mouth.

Discriminating power. After the construction of the weight matrix, we use it
in conjunction with principal geodesic analysis to obtain the projection matrix.
The discriminating power of each of the 10 leading WPGA eigenvectors is shown
in the left hand panel of Fig. 4, and is compared with those of the 10 leading PGA
eigenvectors which are shown in the right hand panel of Fig. 4. From the figure,
we see that although the gender discriminating power of the WPGA eigenvectors
is not in descending way, it is concentrated in the first 5 eigenvectors. The first
5 WPGA eigenvectors have the 5 largest discriminating power. By comparison,
the discriminating power of PGA eigenvectors are more widely distributed. For
example, the 8th PGA eigenvector has the 5th largest discriminating power,
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Fig. 4. Discriminating powers of the leading 10 eigenvectors. The left panel is for
WPGA and the right panel is for PGA.

and the discriminating power of the 10th PGA eigenvector is larger than that
of the 3rd eigenvector. This confirms our assumption that incorporating gender
relevant weights into PGA results in better encoding of gender information in
the leading eigenvectors. However, in WPGA, the discriminating power of the
first and second eigenvectors seem to be swapped, which need further investment
in the future.

Fig. 5 shows the plots of cumulative gender discriminating power for the
first m (m = 1 · · · 20) WPGA and PGA eigenvectors. From the figure, it is
clear that WPGA has significantly larger cumulative discriminating power than
PGA when 1 < m < 10. This gives further confirmation that the first few
WPGA eigenvectors encode most of the gender discriminating power, while the
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gender discriminating power encoded in the PGA eigenvectors are more uni-
formly distributed.

4.2 Classification Results

We randomly selected 80 female needle-maps and 80 male needle-maps from the
200 available for use as training data, and the remaining 40 as test data. We first
apply WPGA to the training data to obtain the projection matrix. Then, the
construction of separate models for females and males, and gender classification
on the test data are both performed on the 5 leading WPGA parameters. We
repeat the randomization procedure 10 times. The average classification rates
and variance obtained using WPGA and PGA are shown in Table 1, from which
it is clear that gender classification performed on the leading WPGA parameters
gives improvements not only on the classification rates, but also on the stability
of the classification when compared with PCA.

Table 1. Gender classification rates

Female Male Overall
WPGA 93.50% ± 0.0450 91.00% ± 0.0490 92.25% ± 0.0361
PGA 84.00% ± 0.1068 84.50% ± 0.1083 84.25% ± 0.0448

5 Conclusion

In this paper, we describe a weighted PGA method to extract gender discrimi-
nant features from 2.5D facial needle-maps in a single step, and perform gender
classification using the WPGA parameters. Experimental results show that the
leading WPGA eigenvectors encode more gender discriminating power than the
leading PGA eigenvectors. Moreover, gender classifications based on WPGA pa-
rameters achieve more accurate and more stable results than those based on
PGA parameters.

There are several potentially interesting avenues for future investigation. First,
instead of using ground truth facial needle-maps, we will apply the method to
needle-maps recovered from facial images using SFS. Second, we will improve
the generalization of the weight matrix. Third, unsupervised learning using the
EM algorithm will be used to perform gender classification on the WPGA pa-
rameters.
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