
An Ontology Design Pattern for Representing
Relevance in OWL

Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero�

Department of Computer Science and Artificial Intelligence
E.T.S. Ingenieŕıa Informática y Telecomunicaciones, University of Granada

c/. Periodista Daniel Saucedo Aranda, s/n 18071 Granada Spain
Tel.: +34 958243194, Fax: +34 958243317

fbobillo@decsai.ugr.es, mdelgado@ugr.es, jgomez@decsai.ugr.es

Abstract. Design patterns are widely-used software engineering ab-
stractions which define guidelines for modeling common application sce-
narios. Ontology design patterns are the extension of software patterns
for knowledge acquisition in the Semantic Web. In this work we present a
design pattern for representing relevance depending on context in OWL
ontologies, i.e. to assert which knowledge from the domain ought to be
considered in a given scenario. Besides the formal semantics and the
features of the pattern, we describe a reasoning procedure to extract
relevant knowledge in the resulting ontology and a plug-in for Protégé
which assists pattern use.

1 Introduction

Semantic Web is nowadays more than a promise and ontology-based applica-
tions are blooming here and there, permeating the Web environment with RDF
and OWL aromas (mixed with microformats, folksonomies and other contribu-
tions from the Web 2.0 brand). Nevertheless, despite the efforts that research
community has put on providing better tools to manage formal metadata, a
classical issue in Artificial Intelligence is still paining the neck of developers:
knowledge acquisition bottleneck. Acquiring, reusing, representing and eliciting
knowledge to build an ontology becomes frequently an exhausting, time-wasting
and frustrating experience, even when collaborative experts, proper tools and
sound methodologies are in play.

Consequently simple recipes which support ontologists to apprehend aspects
of their application domain are highly appreciated. This is the objective of on-
tology design patterns: to describe, more or less formally, recurrent modeling
scenarios and to provide guidelines for incorporating this knowledge into ontolo-
gies correctly. By correctly we mean obtaining as a result accurate, transparent
and reasonable representations, as pointed out in [1].

One of these common situations is the need of representing relevance of in-
formation. It is usual that an intelligent system manages so many information
� Corresponding author.

K. Aberer et al. (Eds.): ISWC/ASWC 2007, LNCS 4825, pp. 72–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Ontology Design Pattern for Representing Relevance in OWL 73

resources that it is impractical to provide a user with all the available data in
response to a query, since it will take too long to filter them manually or simply
he will not be able to process it. This issue has been pointed out in the liter-
ature with the name of “information overload” [2]. In such case, only relevant
information should be delivered and, in order to do so, relevance relations must
be represented in the system knowledge base.

As a result of our work in Knowledge Mobilization –the effort to make knowl-
edge available for real-time use, no matter where decision-making processes are
taking place–, we strongly believe that what is relevant (or significant) for a user
mostly depends on his circumstance1. The circumstance can be regarded as a
mix of environment facts, beliefs, intentions and needs, i.e. (in a wide sense) his
context. Accordingly, relevance should be represented in a knowledge base by
defining relations among descriptions of usage cases and subsets of the domain
knowledge. Having a domain and a scenario connected with such a relation means
that this information is important and must be considered in that situation.

In this work we present a design pattern for representing and managing rele-
vance relations in an OWL ontology. Besides the formal semantics of the model,
we provide an algorithm to extract context-dependant summaries by reasoning
within the ontology. We also introduce a graphical tool which eases the applica-
tion of the pattern in the ontology development process.

The remaining of this document is structured as follows. Section 2 reviews
some related work about ontology design patterns and context representation.
Section 3 describes our design pattern; use cases, notation, and formulation
are detailed. This section is clarified with the example in Section 4. Section 5
overviews our supporting software tool for applying the pattern. Section 6 in-
cludes a discussion of our proposal, as well as an analysis of its computational
complexity. Finally, Section 7 points out some conclusions and directions for
future work.

2 Related Work

Design patterns are concise guidelines which identify common design problems
and suggest how to resolve them. Patterns have been recognized as a valuable
tool since the very beginning of design sciences, from architecture to software
development. Analysis and design patterns are important meta-artefacts which
support the design process of software systems, as stressed by [3].

Templates and patterns to build knowledge bases have been proposed in sev-
eral papers, some specific for a concrete application domain (e.g. [4]), some more
general and (even) language-independent (e.g. [5]). Ontologies for the Semantic
Web have their own peculiarities, so a task force inside the W3C Semantic Web
Best Practices and Deployment Working Group2 was settled to elaborate best
1 Although he probably was not considering mobile knowledge-based systems, Spanish

philosopher Ortega y Gasset (1883-1955) summarized this idea in his maxim “I am
myself and my circumstance” (Meditaciones del Quijote, 1914).

2 http://www.w3.org/2001/sw/BestPractices/

http://www.w3.org/2001/sw/BestPractices/

74 F. Bobillo, M. Delgado, and J. Gómez-Romero

practices and patterns for OWL, namely the Ontology Engineering and Patterns
Task Force3. The work of this task force was partially inspired by [6], a classical
ontology-development guide which includes some tips to build them properly.

Ontology development patterns can be considered the extension of software
engineering ones. In [7] some differences between both are described from a Se-
mantic Web perspective, remarking that more formality is required in the pre-
sentation of the former, which are called CODePs (Conceptual Ontology Design
Patterns). In [1] different design-support artifacts for Semantic Web ontologies
are overviewed and some examples of patterns are briefly presented.

Regarding representation of relevance of information depending on context,
the aim of this paper, to the best of our knowledge there does not exist any
design pattern specifically fitted to OWL particularities. Our proposal is OWL-
DL compliant, unlike other approaches about contextualizacion of knowledge
models which concerns non-monotonic formalisms, i.e. models which are sat-
isfiable or not depending on some circumstances. It is interesting however to
remark the contribution in [8], which examines some classical works about con-
texts and microtheories in Artificial Intelligence, and extends some of these ideas
to solve context-dependant aggregation problems in the Semantic Web. Simi-
larly, [9] proposes C-OWL, an extension to OWL to define mappings between
locally-interpreted and globally-valid ontologies. To end up, we shall mention
that the idea underlying our model is quite similar to the multi-viewpoint reason-
ing in [10], though it concentrates on the conditional interpretation of a model
(how to reduce an ontology depending on the viewpoint submodel), whereas
we focus on their relevance (in which circumstances a submodel should be
considered).

On the other hand, some lessons can be learned from recent works in Pervasive
Computing, as they are concerned with context awareness, content filtering and
significance representation [11]. Moreover, as the example in Section 3.1 shows,
we are especially interested in Ubiquitous Computing and Knowledge Mobiliza-
tion, so the connection is even clearer. Not surprisingly, ontologies have been
proposed to be used for modeling context knowledge in some recent develop-
ments in Pervasive Computing, e.g. [12] [13] [14].

3 Definition of the Pattern

This section describes the formal semantics of our proposal, the so called Context-
Domain Relevance (CDR) pattern.We follow the recommendations sketchedby [5]
and [7], covering aspects as use cases, notation (inDescriptionLogics language) and
syntax (formulation).

3.1 Use Case

Let us suppose a physician who needs to consult a patient’s clinical data in
order to set a proper treatment for him. If the healthcare act is taking place
3 http://www.w3.org/2001/sw/BestPractices/OEP/

http://www.w3.org/2001/sw/BestPractices/OEP/

An Ontology Design Pattern for Representing Relevance in OWL 75

inside the hospital, the doctor will be allowed to access the Hospital Information
System (HIS) and to retrieve all the patient’s Electronic Health Records (EHRs).
Having enough time and knowledge, the specialist will rule out all the useless
pieces of information and will get the ones he is interested in. We can consider
now another physician in an emergency-assistance unit which is caring at the
road for a patient injured in an accident. Knowing some data about his clinical
history will be helpful as well in this situation; for instance, some data about
patient’s adverse drug events (ADEs) may have been recorded. Nevertheless it
is not probable that the HIS can be accessed from outside the hospital (even
less using a portable device as the one which will be likely used in emergency
healthcare) and, if possible, the doctor would not have enough time to review
all the stored electronic records.

In the latter situation, a brief report including those pieces of the patient’s
clinical data which ought to be considered would be very valuable. The clinical
procedure which is going to be carried out would determine which data should be
part of this summary. For example, is the patient is slightly unconscious and has
an hemorrhagic laceration, information about if he has been diagnosed of bad
reactions to procaine (an anesthetic drug which reduces bleeding but is also often
badly metabolized and triggers allergic reactions) should be taken into account,
among others. This would be a prototypical sample of a Knowledge Mobilization
application, in contrast to the former example which depicts a typical use case
of a classical Information System.

Two different kinds of knowledge are to be managed by such mobile system:
(i) domain knowledge about the problem which must be resolved (this is made up
by the patients’ electronic health records), and (ii) context knowledge about the
scenarios where the domain knowledge will be used (for our doctor, this would
be a vocabulary to briefly describe the situation of the patient he is going to
attend). To state which knowledge from the domain must be considered in each
scenario, links between both submodels can be defined. Continuing our example,
a link asserting that ‘data about previous anesthetic drugs reactions’ should be
considered when ‘the patient has a penetrating wound’ should be created. Other
links can be similarly included following recommendations of clinical and ADE
guidelines. Building these links is the aim of the CDR pattern.

3.2 Notation

As it is known, ontologies rely on Description Logics (DL), a family of logics for
representing structured knowledge. In this section we overview the basics and
the notation of DL. This notation will be used to describe the pattern and is
directly translatable to OWL syntax.

In the remaining of this section we will consider the minimal subset proposed
in the logic ALC (attributive concept description language with complements),
since it is expressive enough to encode our pattern. ALC is less expressive than
SHOIN (D) (almost equivalent OWL-DL, the highest descriptive level of OWL
which ensures decidibility) and therefore its complexity is lower. The reader is
referred to [15] for further readings about DL.

76 F. Bobillo, M. Delgado, and J. Gómez-Romero

Formally, an ontology is a triple O = 〈KR, KT , KA〉, where KR (the Role Box
or RBox) and KT (the Terminological Box or TBox) comprise the intensional
knowledge, i.e. general knowledge about the world to be described (statements
about roles and concepts, respectively), and KA (the Assertional Box or ABox)
the extensional knowledge, i.e. particular knowledge about a specific instantia-
tion of this world (statements about individuals in terms of concepts and roles).

In ALC there is no RBox, since no axioms involving roles are allowed. In more
expressive logics, KR consists of a finite set of role axioms stating restrictions as
subsumption, transitivity, cardinality, etc.

An ALC TBox KT consists of a finite set of general concept inclusion (GCI)
axioms of the form C1 � C2, which means that concept C1 is more specific
than C2 , i.e. C2 subsumes C1. A concept definition C1 ≡ C2 (C1 and C2 are
equivalent) is an abbreviation of the pair of axioms C1 � C2 and C2 � C1.
Concept expressions for C1, C2 can be derived inductively starting from atomic
primitives. Valid constructs for ALC are: C1, C2 → A (atomic concept) | � (top
concept) | ⊥ (bottom concept) | C1	C2 (concept conjunction) | C1
C2 (concept
disjunction) | ¬C1 (concept negation) | ∀R.C1 (universal quantification) | ∃R.C1
(full existential quantification).

An ALC ABox consists of a finite set of assertions about individuals (noted
a and b). An assertion is either a concept assertion a : C (a is an instance of C)
or a role assertion (a, b) : R ((a, b) is an instance of R).

A DL ontology not only stores axioms and assertions, but also offers some rea-
soning services, such as KB satisfiability (or consistency), concept satisfiability,
subsumption or instance checking. In ALC most inference services are mutually
reducible, so only some of them are usually considered.

3.3 Formulation

In Sect. 3.1 we mentioned two knowledge sub-models that are involved in our de-
sign pattern. These correspond to the domain ontology and the context ontology
and are the basis over which the relevance ontology is built.

The domain ontology OD =
〈
KD

R , KD
T , KD

A

〉
contains the knowledge required

to solve the concrete problem that the system is facing. As expected, concepts
of this ontology represent entities with associated semantics, roles establish con-
nections among them, and instances represent individuals of this world. This
ontology can be arbitrarily complex and is closely related to the problem. We
will use the notation Dj

◦
∈OD to name complex concepts expressions Dj built

using elements in OD and ontology constructs. Note that, in principle, these Dj

are not part of the domain ontology.
The context ontology OC =

〈
KC

R , KC
T , KC

A

〉
contains the knowledge required

to express the circumstances or the surroundings under which the domain knowl-
edge will be used. The context ontology can be seen as a (formal) vocabulary or
lingo with which these situations can be described. Being strict, context knowl-
edge is not part of the original problem, though it can be indispensable to solve
it; in fact, it would be possible to reuse the same context model in completely
different areas. Context knowledge can range from low-level sensor data (like

An Ontology Design Pattern for Representing Relevance in OWL 77

location, time or humidity) to abstract information (like preferences, desires or
mental state). We will use the notation Ci

◦
∈ OC to name complex concepts ex-

pressions Ci built using elements in OC and ontology constructs. Like in the
previous case, these Ci are not necessarily part of the context ontology.

Intuitively, we can guess that a CDR ontology will be made of new classes
(the so called profiles) which will relate Ci context concepts with Dj domain
concepts through quantified roles. We must note that, accordingly, our proposal
only considers the intensional component of the knowledge base.

Regarded this we define constructively a CDR ontology as follows:

Definition 1. Let OD and OC be, respectively, the domain ontology and the
context ontology, Ci

◦
∈ OC a context concept built with KC

T classes, and Dj

◦
∈OD

a domain concept built with KD
T classes.

The CDR ontology which relates the set of pairs of concepts {(Ci, Dj)} (i.e.
states that Dj is interesting when Ci happens) is an ontology OP =

〈
KP

T , KP
A

〉

which satisfies:

1. KP
A = ∅

2. KP
T include definitions for the concepts P�, C�, D�, Pi,j , Ci, Dj, where:

(a) P�, C�, D� are the super-classes Profile, Context and Domain:
Pi,j � P� ∧ P� ≡

⋃
i,j Pi,j

Ci � C� ∧ C� ≡
⋃

i Ci

Dj � D� ∧ D� ≡
⋃

j Dj

(b) R1 is the bridge property linking profiles and context concepts:
P� � ∀R1.C�

(c) R2 is the bridge property linking profiles and domain concepts:
P� � ∀R2.D�

(d) Pi,j is the profile linking named context Ci and named domain Dj :
Pi,j ≡ ∃R1.Ci 	 ∃R2.Dj

3. OP is consistent.

Figure 1 depicts the meaning of this definition. It shows how Pi,j concepts are
a reification of the “relevance” relation between context and domain concepts.
Representing relevance as a concept and not as a role presents some advantages,
e.g. possibility of reusing previously-defined profiles or defining new properties
(with associated semantics) for them.

The main reasoning task within the CDR ontology will be to find the domain
restricted by a context, that is, to find all the classes of the domain ontology
which are associated using profiles (i.e. are relevant) with a given concept built
with the context vocabulary. This can be expressed as follows:

Definition 2. Given OC , OD and OP , the restricted domain of the scenario
S

◦
∈ OC (being S a complex concept expressed in KC

T vocabulary) considering OP

comprises all the classes I such as:
{
I ∈ KD

T | (S � Cn) ∧
(
Pn,m ∈ KP

T

)
∧ (I � Dm)

}

78 F. Bobillo, M. Delgado, and J. Gómez-Romero

Context
Knowledge (OC)

Domain
Knowledge (OD)

Context-Domain
Relevance Model (OP)

P

Fig. 1. Schema of the Context-Domain Relevance ontology

Algorithm 1. The restricted domain of a scenario S considering OP can be
computed in practice as follows:

1. Retrieve all the named contexts Cn which subsume S:

{Cn � C�|S � Cn}

2. Retrieve all the named profiles Pk,l which include Cn contexts (via R1):

{Pk,l � P�| (Pk,l � ∃R1.Ck) ∧ (Cn � Ck)}

3. Retrieve all the named domains Dm which are related to Pk,l profiles (via
R2):

{Dm � D�|Pk,l � ∃R2.Dm}

4. Retrieve all the classes I from KD
T which are subsumed by Dm:

{
I ∈ KD

C |I � Dm

}

4 Example

Continuing with the medical case we have sketched in Sect. 3.1, let us suppose
the following sample ontologies:

– A domain ontology OD abstracting the information units managed by the
hospital information system. Among others, it includes concepts as Patient,
ElectronicDocument or ElectronicRegisterCoagulationDisorder, and
properties as relatedToPatient (with domain equals to Patient and range
equals to ElectronicDocument). Instances of this ontology are the concrete
values of patient’s electronic health records.

An Ontology Design Pattern for Representing Relevance in OWL 79

– A context ontology OC defining a suitable vocabulary to describe patient sit-
uations. It will contain concepts as Hemorrhage, Unconsciousness, Trunk
or High, and properties like hasSeriousness (from ClinicalFact to
Seriousness).

Using the definition of the CDR model, an ontology OP can be built to reflect
which information from the information system must be considered when facing
each clinical case. With hasClinicalFact and hasElectronicRegister being the
bridge properties R1 and R2, respectively, the profiles in Table 1 will be valid.
It can be observed that C3 � C2 � C1 and D1 � D3, D2 � D3.

Given this profile set, if the doctor is attending to a “hemorrhagic and uncon-
scious patient with a penetration wound”, the system will answer that electronic
records about “drug intolerances” should be checked. This is achieved by using
the previous algorithm to calculate the restricted domain of a context concept.
The process is shown in Table 2.

The final information to be delivered to the doctor’s mobile device will be the
instances of the ElectronicRegister classes in I filtered by patient ID, which

Table 1. Example of a Context Domain Restriction Ontology

Top concepts
P� � �
C� � �
D� � �

Profile 1,1. When the patient is “unconscious” and “hemorrhagic”, registers about
“blood pressure disorders” must be checked

C1 ≡ Unconsciousness � Hemorrhage
D1 ≡ ElectronicRegisterBloodPressureDisorder

P1,1 ≡ ∃hasClinicalFact.C1 � ∃hasElectronicRegister.D1

Profile 2,2. When the patient is “unconscious”, “hemorrhagic” and has a “pene-
trating wound”, registers about “drug intolerances” must be checked

C2 ≡ Unconsciousness � Hemorrhage � PenetrationWound
D2 ≡ ElectronicRegisterDrugIntollerance

P2,2 ≡ ∃hasClinicalFact.C2 � ∃hasElectronicRegister.D2

Profile 3,3. When the patient is “unconscious”, with a “highly serious” “hem-
orrhage” and has a “penetrating wound”, registers about “blood pressure disor-
ders”, “drug intolerances” and “coagulation disorders” must be checked

C3 ≡
Unconsciousness
�(Hemorrhage � ∃hasSeriousness.High)
�PenetrationWound

D3 ≡
ElectronicRegisterBloodPressureDisorder
�ElectronicRegisterDrugIntollerance
�ElectronicRegisterCoagulationDisorder

P3,3 ≡ ∃hasClinicalFact.C3 � ∃hasElectronicRegister.D3

80 F. Bobillo, M. Delgado, and J. Gómez-Romero

Table 2. Resolution of the example

(1) S ≡ Hemorrhage � Unconsciousness � PenetrationWound
Cn = {C1, C2}

(2) Pk,l = {P1,1, P2,2}

(3) Dm = {D1, D2}

Let us suppose that ElectronicRegisterBloodPressureDisorder is
a leaf concept in OD and ElectronicRegisterDrugIntollerance
has two subclasses: ElectronicRegisterProcaineIntolerance and
ElectronicRegisterPenicillinIntolerance. Then:

(4) I =

ElectronicRegisterBloodPressureDisorder
ElectronicRegisterDrugIntollerance
ElectronicRegisterProcaineIntolerance
ElectronicRegisterPenicillinIntolerance

must mirror the data stored in the hospital information system. It would be
possible to store these instances in a RDF specific repository, avoiding the over-
load of having them embedded in the ontology.

Note that in Algorithm 1 descendants of S are not inferred during the reason-
ing process, since these concepts corresponds to more specific context situations
–which will probably drive to more specialized domain information–. However,
it may be interesting to calculate the profiles involving these subcontexts and to
provide them as feedback information to the user, in order to recommend him
to describe further details of the current scenario. For instance, in this example,
C3 in P3,3 is subsumed by S:

Unconsciousness 	 (Hemorrhage 	 ∃hasSeriousness.High) 	
PenetrationWound � Unconsciousness 	 Hemorrhage 	 PenetrationWound

Consequently the doctor could be advised to carry out other clinical trials to
see if the specific part of this restriction (∃hasSeriousness.High qualifier of
Hemorrhage) is present but has not been diagnosed yet. If this knowledge
is supplied afterwards, more information about the patient (information unit
ElectronicRegisterCoagulationDisorder) will be provided.

5 CDR Plug-in for Protégé

We have developed a plug-in for the Protégé platform (the ontology development
tool from the University of Stanford4) which allows to create, edit, test and
reason with a CDR ontology. Our plug-in adds a new tab to the Protégé-OWL
environment (Protégé enhanced with the OWL plug-in5) where a simplified view

4 http://protege.stanford.edu
5 http://protege.stanford.edu/plugins/owl/

http://protege.stanford.edu
http://protege.stanford.edu/plugins/owl/

An Ontology Design Pattern for Representing Relevance in OWL 81

Fig. 2. CDR Tab plug-in in Protégé IDE

of the CDR ontology is displayed and queries can be introduced. A preliminary
version can be downloaded in http://arai.ugr.es/iaso/cdrplugin/.

We can distinguish four sections in the tab, depicted in Figure 2:

1. Context side. The left side of the tab shows the context ontology (OC) and
the complex contexts (Ci) existing in the profile ontology. The context ontol-
ogy can be optionally hidden. New complex contexts can be created using the
context vocabulary; existential restrictions for the new Ci are automatically
added. It is also possible to edit or delete existing profiles.

2. Domain side. The right side mirrors the context side but changing context
knowledge by domain knowledge (OD). New complex domains Di can also
be easily created and editing and deleting are as well allowed.

3. Profiles. The central section of the tab shows the profiles in the ontology
OP . This is probably the most interesting part, since it simplifies the task
of creating new profiles. To build a new profile, the user has just to select a
complex context in the left box (Ci) and a complex domain in the right box
(Dj), and then push the ‘new profile’ button. The new profile (Pi,j) will be
created as a subclass of the selected profile and the corresponding existential
restrictions will be automatically generated.

http://arai.ugr.es/iaso/cdrplugin/

82 F. Bobillo, M. Delgado, and J. Gómez-Romero

4. Reasoning. The bottom section allows to retrieve the domain relevant to a
given context, i.e. it implements Algorithm 1. When a new complex concept
for querying is created, its restrictions are shown and the ‘run query’ but-
ton is activated. Results are displayed in the ‘Results’ tab of this reasoning
section and further information about the obtained classes can be consulted.

From the formal description of the pattern in Section 3.3 it can be deduced
that some additional configuration is needed to make the CDR plug-in work
correctly. This involves stating the URIs of the external ontologies (OC , OD),
the top concepts for the profiles, the contexts and the domains (P�, C� , D�)
and the URI of the DIG reasoner which will be used. To assist this procedure, a
wizard-like window is presented to the user when pushing the ‘properties’ button
on the top toolbar.

The plug-in has been developed with the APIs for Protégé and Protégé-OWL
version 3.2.1. It also relies on the CDR-API, our library to manage program-
matically models created with the pattern. Installation is easy; as any other
Protégé add-on, it just has to be copied to the plug-in directory of the Protégé
installation.

6 Discussion

Next we summarize some of the highlights of the CDR pattern. Studying compu-
tational properties of the resulting ontology deserves its own subsection, where
complexity is detailed.

6.1 Features

– Reusability. By definition, design patterns must be applicable to different
problems and domain areas. Our pattern effectively fulfills this objective,
since it provides a general guideline for representing relevance without im-
posing application-dependant restrictions on the domain and the context
ontologies.

– Standardization. One of the main a priori requirements for our pattern was
OWL-DL compliance, that is, the resulting ontology should not include new
constructors nor be in OWL-Full. As explained in Section 3.3, the pattern
generates a new OWL-DL ontology whose complexity is bounded by context
and domain models. Thus, though the reasoning process may seem little
straightforward, current tools (e.g. inference engines) can be directly used,
without having to extend, modify or re-implement them.

– Formalization. We have provided a formal specification of the pattern which
goes further than usual text descriptions. This is possible because the target
language, OWL, relies on a logic-based formalism, DL.

– Modularization. The pattern promotes ontology modularization, as it clearly
separates the three involved models. Nevertheless, a limitation is imposed by
OWL importing mechanism: the profile ontology OP must import completely

An Ontology Design Pattern for Representing Relevance in OWL 83

OC and OD, as partial including is not allowed. This forces the model to be
globally interpreted and valid, which would not be desirable if different (and
probably contradictory) relevance criteria and contexts are to be represented.

– Expressivity. The pattern allows to represent relevance taking the most of
OWL expressivity. For instance, profile hierarchies can be defined to assert
inclusion relations between them. In fact, the resulting model is an OWL
ontology and can be modified as needed. Further improvements may be con-
sidered, e.g. definition of several bridge properties with different semantics to
qualify the connections between contexts and domain, or adding properties
to profile classes.

6.2 Complexity Analysis

Computational complexity of the inference within the CDR model is conditioned
by complexity of context and domain expressions (Ci

◦
∈KC

T and Dj

◦
∈KD

T), since
Pi,j definitions are included in ALC level. In the simplest case, that is OC , OD

and OP ontologies are in ALC, reasoning within the CDR ontology is asymp-
totically bounded by ontology classification complexity, which is ExpTime for
ALC with GCIs according to Table 3 [16].

Supposing that OC and OD do not add further complexity, it is possible to
reduce the complexity of the CDR model by restricting the allowed constructors
for Ci and Dj, moving consequently to a less expressive logic. Restricting nega-
tion to atomic concepts and disallowing union concepts would enclose the CDR
ontology to ALE , which has PSpace complexity for general reasoning. Other
alternative consists on using only acyclic TBoxes, which would give complexities
of PSpace for ALC and coNP for ALE .

Other choices are not appropriate, however. Moving from ALC to ALU does
not reduce the complexity, neither in the general case nor with acyclic TBoxes.
Moving to AL is not possible, because existential quantification can not be
restricted. Similarly, expressivity of FL− is too limited.

According to this formulation, role hierarchies are not necessary in the CDR
model. Nevertheless, they may be considered for convenience, in such a way that
sub-roles of R1 and R2 can be defined with particular semantics and handled
consequently. This will increase the complexity to ALCH, but with the advantage
that reasoning for the general case still remains ExpTime.

Table 3. Complexity of reasoning in basic DLs

DL \ TBox acyclic general

FL−
PTime PTime

AL coNP PSpace

ALE coNP PSpace

ALU PSpace ExpTime

ALC PSpace ExpTime

84 F. Bobillo, M. Delgado, and J. Gómez-Romero

In any case, ALCH is less expressive than SHIF(D) (equivalent to OWL-Lite),
so reasoning in practice with available DL engines (e.g. Pellet6) will be quite effi-
cient, as they are highly optimized and worst-case inferences are infrequent. Hence,
more complex logicswith extended semantics could be as well considered to extend
the basic formulation without significant performance impact.

7 Conclusions and Future Work

In this work we have presented the CDR formalism, a design pattern for the
representation and management of context-relevant knowledge in OWL ontolo-
gies. This pattern eases the representation of knowledge when facing the problem
of information overload in KBSs, which is critical in Knowledge Mobilization.
We also provide a plug-in for the Protégé ontology-development platform which
simplifies constructing, editing and consulting the relevance model; currently
this software is being tested and new features are being suggested to be imple-
mented. Finally, we have discussed the main features of the pattern, remarking
reusability and standardization as the more important, and studied computa-
tional complexity of the resulting ontology.

Looking into the future, we strongly believe that describing and promoting
best practices for Semantic Web ontologies is not only useful but also necessary
to boost semantic applications. More design recommendations and patterns as
the produced by the OEP Task Force should be publicly available for use and
discussion. It is interesting to note that in turn an eventual pattern repository
could be described using an ontology.

Concerning our design pattern, in Sect. 6.1 we have remarked that OWL
imports can be problematic when more than one context or profile model is in-
volved. This issue has been pointed out in some current works and some solutions
have been proposed [17]. Evolution of the relevance model is also important and
temporal and non-monotonic reasoning formalism may be further considered. In
fact, representing validity (as in temporal and non-monotonic logics) depending
on time or new knowledge (both can be assimilated to context) and relevance
(as in our model) might be regarded as similar ideas. It would be interesting to
compare both approaches and to study to which extent one can be reduced to
the other.

A fuzzy and probabilistic/possibilistic extension to the crisp ontology gener-
ated by the CDR pattern is also being considered. Such fuzzy ontology would
allow to define weighted relevance relations between context and domains and,
which is more interesting, partial matching of similar contexts. For instance, a
context could be asserted to be subsumed by another with a certain degree. This
would make the CDR ontology no longer compliant with OWL-DL, so we are as
well studying procedures to reduce a fuzzy ontology to a crisp one [18].

Acknowledgement. This research has been partially supported by the project
TIN2006-15041-C04-01 (Ministerio de Educación y Ciencia). F. Bobillo holds
6 http://pellet.owldl.com/

http://pellet.owldl.com/

An Ontology Design Pattern for Representing Relevance in OWL 85

a FPU scholarship from Ministerio de Educación y Ciencia. J. Gómez-Romero
holds a FD scholarship from Consejeŕıa de Innovación, Ciencia y Empresa (Junta
de Andalućıa).

References

1. Svátek, V.: Design Patterns for Semantic Web Ontologies: Motivation and Discus-
sion. In: Proceedings of BIS2004 (2004)

2. Eppler, M., Mengis, J.: The Concept of Information Overload: A Review of Liter-
ature from Organization Science, Accounting, Marketing, MIS, and Related Disci-
plines. The Information Society 20(5) (2004)

3. Iivari, J.: Information Systems as a Design Science. In: Information Systems Devel-
opment: Advances in Theory, Practice and Education, Springer, Heidelberg (2005)

4. Reich, J.R.: Ontological Design Patterns: Metadata of Molecular Biological On-
tologies, Information and Knowledge. In: Ibrahim, M., Küng, J., Revell, N. (eds.)
DEXA 2000. LNCS, vol. 1873, Springer, Heidelberg (2000)

5. Staab, S., Erdmann, M., Maedche, A.: Engineering ontologies using semantic pat-
terns. In: Procs. IJCAI 2001 Workshop on E-Business & the Intelligent Web (2001)

6. Noy, N., McGuinness, D.: Ontology Development 101: A Guide to Creating Your
First Ontology. Technical report, Stanford Knowledge Systems Laboratory (2001)

7. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Proceedings
of the 4th International Semantic Web Conference (2005)

8. Guha, R., McCool, R., Fikes, R.: Contexts for the Semantic Web. In: Proceedings
of the 3rd International Semantic Web Conference (2004)

9. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:
Contextualizing ontologies. Web Semantics: Science, Services and Agents on the
World Wide Web 1(4) (2004)

10. Stuckenschmidt, H.: Toward Multi-viewpoint Reasoning with OWL Ontologies. In:
The Semantic Web: Research and Applications (2006)

11. Weiser, M.: The computer for the 21st century. SIGMOBILE Mob. Comput. Com-
mun. Rev. 3(3) (1999)

12. Chen, H., Finin, T., Joshi, A.: The SOUPA Ontology for Pervasive Computing. In:
Ontologies for Agents: Theory and Experiences, Birkhuser Basel (2005)

13. Gu, T., Pung, H., Zhang, D.: A service-oriented middleware for building context-
aware services. Journal of Network and Computer Applications 28(1) (2005)

14. Khedr, M., Karmouch, A.: ACAI: agent-based context-aware infrastructure for
spontaneous applications. Journal of Network and Computer Applications 28(1)
(2005)

15. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel -Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, Cambridge (2003)

16. Calvanese, D.: Reasoning with Inclusion Axioms in Description Logics: Algorithms
and Complexity. In: European Conference in Artificial Intelligence (1996)

17. Bao, J., Honavar, V.: Divide and Conquer Semantic Web with Modular Ontologies
- A Brief Review of Modular Ontology Language Formalisms. In: WoMo 2006. First
International Workshop on Modular Ontologies, Athens, USA (2006)

18. Bobillo, F., Delgado, M.: A crisp representation for fuzzy SHOIN with fuzzy
nominals and general concept inclusions. In: Proceedings of the 2nd Int. Workshop
on Uncertainty Reasoning for the Semantic Web, Athens, Georgia, USA (2006)

	An Ontology Design Pattern for Representing Relevance in OWL
	Introduction
	Related Work
	Definition of the Pattern
	Use Case
	Notation
	Formulation

	Example
	CDR Plug-in for Protégé
	Discussion
	Features
	Complexity Analysis

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

