
K. Aberer et al. (Eds.): ISWC/ASWC 2007, LNCS 4825, pp. 566–579, 2007.
© Springer-Verlag Berlin Heidelberg 2007

combiSQORE: An Ontology Combination Algorithm

Rachanee Ungrangsi1, Chutiporn Anutariya1, and Vilas Wuwongse2

1 School of Technology, Shinawatra University
99 Moo 10 Bangtoey, Samkok, Pathum Thani, 12160 Thailand

{rachanee,chutiporn}@shinawatra.ac.th

2 School of Engineering and Technology, Asian Institute of Technology
P.O. Box 4, Klong Luang, Pathum Thani, 12120 Thailand

vw@cs.ait.ac.th

Abstract. Automatic knowledge reuse for Semantic Web applications imposes
several challenges on ontology search. Existing ontology retrieval systems
merely return a lengthy list of relevant single ontologies, which may not
completely cover the specified user requirements. Therefore, there arises an
increasing demand for a tool or algorithm with a mechanism to check concept
adequacy of existing ontologies with respect to a user query, and then
recommend a single or combination of ontologies which can entirely fulfill the
requirements. Thus, this paper develops an algorithm, namely combiSQORE to
determine whether the available collection of ontologies is able to completely
satisfy a submitted query and return a single or combinative ontology that
guarantees query coverage. In addition, it ranks the returned answers based on
their conceptual closeness and query coverage. The experimental results show
that the proposed algorithm is simple, efficient and effective.

1 Introduction

Ontology is employed as a means for knowledge sharing and reusing in the Semantic
Web [3]. References [4, 9, 13] discuss two typical scenarios for ontology reuse in the
Semantic Web. The first one envisions that a user expresses his/her requirements as a
query and submits it to an ontology search engine to retrieve the most appropriate
ontology. If the returned result partially satisfies the user requirements, the user is
then required to make additional modification efforts which are considerably less
compared to those needed to construct a new ontology from scratch.

On the other hand, the second scenario, which is called automatic knowledge
reuse, addresses the problem of automatically and dynamically finding a single or
combinative ontology for next generation Semantic Web applications [11], such as
Magpie [7] and PowerAqua [9, 13]. Magpie [7] is a semantic browser which assists
users while they surf the Web by highlighting instances of chosen concepts in the
current Web page based on an internal instantiated ontology. The second application,
PowerAqua [9, 13], is an ontology based question answering system that derives
answers to questions asked in natural language by exploiting an underlying ontology.
Currently, in both tools, the employed ontology is manually selected by the user and
only one ontology can be exploited at a time. To allow cross-domain question

 combiSQORE: An Ontology Combination Algorithm 567

answering in the case of PowerAqua, and enable an extended coverage of the
semantic browsing with Magpie, a mechanism for dynamically finding and combining
the relevant knowledge among online ontologies and semantic data becomes essential.

Existing ontology retrieval systems, such as Swoogle [6], OntoKhoj [11], and
OntoSearch [16], merely return a lengthy list of single ontologies, but none of them
can ensure that all query conditions are met by at least one of the returned results.
Furthermore, due to the sparseness of knowledge in a Web-accessible ontology
database, it is possible that there exists no single ontology which satisfies all user
requirements [13]. However, to date there is no algorithm or tool which can deal with
these significant complications.

This paper proposes a simple yet efficient and effective algorithm, namely
combiSQORE. It does not only enable users to check the concept sufficiency of an
ontology collection with respect to a given query, but also computes a sub-optimal
combination of ontologies that jointly cover the query when no single ontology can
fulfill the specified requirements. In addition, it returns the rankings which rank both
single and combinative ontologies based on conceptual closeness and query coverage.

combiSQORE algorithm is developed as an extension of SQORE (Semantic Query
based Ontology Retrieval Framework) [2, 14]. SQORE enables users to precisely and
structurally formulate their ontology requirements in terms of a semantic query. Each
query is evaluated by considering the semantic closeness between the query itself and
the resultant ontology which is quantified by SQORE’s similarity measures.
Comprehensive experiments have been conducted on real-world ontologies to
evaluate and demonstrate combiSQORE’s effectiveness. The results have shown that
the proposed algorithm can generate irreducible combinations of ontologies with a
reasonable cost and provide useful rankings.

The paper is organized as follows. Sect. 2 reviews related works and Sect. 3
informally introduces SQORE. Sect. 4 develops combiSQORE algorithm and Sect. 5
illustrates the algorithm via an example. Sect. 6 discusses the conducted experiments
and their results, and followed by conclusions and future work in Sect. 7.

2 Related Work

Ontology search engines are crucial to enable scientists and practitioners to find and
reuse Web-accessible ontologies efficiently. Several ontology retrieval systems have
been developed in the last few years (e.g. Swoogle [6], OntoKhoj [12], and
OntoSearch [16].) However, these systems mainly focus on automatically crawling
the Web for collecting ontologies and employ traditional keyword search mechanisms
to retrieve relevant ontologies. As a result, they fail to capture the structural and
semantic information about the user-desired domain concepts and relations.
Furthermore, they usually return a large number of ontologies, but cannot guarantee
query coverage which is a mandatory requirement for automatic ontology reuse in
Semantic Web applications, such as an ontology-based browser Magpie [7], an
ontology-based question answering system PowerAqua [9, 13], etc.

Another interesting approach is CORE [8] and its extension, WEBCORE [4],
which retrieves keyword-related ontologies from an ontology database, and applies
multiple criteria to generate several rankings, and finally combines all the rankings to

568 R. Ungrangsi, C. Anutariya, and V. Wuwongse

obtain the final ranking. However, some of these ranking criteria require users to
provide applications and data for the evaluation. Furthermore, in its last step, a user is
demanded to manually evaluate the resultant ontologies in order to enable a
collaborative assessment. Thus, this approach cannot readily be applied to automatic
ontology reuse in Semantic Web applications.

Swoogle [6] and OntoKhoj [12] implement their PageRank-like algorithms based
on the computed ontology referral network. ActiveRank [1] introduces several metrics
for ontology ranking based on the taxonomic structure information such as class
names, shortest paths, linking density and positions of focused classes in the ontology.
However, these three approaches cannot be used for ranking the returned result that
consists of both single and combinations of ontologies.

PowerAqua [9, 13] proposes a framework to determine ontology combinations for
a given query by using OntoCombination algorithm and compute ranking based on
the generality of ontology concepts. However, such an algorithm produces a set of
ontologies ranked by the coverage of each individual ontology, but does not compute
an optimal or sub-optimal combination that maximizes the query coverage.

3 SQORE: Architectural Overview

Fig. 1 illustrates SQORE’s system architecture [2, 14] which comprises four main
components: i) a semantic query, ii) a retrieval engine, iii) an ontology database, and
iv) a semantic lexical database. It employs XML Declarative Description (XDD)
theory [15] as its theoretical foundation for modeling ontology databases and
evaluating semantic queries, which does not only facilitate ontology matching and
retrieval, but also support reasoning capability to enhance the matching results.
Furthermore, when a query term and an ontology term do not exactly match (=), it
determines other possible semantic relations between them (i.e. equivalence (≡),
broader (⊇), narrower (⊆) and unknown (≠)) by employing a referenced lexical
database, such as WordNet [10]. Then, the system computes the semantic similarity
score between a given query and an ontology in the collection, which ranges from 0
(strong dissimilarity) to 1 (strong similarity).

By enhancing SQORE with the proposed combiSQORE algorithm, the system can
then determine whether or not an ontology collection is conceptually sufficient for a
user query, and recommend a single or combinative ontology which completely cover

Query

Ranked ontologies

SQORE

Ontology Database

 Collection of Ontologies

 Axiomatic Semantics of Ontology

Modeling Constructs

Semantic Lexical Database

(i)

(ii)

(iii)

(iv)

Fig. 1. SQORE System Architecture

 combiSQORE: An Ontology Combination Algorithm 569

the query. Finally, the system computes semantic similarity scores between the query
and the returned ontologies (either single or combinative) based on conceptual
similarity, and query coverage and uses these scores for the rankings.

SQORE defines four measures used for calculating similarity scores as follows:

• Element Similarity Score (SSE): The similarity score of any two given elements
x and y, denoted by SSE(x, y), depends on their semantic relation determined by
the referenced lexical database as explained earlier. For any two given
restrictions r(a1,b1) and r(a2,b2), their similarity is equal to the product of a1-a2
similarity score and b1-b2 similarity score i.e., SSE(a1, a2)* SSE(b1, b2). When x
and y do not belong to the same type, for instance x is a class name and y a
property name, their similarity score is undefined.

• Best Similarity Score (SSB): Based on the element similarity score SSE, SSB(x,O)
represents the similarity between a given element x of a query and an ontology O
by finding the highest similarity score between x and each element y that is
semantically defined by O. In other words, the element y in O that is most similar
to x, will be used for measuring the closeness between x and O. This measure is a
key metric in the combiSQORE algorithm.

• Satisfaction Score of Mandatory conditions (SSM) and Optional conditions
(SSO): In SQORE, a semantic query comprises mandatory conditions and
optional conditions. If an ontology semantically satisfies all mandatory
conditions of a given query, then that ontology will be included in the answer.
Optional conditions, on the other hand, are useful for expressing additional
means for measuring the extent of closeness between the ontology and the query.

• Query-Ontology Similarity Score (SS): This similarity score represents the
semantic closeness between a query and an ontology, which is measured by the
satisfaction degree of the ontology with respect to the mandatory and optional
conditions of the query.

4 Algorithms: Ontology Combination and Ranking

Formally, the problem of finding an ontology combination is: Given a semantic query
and a set of ontologies, determine a minimal ontology subset that satisfies all
conditions in the query, and maximizes the conceptual closeness between the ontology
subset and the query. This problem is equivalent to the knapsack problem, which is
widely-known to be NP-complete. Therefore, rather than developing an optimal
solution, this paper proposes a backward greedy algorithm for construction of an
irreducible ontology subset, which satisfies all conditions in the query.

4.1 Notations and Definitions

Throughout this section, let ODB = {O1, …,On} be an ontology collection consisting
of n ontologies and Q = {q1, …,qm} be a semantic query comprising m conditions. As
means for measuring the relevance of an ontology O in ODB with respect to a
condition q of Q, SQORE [2, 14] defines SSB(q, O) as the (best) similarity score
between q and O, which ranges from 0 (strong dissimilarity) to 1 (strong similarity).

570 R. Ungrangsi, C. Anutariya, and V. Wuwongse

Based on SSB(q, O), let S(q,ODB) ⊆ ODB be the set of ontologies relevant to a
condition q, defined as follows:

 S(q,ODB) = { O ∈ ODB : SSB(q, O) > 0, q ∈ Q } (1)

Definition 1. An ontology collection ODB is sufficient to satisfy a semantic query Q
if and only if

∀q ∈ Q, S(q,ODB) ≠ ∅ .

Intuitively speaking, if S(q,ODB) is the empty set, one can derive that there exists no
ontology in ODB that can satisfy such a query condition q in Q. Therefore, an
ontology collection ODB is said to be sufficient for a semantic query Q, if there exists
a non-empty subset of ODB which jointly satisfies all conditions in Q; otherwise
ODB is insufficient.

Definition 2. Let R ⊆ ODB. R is a query result of Q if R is sufficient for Q. R is a
candidate query result of Q, if R is a query result and minimal (irreducible). That is,
any subset of a candidate query result R must not be a candidate query result of Q,
and hence removing any ontology O from R leads to an unsatisfactory of some query
conditions q in Q.

Next, an algorithm, namely combiSQORE, which can generate a candidate query
result of Q, is devised.

4.2 CombiSQORE Algorithm

Fig. 2 presents combiSQORE algorithm, which takes three input parameters: a
semantic query Q, a set of ontologies ODB and a sequence l, and returns a candidate
query result R of Q. Firstly, it determines whether or not the ontology collection
ODB is sufficient to satisfy Q. If ODB is insufficient for Q, the algorithm exits and
returns the empty set⎯no query result for Q. If ODB is sufficient, ODB itself is a
query result for Q. Therefore, R is initially assigned to be equal to ODB. The next
for-loop then minimizes R by considering each ontology O in R according to the
input sequence l. If R – {O} is insufficient for Q, O cannot be removed from R;
otherwise R is minimized by taking O out. This iteration continues until there is no
ontology remaining in the sequence l. The algorithm then returns R as a candidate
query result.

One can see that with a different ontology sequence l, combiSQORE may produce
different candidate query result R for a particular query Q and ontology collection
ODB, since the sequence l determines the order of removing an ontology from an
initial query result in order to finally obtain a candidate query result. Note that the
conducted experiments show that strategically generated input sequences can improve
the algorithm performance (to be discussed in more details in Section 6).

Let m denote the size of a given query Q and n the size of an ontology collection
ODB. The complexity of combiSQORE is O(mn2log n) or O(n2log n) when m << n.

 combiSQORE: An Ontology Combination Algorithm 571

Algorithm combiSQORE(Q,ODB,l)

Input:

Q: a semantic query,
ODB: an ontology collection,

l: a predetermined sequence of ontologies in ODB

Output: R: a candidate query result

if ∃q ∈ Q such that S(q,ODB) = ∅

 do EXIT // ODB is insufficient for Q

R = ODB
for each ontology O in the sequence l
 do T = R − {O}

 if ∃q ∈ Q such that S(q, T) = ∅

 R = R // T is insufficient for Q
 else

 R = T // T is sufficient for Q

return R

Fig. 2. combiSQORE: an ontology combination algorithm

Theorem 1. If an ontology collection ODB is sufficient for a given semantic query Q,
then P ⊇ ODB is also sufficient for Q.

Proof: Assume that there exists P ⊇ ODB that is insufficient for Q. Then, by
definition, there exist q ∈ Q such that

S(q, P) = ∅

{ O ∈ P : SSB(q, O) > 0} = ∅

{ O∈ P : SSB(q,O) > 0} ∩ ODB = ∅ ∩ ODB

{ O ∈ P ∩ ODB : SSB(q, O) > 0} = ∅ ∩ ODB

{ O ∈ ODB : SSB(q, O) > 0} = ∅ // since P ⊇ ODB

S(q,ODB) = ∅

which contradicts the assumption that ODB is sufficient for Q.

Theorem 2. A candidate query result R returned by combiSQORE is irreducible.

Proof: For the sake of contradiction, let X ⊆ R and X ≠ ∅, and assume that R – X is a
query result of Q. For an ontology O ∈ X, let i be the iteration in which
combiSQORE considers to remove O and let Ri ⊇ R be the query result at the
beginning of this iteration. For the ontology O to remain in the query result, it must be
that Ri – {O} is insufficient to satisfy all query conditions; otherwise combiSQORE
would have removed O from Ri. Therefore, Ri – {O} is not a query result of Q. Since

572 R. Ungrangsi, C. Anutariya, and V. Wuwongse

R – X is a query result of Q, and R – X ⊆ R – {O} ⊆ Ri – {O}, from Theorem 1
one can obtain that Ri – {O} is also a query result of Q, which contradicts.

4.3 Ranking Mechanism

Two criteria, namely query coverage and conceptual closeness are considered to
compute semantic similarity score which is used for ranking query results generated
by combiSQORE. Firstly, query coverage is defined to determine how well an
ontology combination R satisfies a given query Q. Intuitively, it is measured by
computing the ratio of the number of conditions satisfied by R to the total number of
conditions in Q, hence its value ranges from 0 to 1. Since a candidate query result
produced by combiSQORE guarantees to satisfy all conditions in Q, its query
coverage is 1.

Definition 3 (Query Coverage Score: QS). The query coverage between a semantic
query Q comprising m conditions q1, …, qm and a set of ontologies R consisting of n
ontologies O1, …, On is measured by:

 { q ∈ Q : S(q, R) ≠ ∅ }

QS(Q, R) =

M

(2)

Next, the conceptual closeness between a query and a candidate query result
comprising one or more ontologies will be formalized, by redefining certain semantic
similarity measures developed by SQORE [2, 14], which simply capture the
conceptual similarity between a query Q and a single ontology O. Intuitively, based
on SSB(q, O) which defines the (best) similarity score between a condition q in Q and
the ontology O, SQORE defines the query-ontology similarity score: SS(Q, O) to
represent the conceptual closeness between Q and ontology O by simply aggregating
the similarity scores between all conditions in Q and O.

Therefore, in order to measure the conceptual closeness between Q and a
combination of ontologies R, the query-combinative-ontology conceptual similarity
score: SSC(Q, R) is formalized here by aggregating the maximum similarity score
between a query condition q in Q and an ontology in R as follows.

Definition 4 (Query-Combinative-Ontology Conceptual Similarity Score: SSC).
The conceptual closeness between a semantic query Q comprising m conditions q1,
…, qm and a set of ontologies R consisting of n ontologies O1, …, On is measured by:

SSC(Q, R) =

m

O),(qSS
m

i
iB

O
∑
= ∈1

 max
R (3)

Finally, QS and SSC are combined in order to measure the semantic similarity
between Q and a combination of ontologies R, as follows.

 combiSQORE: An Ontology Combination Algorithm 573

Definition 5 (Query-Combinative-Ontology Similarity Score: SS). The semantic
similarity between a semantic query Q comprising m conditions q1, …, qm and a set of
ontologies R consisting of n ontologies O1, …, On is measured by:

SS(Q,R) = QS(Q, R)*SSC(Q,R) (4)

Next section elaborates more details by means of an example.

5 An Example

Let ODB be an ontology database comprising eight real-world OWL ontologies from
different sources as shown in Table 1. Assume that a query Q comprising eight
conditions is submitted, and the SSB matrix measuring the similarity between each
ontology and query condition is given in Table 2. From the table, one can see that O2,
O3 and O6 have the highest similarity scores, and are ranked 1st, 2nd and 3rd,
respectively. Moreover, Table 2 also depicts that each query condition is satisfied by
more than one ontology in the collection. Thus, ODB is sufficient to satisfy Q.
However, there exists no single ontology that can satisfy all query conditions, which
results in a need for combiSQORE algorithm to generate candidate query results and
compute the ranking.

Table 1. An example of ontology database ODB

Ontology URI
O1 http://swrc.ontoware.org/ontology
O2 http://ebiquity.umbc.edu/ontology/person.owl
O3 http://annotation.semanticweb.org/iswc/iswc.owl
O4 http://ontoware.org/frs/download.php/18/semiport.owl
O5 http://morpheus.cs.umbc.edu/aks1/ontosem.owl
O6 http://www.csd.abdn.ac.uk/~cmckenzi/playpen/rdf/akt_ontology_LITE.owl
O7 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl
O8 http://protege.stanford.edu/plugins/owl/owl-library/ka.owl

Let the input sequence l of combiSQORE be (O5,O2,O3,O7,O8,O6,O1,O4). The

algorithm starts with an initial query result R comprising all ontologies. Then, it
iteratively checks whether removing an ontology from R according to the order of the
input sequence makes R insufficient for Q or not. If R remains sufficient, that
ontology is removed from R; otherwise, R is unchanged. For instance, removing
Ontology O6 from the query result R = {O1, O4, O6} will cause q7 and q8
unsatisfied. Thus, O6 cannot be removed from R.

With respect to the given ontology collection ODB, the submitted query Q and the
input sequence l, combiSQORE generates the candidate query result R = {O1, O6},
which is irreducible because removing either O1 or O6 will make some query

574 R. Ungrangsi, C. Anutariya, and V. Wuwongse

Table 2. SSB matrix between a query condition in Q and an ontology in ODB

Query Conditions in Q O1 O2 O3 O4 O5 O6 O7 O8

q1: <owl:Class rdf:ID="Student" /> 1 1 1 1 1 1 1 1

q2: <owl:Class rdf:ID="PhDstudent"/> 1 1 1 1 0 1 0.6 1

q3: <owl:Class rdf:ID="Professor"/> 0.4 1 0.4 0.4 1 0.8 1 0

q4: <rdf:Property rdf:ID="supervise"/> 1 0 0 0 1 0 0 1

q5: <owl:Class rdf:about="PhDStudent" >
 <rdfs:subClassOf
 rdf:resource ="Student"/>
 </owl:Class>

1 1 1 1 0 0 0 0

q6: <rdf:Property rdf:about="firstname"> 0 1 1 0.6 0 0.8 0.6 1

q7:<rdfs:domain rdf:resource ="Student"/> 0 1 1 0 0 0.8 0 1

q8:<rdfs:range rdf:resource ="xsd:String"/> 0 1 1 0 0 0.8 0 0

SEMANTIC SIMILARITY SCORE: 0.55 0.87 0.8 0.5 0.37 0.65 0.4 0.62

Table 3. Sample input sequences and their output combinations

Input Sequence Candidate Query Result
Seq1: (O5,O2,O3,O7,O8,O6,O1,O4) {O1,O6}
Seq2: (O2,O3,O6,O8,O1,O4,O7,O5) {O4,O5,O6}
Seq3: (O5,O7,O4,O1,O8,O6,O2,O3) {O3,O8}
Seq4: (O8,O7,O6,O4,O3,O5,O2,O1) {O1,O2}

conditions unfulfilled. In addition, since different input sequences may yield different
candidate query results, Table 3 gives other possible results.

In order to rank the top three single ontologies (i.e., O2, O3 and O6) together with
the four candidate query results of Table 3, Table 4 illustrates their computed scores:
query coverage score, conceptual closeness score and similarity score with the
corresponding rankings shown in the followed brackets. With a focus on the final
similarity scores, a combinative ontology, namely {O1,O2}, is ranked 1st, because it
can satisfy all query conditions with highest conceptual closeness scores, while single
ontologies fail to fulfill certain conditions and have lower conceptual closeness
scores.

Table 4. Different rankings based on three ranking criteria

Ontologies Query Coverage Score
(QS)

Conceptual Closeness Score
(SSC)

Similarity Score
(SS=QS*SSC)

O2 0.875 (5) 0.87 (5) 0.761 (5)
O3 0.875 (5) 0.8 (6) 0.7 (6)
O6 0.75 (7) 0.65 (7) 0.488 (7)
{O1,O6} 1 (1) 0.9 (4) 0.9 (4)
{O4,O5,O6} 1 (1) 0.925 (2) 0.925 (2)
{O3,O8} 1 (1) 0.925 (2) 0.925 (2)
{O1,O2} 1 (1) 1 (1) 1 (1)

 combiSQORE: An Ontology Combination Algorithm 575

6 Experiments and Results

This section evaluates combiSQORE algorithm in terms of its performance and the
validity of its rankings by means of experiments. An ontology database used in the
experiment comprised 63 ontologies collected from three different domains: computer
science, food and stock, while queries were automatically created by randomly
selecting usable exact keywords from Wikipedia pages as shown in Table 5. The total
number of keywords indicates the number of keywords extracted from the Wikipedia
pages without considering stop words. The number of usable exact keywords
represents the number of extracted keywords that can exactly match with concepts
(classes) in the ontology database. The number of usable related keywords includes
synonyms, hypernyms and hyponyms of the usable exact keywords which appear in
the ontology collection.

Table 5. Statistics of Wikipedia pages used for generating keywords

Domain Wikipedia page Total
Keywords

Usable
Exact

Keywords

Usable
Related

Keywords

Stock http://en.wikipedia.org/wiki/Stock 493 202 2027
Food http://en.wikipedia.org/wiki/Food 672 259 732
Comp.Sc. http://en.wikipedia.org/wiki/Computer_science 283 107 733
TOTAL 1448 568 3492

Fig. 3. Richness of knowledge in the ontology collection

Fig. 3 presents the richness of knowledge in the ontology database based on how
often exact and related keywords appear in different number of ontologies varying
from one to twenty-nine. The graph shows that the probability that a keyword will
appear in only one ontology is approximately 0.5. However, the probability of a
keyword to co-occur in a higher number of ontologies decreases dramatically. Hence,
given a random set of keywords, the chance that they all will co-occur in the same
ontology is considerably low.

The experiment has been designed to test not only how well the algorithm
performs in average, but also to investigate the impact of input sequences to the
algorithm performance. Therefore, the experiment was performed as follows. Firstly,

576 R. Ungrangsi, C. Anutariya, and V. Wuwongse

a set of n keywords were randomly selected to formulate an input query, varying from
n = 1 to 10. Then, obtain the set of relevant ontologies from SQORE system, and
apply combiSQORE algorithm with a designated input sequence. Certain analyses on
the obtained results were then performed, as illustrated by Fig. 4 and Fig. 5. Note that
each data point shown in the graphs represents the average value obtained from at
least 50 trials or more.

6.1 Algorithm Performance

Fig. 4 illustrates the average number of relevant ontologies returned from SQORE,
the average number of single ontologies that can satisfy all query conditions
regardless to the conceptual similarity, and the average size of candidate query
results. As expected, when the number of query conditions increases, the number of
retrieved ontologies also increases whereas the number of single ontologies that can
satisfy all query conditions decreases to zero. This result reflects the need for
ontology combinations in order to entirely cover all conditions. In addition, the
experimental result has shown that the average size of ontology combinations is
approximately 3 for ten query conditions, which is acceptable for ontology
integration.

Fig. 4. Comparisons of resultant ontologies, individuals and combinations

As discussed earlier, with different input ontology sequences, combiSQORE may
yield different combinative ontologies because a sequence determines the order of
removing an ontology from an initial query result in order to finally obtain a
candidate query result. Therefore, the algorithm performance is suspected to be
improved if such a sequence is strategically generated. Intuitively, to maximize the
conceptual closeness, the sequence should be sorted in ascending order of the
similarity score. Since the similarity score tends to be proportional to the query
coverage, the conducted experiment examined the three types of input sequences: (i)
random ones, (ii) ones arranged in ascending order of the similarity score, and (iii)
ones arranged in descending order of the similarity score. In addition, to illustrate the
effectiveness of combiSQORE algorithm, results are also compared to three common
approaches for selecting and combining ontologies regarding to similarity scores: (i)
selecting only the highest-scored ontology, (ii) combining the two highest-scored
ontologies and (iii) combining the three highest-scored ontologies.

 combiSQORE: An Ontology Combination Algorithm 577

Fig. 5 then presents the average query coverage scores and the average conceptual
closeness scores of the computed results based on six different approaches as mention
above. As expected, the sequences arranged in ascending order give the best
candidate query results, whereas the random ones perform moderately well with the
average similarity score of 0.8, which is considerably high. Furthermore, it clearly
shows that combiSQORE with input sequences in ascending order of the similarity
scores outperforms combining the highest-scored ontologies because the results by
combiSQORE always completely satisfy the user query with higher conceptual
closeness scores.

a. query coverage

b. conceptual closeness

Fig. 5. Comparisons between the candidate query results of combiSQORE in different input
sequences and those of other common approaches

6.2 Ranking Evaluation

In order to evaluate the practicality of the proposed ranking mechanism, a preliminary
experiment was conducted. In the experiment, the ontology database and the
formulated query of Section 5 was presented to four participants with a request to
rank the top three single ontologies (i.e., O2, O3 and O6) together with the four
candidate query results of Table 3 based on query coverage, conceptual closeness and
similarity scores. Table 6a shows the average rankings proposed by the participants.

578 R. Ungrangsi, C. Anutariya, and V. Wuwongse

Table 6. Ranking evaluation results

a. Average ranks given by participants b. Pearson Correlation Coefficient for
combiSQORE wrt. participant ranking

Ontologies

U
se

rs
 –

 Q
ue

ry

C
ov

er
ag

e

U
se

rs
 -

C
on

ce
pt

ua
l

C
lo

se
ne

ss

U
se

rs
 –

 O
ve

ra
ll

co
m

bi
SQ

O
R

E
- Q

S

co
m

bi
SQ

O
R

E
- S

S C

co
m

bi
SQ

O
R

E
- S

S

combiSQORE PCC

O2 5 6 6 5 5 5 Query coverage score
(QS) 0.815

O3 7 5 5 5 6 6 Conceptual closeness
score (SSC) 0.917

O6 5 6 7 7 7 7 Similarity score (SS) 0.918
{O1,O2} 1 2 2 1 1 1
{O1,O6} 3 4 4 1 4 4

{O3,O8} 3 2 3 1 2 2

{O4,O5,O6} 2 1 1 1 2 2

Pearson Correlation Coefficient (PCC) [5] is employed to measure the similarity

between the average participant rankings and the system rankings. If the calculated PCC
value is closer to 1, it indicates a stronger linear relationship between the two rankings.
Table 6b shows that the PCC values of the three rankings, based on query coverage,
conceptual closeness and similarity scores, are significantly high, which imply that the
rankings proposed by combiSQORE are very close to the participant rankings.

7 Conclusions and Future Work

This paper has proposed combiSQORE, a novel approach for computing and ranking
ontology combinations, which can completely cover the specified user requirements. By
integrating a number of ontologies, each partially satisfying the given requirements, the
approach generates a minimal query result that can fulfill all requirements. The primary
objective of the proposed approach is not only to enable automatic knowledge reuse for
Semantic Web applications, but also to offer alternatives for ontology engineers and
practitioners during their ontology search and development processes. In addition, it can
also be applied to Web-service discovery applications in order to find sub-optimal sets
of Web services that can meet all user requirements.

With a focus on a mechanism for ranking the generated ontology combinations,
this paper has also developed simple methods to measure the conceptual similarity,
and query coverage of an ontology combination with respect to a given query. These
two criteria are then used to compute meaningful and practical rankings with the
promising experimental results. In addition, modification (integration) cost is another
metric that users are concerned. Future research direction includes an emphasis on
discovering the inter-relationships among the ontologies in a combination, and

 combiSQORE: An Ontology Combination Algorithm 579

integrating such information to compute an accurate modification (integration) cost.
Moreover, an enhancement by incorporating combiSQORE algorithm into the current
system available on-line at http://ict.shinawatra.ac.th:8080/sqore is under way.

References

1. Alani, H., Brewster, C.: Metrics for Ranking Ontologies. In: Proc. 4th Int. EON
Workshop, 15th Int. WWW Conference, Edinburgh (2006)

2. Anutariya, C., Ungrangsi, R., Wuwongse, V.: SQORE – A Framework for Semantic
Query based Ontology Retrieval. In: DASFAA 2007. Proc. 12th Int. Conf. Database
Systems for Advanced Applications, Bangkok. LNCS, vol. 4443, pp. 924–929 (2007)

3. Berners-Lee, T., Handler, J., Lassila, O.: The Semantic Web. Scientific American,
Singapore (May 2001)

4. Cantador, I., Fernández, M., Castells, P.: Improving Ontology Recommendation and
Reuse in WebCORE by Collaborative Assessments. In: Proc. 4th Int. Workshop
Evaluation of Ontologies for the Web, 15th Int. WWW Conf., Edinburgh (2006)

5. Conover, W.J.: Practical Non-Parametric Statistics, 2nd edn. John Wiley and Sons,
Chichester (1980)

6. Ding, L., Finin, T., Joshi, A., Pan, R., Scott Cost, R., Peng, Y., Reddivari, P., Doshi, V.,
Sachs, J.: Swoogle: a search and metadata engine for the Semantic Web. In: Proc. 13th
ACM Int. Conf. Information and Knowledge Management, DC (November 2004)

7. Dzbor, M., Domingue, J., Motta, E.: towards a Semantic Web browser. In: Fensel, D.,
Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 690–705. Springer,
Heidelberg (2003)

8. Fernández, M., Cantador, I., Castells, P., CORE,: A Tool for Collaborative Ontology
Reuse and Evaluation. In: Proc. 4th Int. Workshop Evaluation of Ontologies for the Web,
15th Int. WWW Conf., Edinburgh (2006)

9. Lopez, V., Motta, E., Uren, V.: PowerAqua: Fishing the Semantic Web. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 394–410. Springer, Heidelberg
(2006)

10. Miller, A., WordNet, A.: lexical database for English. Communications of the
ACM 38(11) (1995)

11. Motta, E., Sabou, M.: Next Generation Semantic Web Applications. In: Proc. 1st Asian
Semantic Web Conf., China (2006)

12. Patel, C., Supekar, K., Lee, Y., Park, E.K.: OntoKhoj: a Semantic Web portal for ontology
searching, ranking and classification. In: Proc. 5th ACM Int. Workshop Web Information
and Data Management, Louisiana (November 2003)

13. Sabou, M., Lopez, V., Motta, E., Uren, V.: Ontology Selection: Ontology Evaluation on
the Real Semantic Web. In: Proc. of the 4th Int. EON Workshop, Evaluation of Ontologies
for the Web, 15th Int. WWW Conf., Edinburgh (2006)

14. Ungrangsi, R., Anutariya, C., Wuwongse, V.: SQORE-based Ontology Retrieval System.
In: DEXA 2007. Proc. 18th Int. Conf. Database and Expert Systems Applications,
Regensburg, Germany, vol. 4653, pp. 720–729 (2007)

15. Wuwongse, V., Anutariya, C., Akama, K., Nantajeewarawat, E.: XML Declarative
Description (XDD): A Language for the Semantic Web. IEEE Intelligent Systems 16(3),
54–65 (2001)

16. Zhang, Y., Vasconcelos, W., Sleeman, D.: OntoSearch: An ontology search engine. In:
Proc. 24th SGAI Int. Conf. Innovative Techniques and Applications of AI, UK (2004)

	$combiSQORE$: An Ontology Combination Algorithm
	Introduction
	Related Work
	SQORE: Architectural Overview
	Algorithms: Ontology Combination and Ranking
	Notations and Definitions
	CombiSQORE Algorithm
	Ranking Mechanism

	An Example
	Experiments and Results
	Algorithm Performance
	Ranking Evaluation

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

