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Abstract. Automatic knowledge reuse for Semantic Web applications imposes 
several challenges on ontology search. Existing ontology retrieval systems 
merely return a lengthy list of relevant single ontologies, which may not 
completely cover the specified user requirements. Therefore, there arises an 
increasing demand for a tool or algorithm with a mechanism to check concept 
adequacy of existing ontologies with respect to a user query, and then 
recommend a single or combination of ontologies which can entirely fulfill the 
requirements. Thus, this paper develops an algorithm, namely combiSQORE to 
determine whether the available collection of ontologies is able to completely 
satisfy a submitted query and return a single or combinative ontology that 
guarantees query coverage. In addition, it ranks the returned answers based on 
their conceptual closeness and query coverage. The experimental results show 
that the proposed algorithm is simple, efficient and effective. 

1   Introduction 

Ontology is employed as a means for knowledge sharing and reusing in the Semantic 
Web [3]. References [4, 9, 13] discuss two typical scenarios for ontology reuse in the 
Semantic Web. The first one envisions that a user expresses his/her requirements as a 
query and submits it to an ontology search engine to retrieve the most appropriate 
ontology. If the returned result partially satisfies the user requirements, the user is 
then required to make additional modification efforts which are considerably less 
compared to those needed to construct a new ontology from scratch.  

On the other hand, the second scenario, which is called automatic knowledge 
reuse, addresses the problem of automatically and dynamically finding a single or 
combinative ontology for next generation Semantic Web applications [11], such as 
Magpie [7] and PowerAqua [9, 13]. Magpie [7] is a semantic browser which assists 
users while they surf the Web by highlighting instances of chosen concepts in the 
current Web page based on an internal instantiated ontology. The second application, 
PowerAqua [9, 13], is an ontology based question answering system that derives 
answers to questions asked in natural language by exploiting an underlying ontology. 
Currently, in both tools, the employed ontology is manually selected by the user and 
only one ontology can be exploited at a time. To allow cross-domain question 
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answering in the case of PowerAqua, and enable an extended coverage of the 
semantic browsing with Magpie, a mechanism for dynamically finding and combining 
the relevant knowledge among online ontologies and semantic data becomes essential.  

Existing ontology retrieval systems, such as Swoogle [6], OntoKhoj [11], and 
OntoSearch [16], merely return a lengthy list of single ontologies, but none of them 
can ensure that all query conditions are met by at least one of the returned results. 
Furthermore, due to the sparseness of knowledge in a Web-accessible ontology 
database, it is possible that there exists no single ontology which satisfies all user 
requirements [13]. However, to date there is no algorithm or tool which can deal with 
these significant complications.  

This paper proposes a simple yet efficient and effective algorithm, namely 
combiSQORE. It does not only enable users to check the concept sufficiency of an 
ontology collection with respect to a given query, but also computes a sub-optimal 
combination of ontologies that jointly cover the query when no single ontology can 
fulfill the specified requirements. In addition, it returns the rankings which rank both 
single and combinative ontologies based on conceptual closeness and query coverage.  

combiSQORE algorithm is developed as an extension of SQORE (Semantic Query 
based Ontology Retrieval Framework) [2, 14]. SQORE enables users to precisely and 
structurally formulate their ontology requirements in terms of a semantic query. Each 
query is evaluated by considering the semantic closeness between the query itself and 
the resultant ontology which is quantified by SQORE’s similarity measures. 
Comprehensive experiments have been conducted on real-world ontologies to 
evaluate and demonstrate combiSQORE’s effectiveness. The results have shown that 
the proposed algorithm can generate irreducible combinations of ontologies with a 
reasonable cost and provide useful rankings.  

The paper is organized as follows. Sect. 2 reviews related works and Sect. 3 
informally introduces SQORE. Sect. 4 develops combiSQORE algorithm and Sect. 5 
illustrates the algorithm via an example. Sect. 6 discusses the conducted experiments 
and their results, and followed by conclusions and future work in Sect. 7. 

2   Related Work 

Ontology search engines are crucial to enable scientists and practitioners to find and 
reuse Web-accessible ontologies efficiently. Several ontology retrieval systems have 
been developed in the last few years (e.g. Swoogle [6], OntoKhoj [12], and 
OntoSearch [16].) However, these systems mainly focus on automatically crawling 
the Web for collecting ontologies and employ traditional keyword search mechanisms 
to retrieve relevant ontologies. As a result, they fail to capture the structural and 
semantic information about the user-desired domain concepts and relations. 
Furthermore, they usually return a large number of ontologies, but cannot guarantee 
query coverage which is a mandatory requirement for automatic ontology reuse in 
Semantic Web applications, such as an ontology-based browser Magpie [7], an 
ontology-based question answering system PowerAqua [9, 13], etc.  

Another interesting approach is CORE [8] and its extension, WEBCORE [4], 
which retrieves keyword-related ontologies from an ontology database, and applies 
multiple criteria to generate several rankings, and finally combines all the rankings to 
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obtain the final ranking. However, some of these ranking criteria require users to 
provide applications and data for the evaluation. Furthermore, in its last step, a user is 
demanded to manually evaluate the resultant ontologies in order to enable a 
collaborative assessment. Thus, this approach cannot readily be applied to automatic 
ontology reuse in Semantic Web applications. 

Swoogle [6] and OntoKhoj [12] implement their PageRank-like algorithms based 
on the computed ontology referral network. ActiveRank [1] introduces several metrics 
for ontology ranking based on the taxonomic structure information such as class 
names, shortest paths, linking density and positions of focused classes in the ontology. 
However, these three approaches cannot be used for ranking the returned result that 
consists of both single and combinations of ontologies. 

PowerAqua [9, 13] proposes a framework to determine ontology combinations for 
a given query by using OntoCombination algorithm and compute ranking based on 
the generality of ontology concepts. However, such an algorithm produces a set of 
ontologies ranked by the coverage of each individual ontology, but does not compute 
an optimal or sub-optimal combination that maximizes the query coverage. 

3   SQORE: Architectural Overview 

Fig. 1 illustrates SQORE’s system architecture [2, 14] which comprises four main 
components: i) a semantic query, ii) a retrieval engine, iii) an ontology database, and 
iv) a semantic lexical database. It employs XML Declarative Description (XDD) 
theory [15] as its theoretical foundation for modeling ontology databases and 
evaluating semantic queries, which does not only facilitate ontology matching and 
retrieval, but also support reasoning capability to enhance the matching results. 
Furthermore, when a query term and an ontology term do not exactly match (=), it 
determines other possible semantic relations between them (i.e. equivalence (≡), 
broader (⊇), narrower (⊆) and unknown (≠)) by employing a referenced lexical 
database, such as WordNet [10].  Then, the system computes the semantic similarity 
score between a given query and an ontology in the collection, which ranges from 0 
(strong dissimilarity) to 1 (strong similarity).  

By enhancing SQORE with the proposed combiSQORE algorithm, the system can 
then determine whether or not an ontology collection is conceptually sufficient for a 
user query, and recommend a single or combinative ontology which completely cover  
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the query. Finally, the system computes semantic similarity scores between the query 
and the returned ontologies (either single or combinative) based on conceptual 
similarity, and query coverage and uses these scores for the rankings. 

SQORE defines four measures used for calculating similarity scores as follows: 

• Element Similarity Score (SSE): The similarity score of any two given elements 
x and y, denoted by SSE(x, y), depends on their semantic relation determined by 
the referenced lexical database as explained earlier. For any two given 
restrictions r(a1,b1) and r(a2,b2), their similarity is equal to the product of a1-a2 
similarity score and b1-b2 similarity score i.e., SSE(a1, a2)* SSE(b1, b2). When x 
and y do not belong to the same type, for instance x is a class name and y a 
property name, their similarity score is undefined. 

• Best Similarity Score (SSB): Based on the element similarity score SSE, SSB(x,O) 
represents the similarity between a given element x of a query and an ontology O 
by finding the highest similarity score between x and each element y that is 
semantically defined by O. In other words, the element y in O that is most similar 
to x, will be used for measuring the closeness between x and O. This measure is a 
key metric in the combiSQORE algorithm. 

• Satisfaction Score of Mandatory conditions (SSM) and Optional conditions 
(SSO): In SQORE, a semantic query comprises mandatory conditions and 
optional conditions. If an ontology semantically satisfies all mandatory 
conditions of a given query, then that ontology will be included in the answer. 
Optional conditions, on the other hand, are useful for expressing additional 
means for measuring the extent of closeness between the ontology and the query.  

• Query-Ontology Similarity Score (SS): This similarity score represents the 
semantic closeness between a query and an ontology, which is measured by the 
satisfaction degree of the ontology with respect to the mandatory and optional 
conditions of the query. 

4   Algorithms: Ontology Combination and Ranking 

Formally, the problem of finding an ontology combination is: Given a semantic query 
and a set of ontologies, determine a minimal ontology subset that satisfies all 
conditions in the query, and maximizes the conceptual closeness between the ontology 
subset and the query. This problem is equivalent to the knapsack problem, which is 
widely-known to be NP-complete. Therefore, rather than developing an optimal 
solution, this paper proposes a backward greedy algorithm for construction of an 
irreducible ontology subset, which satisfies all conditions in the query.  

4.1   Notations and Definitions 

Throughout this section, let ODB = {O1, …,On} be an ontology collection consisting 
of n ontologies and Q = {q1, …,qm} be a semantic query comprising m conditions. As 
means for measuring the relevance of an ontology O in ODB with respect to a 
condition q of Q, SQORE [2, 14] defines SSB(q, O) as the (best) similarity score 
between q and O, which ranges from 0 (strong dissimilarity) to 1 (strong similarity). 
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Based on SSB(q, O), let S(q,ODB) ⊆ ODB be the set of ontologies relevant to a 
condition q, defined as follows: 

                       S(q,ODB) = { O ∈ ODB : SSB(q, O) > 0, q ∈ Q } (1) 

Definition 1. An ontology collection ODB is sufficient to satisfy a semantic query Q 
if and only if  

∀q ∈ Q, S(q,ODB) ≠ ∅ .                                               

Intuitively speaking, if S(q,ODB) is the empty set, one can derive that there exists no 
ontology in ODB that can satisfy such a query condition q in Q. Therefore, an 
ontology collection ODB is said to be sufficient for a semantic query Q, if there exists 
a non-empty subset of ODB which jointly satisfies all conditions in Q; otherwise 
ODB is insufficient.  

Definition 2. Let R ⊆ ODB. R is a query result of Q if R is sufficient for Q. R is a 
candidate query result of Q, if R is a query result and minimal (irreducible). That is, 
any subset of a candidate query result R must not be a candidate query result of Q, 
and hence removing any ontology O from R leads to an unsatisfactory of some query 
conditions q in Q.  

Next, an algorithm, namely combiSQORE, which can generate a candidate query 
result of Q, is devised. 

4.2   CombiSQORE Algorithm  

Fig. 2 presents combiSQORE algorithm, which takes three input parameters: a 
semantic query Q, a set of ontologies ODB and a sequence l, and returns a candidate 
query result R of Q.  Firstly, it determines whether or not the ontology collection 
ODB is sufficient to satisfy Q. If ODB is insufficient for Q, the algorithm exits and 
returns the empty set⎯no query result for Q. If ODB is sufficient, ODB itself is a 
query result for Q. Therefore, R is initially assigned to be equal to ODB. The next 
for-loop then minimizes R by considering each ontology O in R according to the 
input sequence l. If R – {O} is insufficient for Q, O cannot be removed from R; 
otherwise R is minimized by taking O out. This iteration continues until there is no 
ontology remaining in the sequence l. The algorithm then returns R as a candidate 
query result. 

One can see that with a different ontology sequence l, combiSQORE may produce 
different candidate query result R for a particular query Q and ontology collection 
ODB, since the sequence l determines the order of removing an ontology from an 
initial query result in order to finally obtain a candidate query result. Note that the 
conducted experiments show that strategically generated input sequences can improve 
the algorithm performance (to be discussed in more details in Section 6).  

Let m denote the size of a given query Q and n the size of an ontology collection 
ODB. The complexity of combiSQORE is O(mn2log n) or O(n2log n) when m << n.   
 



 combiSQORE: An Ontology Combination Algorithm 571 

Algorithm combiSQORE(Q,ODB,l) 

Input:   
         

Q: a semantic query, 
ODB: an ontology collection, 

l: a predetermined sequence of ontologies in ODB  

Output:  R: a candidate query result 

if ∃q ∈ Q such that S(q,ODB) = ∅ 

    do EXIT  // ODB is insufficient for Q 

R = ODB  
for each ontology O in the sequence l 
    do T = R − {O} 

         if  ∃q ∈ Q such that  S(q, T) = ∅ 

       R = R  // T is insufficient for Q 
         else 

            R = T  // T is sufficient for Q 

return R  

Fig. 2. combiSQORE: an ontology combination algorithm 

Theorem 1. If an ontology collection ODB is sufficient for a given semantic query Q, 
then P ⊇ ODB is also sufficient for Q. 

Proof: Assume that there exists P ⊇ ODB that is insufficient for Q. Then, by 
definition, there exist q ∈ Q such that  

S(q, P) = ∅ 

{ O ∈ P : SSB(q, O) > 0} = ∅ 

{ O∈ P  : SSB(q,O) > 0} ∩ ODB = ∅ ∩ ODB 

{ O ∈ P ∩ ODB : SSB(q, O) > 0} = ∅ ∩ ODB 

{ O ∈ ODB : SSB(q, O) > 0} = ∅     // since P ⊇ ODB 

S(q,ODB) = ∅ 

which contradicts the assumption that ODB is sufficient for Q.  
 
Theorem 2. A candidate query result R returned by combiSQORE is irreducible. 

Proof: For the sake of contradiction, let X ⊆ R and X ≠ ∅, and assume that R – X is a 
query result of Q. For an ontology O ∈ X, let i be the iteration in which 
combiSQORE considers to remove O and let Ri ⊇ R be the query result at the 
beginning of this iteration. For the ontology O to remain in the query result, it must be 
that Ri – {O} is insufficient to satisfy all query conditions; otherwise combiSQORE 
would have removed O from Ri. Therefore, Ri – {O} is not a query result of Q. Since 
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R – X is a query result of Q, and R – X  ⊆  R – {O}  ⊆  Ri – {O}, from Theorem 1 
one can obtain that Ri – {O} is also a query result of Q, which contradicts.  

4.3   Ranking Mechanism 

Two criteria, namely query coverage and conceptual closeness are considered to 
compute semantic similarity score which is used for ranking query results generated 
by combiSQORE. Firstly, query coverage is defined to determine how well an 
ontology combination R satisfies a given query Q. Intuitively, it is measured by 
computing the ratio of the number of conditions satisfied by R to the total number of 
conditions in Q, hence its value ranges from 0 to 1. Since a candidate query result 
produced by combiSQORE guarantees to satisfy all conditions in Q, its query 
coverage is 1.  

Definition 3 (Query Coverage Score: QS). The query coverage between a semantic 
query Q comprising m conditions q1, …, qm and a set of ontologies R consisting of n 
ontologies O1, …, On is measured by: 

 { q ∈ Q : S(q, R) ≠ ∅ }   

QS(Q, R) = 

 
M   

(2) 

  
Next, the conceptual closeness between a query and a candidate query result 
comprising one or more ontologies will be formalized, by redefining certain semantic 
similarity measures developed by SQORE [2, 14], which simply capture the 
conceptual similarity between a query Q and a single ontology O. Intuitively, based 
on SSB(q, O) which defines the (best) similarity score between a condition q in Q and 
the ontology O, SQORE defines the query-ontology similarity score: SS(Q, O) to 
represent the conceptual closeness between Q and ontology O by simply aggregating 
the similarity scores between all conditions in Q and O.  

Therefore, in order to measure the conceptual closeness between Q and a 
combination of ontologies R, the query-combinative-ontology conceptual similarity 
score: SSC(Q, R) is formalized here by aggregating the maximum similarity score 
between a query condition q in Q and an ontology in R as follows. 

Definition 4 (Query-Combinative-Ontology Conceptual Similarity Score: SSC). 
The conceptual closeness between a semantic query Q comprising m conditions q1, 
…, qm and a set of ontologies R consisting of n ontologies O1, …, On is measured by: 

SSC(Q, R) = 

m

O),(qSS
m

i
iB

O
∑
= ∈1

  max
R  (3) 

 
Finally, QS and SSC are combined in order to measure the semantic similarity 
between Q and a combination of ontologies R, as follows. 
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Definition 5 (Query-Combinative-Ontology Similarity Score: SS). The semantic 
similarity between a semantic query Q comprising m conditions q1, …, qm and a set of 
ontologies R consisting of n ontologies O1, …, On is measured by: 

SS(Q,R) = QS(Q, R)*SSC(Q,R) (4) 

 
Next section elaborates more details by means of an example. 

5   An Example 

Let ODB be an ontology database comprising eight real-world OWL ontologies from 
different sources as shown in Table 1. Assume that a query Q comprising eight 
conditions is submitted, and the SSB matrix measuring the similarity between each 
ontology and query condition is given in Table 2. From the table, one can see that O2, 
O3 and O6 have the highest similarity scores, and are ranked 1st, 2nd and 3rd, 
respectively. Moreover, Table 2 also depicts that each query condition is satisfied by 
more than one ontology in the collection. Thus, ODB is sufficient to satisfy Q. 
However, there exists no single ontology that can satisfy all query conditions, which 
results in a need for combiSQORE algorithm to generate candidate query results and 
compute the ranking.   

Table 1. An example of ontology database ODB  

Ontology URI 
O1 http://swrc.ontoware.org/ontology 
O2 http://ebiquity.umbc.edu/ontology/person.owl 
O3 http://annotation.semanticweb.org/iswc/iswc.owl 
O4 http://ontoware.org/frs/download.php/18/semiport.owl 
O5 http://morpheus.cs.umbc.edu/aks1/ontosem.owl 
O6 http://www.csd.abdn.ac.uk/~cmckenzi/playpen/rdf/akt_ontology_LITE.owl 
O7 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl 
O8 http://protege.stanford.edu/plugins/owl/owl-library/ka.owl 

 
Let the input sequence l of combiSQORE be (O5,O2,O3,O7,O8,O6,O1,O4). The 

algorithm starts with an initial query result R comprising all ontologies. Then, it 
iteratively checks whether removing an ontology from R according to the order of the 
input sequence makes R insufficient for Q or not. If R remains sufficient, that 
ontology is removed from R; otherwise, R is unchanged. For instance, removing 
Ontology O6 from the query result R = {O1, O4, O6} will cause q7 and q8 
unsatisfied. Thus, O6 cannot be removed from R.  

With respect to the given ontology collection ODB, the submitted query Q and the 
input sequence l, combiSQORE generates the candidate query result R = {O1, O6}, 
which is irreducible because removing either O1 or O6 will make some query 
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Table 2. SSB matrix between a query condition in Q and an ontology in ODB 

Query Conditions in Q O1 O2 O3 O4 O5 O6 O7 O8 

q1: <owl:Class rdf:ID="Student" /> 1 1 1 1 1 1 1 1 

q2: <owl:Class rdf:ID="PhDstudent"/> 1 1 1 1 0 1 0.6 1 

q3: <owl:Class rdf:ID="Professor"/>  0.4 1 0.4 0.4 1 0.8 1 0 

q4: <rdf:Property rdf:ID="supervise"/> 1 0 0 0 1 0 0 1 

q5: <owl:Class rdf:about="PhDStudent" > 
        <rdfs:subClassOf  
              rdf:resource ="Student"/> 
      </owl:Class>  

1 1 1 1 0 0 0 0 

q6: <rdf:Property rdf:about="firstname"> 0 1 1 0.6 0 0.8 0.6 1 

q7:<rdfs:domain rdf:resource ="Student"/> 0 1 1 0 0 0.8 0 1 

q8:<rdfs:range rdf:resource ="xsd:String"/> 0 1 1 0 0 0.8 0 0 

SEMANTIC SIMILARITY SCORE: 0.55 0.87 0.8 0.5 0.37 0.65 0.4 0.62 

Table 3. Sample input sequences and their output combinations 

Input Sequence Candidate Query Result 
Seq1: (O5,O2,O3,O7,O8,O6,O1,O4) {O1,O6} 
Seq2: (O2,O3,O6,O8,O1,O4,O7,O5) {O4,O5,O6} 
Seq3: (O5,O7,O4,O1,O8,O6,O2,O3) {O3,O8} 
Seq4: (O8,O7,O6,O4,O3,O5,O2,O1) {O1,O2} 

 
conditions unfulfilled. In addition, since different input sequences may yield different 
candidate query results, Table 3 gives other possible results. 

In order to rank the top three single ontologies (i.e., O2, O3 and O6) together with 
the four candidate query results of Table 3, Table 4 illustrates their computed scores: 
query coverage score, conceptual closeness score and similarity score with the 
corresponding rankings shown in the followed brackets. With a focus on the final 
similarity scores, a combinative ontology, namely {O1,O2}, is ranked 1st, because it 
can satisfy all query conditions with highest conceptual closeness scores, while single 
ontologies fail to fulfill certain conditions and have lower conceptual closeness 
scores.  

Table 4. Different rankings based on three ranking criteria 

Ontologies Query Coverage Score  
(QS)  

Conceptual Closeness Score 
(SSC)  

Similarity Score 
(SS=QS*SSC) 

O2 0.875 (5) 0.87 (5) 0.761 (5) 
O3 0.875 (5) 0.8 (6) 0.7 (6) 
O6 0.75 (7) 0.65 (7) 0.488 (7) 
{O1,O6} 1 (1) 0.9 (4) 0.9 (4) 
{O4,O5,O6} 1 (1) 0.925 (2) 0.925 (2) 
{O3,O8} 1 (1) 0.925 (2) 0.925 (2) 
{O1,O2} 1 (1) 1 (1) 1 (1) 
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6   Experiments and Results 

This section evaluates combiSQORE algorithm in terms of its performance and the 
validity of its rankings by means of experiments. An ontology database used in the 
experiment comprised 63 ontologies collected from three different domains: computer 
science, food and stock, while queries were automatically created by randomly 
selecting usable exact keywords from Wikipedia pages as shown in Table 5. The total 
number of keywords indicates the number of keywords extracted from the Wikipedia 
pages without considering stop words. The number of usable exact keywords 
represents the number of extracted keywords that can exactly match with concepts 
(classes) in the ontology database. The number of usable related keywords includes 
synonyms, hypernyms and hyponyms of the usable exact keywords which appear in 
the ontology collection. 

Table 5. Statistics of Wikipedia pages used for generating keywords 

Domain Wikipedia page Total 
Keywords 

Usable 
Exact 

Keywords 

Usable 
Related 

Keywords 

Stock http://en.wikipedia.org/wiki/Stock 493 202 2027 
Food http://en.wikipedia.org/wiki/Food 672 259   732 
Comp.Sc. http://en.wikipedia.org/wiki/Computer_science 283 107 733 
TOTAL 1448 568 3492 

 

Fig. 3. Richness of knowledge in the ontology collection 

Fig. 3 presents the richness of knowledge in the ontology database based on how 
often exact and related keywords appear in different number of ontologies varying 
from one to twenty-nine. The graph shows that the probability that a keyword will 
appear in only one ontology is approximately 0.5. However, the probability of a 
keyword to co-occur in a higher number of ontologies decreases dramatically. Hence, 
given a random set of keywords, the chance that they all will co-occur in the same 
ontology is considerably low. 

The experiment has been designed to test not only how well the algorithm 
performs in average, but also to investigate the impact of input sequences to the 
algorithm performance. Therefore, the experiment was performed as follows. Firstly, 
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a set of n keywords were randomly selected to formulate an input query, varying from 
n = 1 to 10. Then, obtain the set of relevant ontologies from SQORE system, and 
apply combiSQORE algorithm with a designated input sequence. Certain analyses on 
the obtained results were then performed, as illustrated by Fig. 4 and Fig. 5. Note that 
each data point shown in the graphs represents the average value obtained from at 
least 50 trials or more. 

6.1   Algorithm Performance 

Fig. 4 illustrates the average number of relevant ontologies returned from SQORE, 
the average number of single ontologies that can satisfy all query conditions 
regardless to the conceptual similarity, and the average size of candidate query 
results. As expected, when the number of query conditions increases, the number of 
retrieved ontologies also increases whereas the number of single ontologies that can 
satisfy all query conditions decreases to zero. This result reflects the need for 
ontology combinations in order to entirely cover all conditions. In addition, the 
experimental result has shown that the average size of ontology combinations is 
approximately 3 for ten query conditions, which is acceptable for ontology 
integration. 

 

Fig. 4. Comparisons of resultant ontologies, individuals and combinations 

As discussed earlier, with different input ontology sequences, combiSQORE may 
yield different combinative ontologies because a sequence determines the order of 
removing an ontology from an initial query result in order to finally obtain a 
candidate query result. Therefore, the algorithm performance is suspected to be 
improved if such a sequence is strategically generated. Intuitively, to maximize the 
conceptual closeness, the sequence should be sorted in ascending order of the 
similarity score. Since the similarity score tends to be proportional to the query 
coverage, the conducted experiment examined the three types of input sequences: (i) 
random ones, (ii) ones arranged in ascending order of the similarity score, and (iii) 
ones arranged in descending order of the similarity score. In addition, to illustrate the 
effectiveness of combiSQORE algorithm, results are also compared to three common 
approaches for selecting and combining ontologies regarding to similarity scores: (i) 
selecting only the highest-scored ontology, (ii) combining the two highest-scored 
ontologies and (iii) combining the three highest-scored ontologies.  
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Fig. 5 then presents the average query coverage scores and the average conceptual 
closeness scores of the computed results based on six different approaches as mention 
above. As expected, the sequences arranged in ascending order give the best 
candidate query results, whereas the random ones perform moderately well with the 
average similarity score of 0.8, which is considerably high. Furthermore, it clearly 
shows that combiSQORE with input sequences in ascending order of the similarity 
scores outperforms combining the highest-scored ontologies because the results by 
combiSQORE always completely satisfy the user query with higher conceptual 
closeness scores. 

 
a. query coverage 

 

 

b. conceptual closeness 

Fig. 5. Comparisons between the candidate query results of combiSQORE in different input 
sequences and those of other common approaches 

6.2   Ranking Evaluation 

In order to evaluate the practicality of the proposed ranking mechanism, a preliminary 
experiment was conducted. In the experiment, the ontology database and the 
formulated query of Section 5 was presented to four participants with a request to 
rank the top three single ontologies (i.e., O2, O3 and O6) together with the four 
candidate query results of Table 3 based on query coverage, conceptual closeness and 
similarity scores. Table 6a shows the average rankings proposed by the participants.  
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Table 6. Ranking evaluation results 

a. Average ranks given by participants   b. Pearson Correlation Coefficient for 
combiSQORE wrt. participant ranking 
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combiSQORE PCC 

O2 5 6 6 5 5 5  Query coverage score 
(QS) 0.815 

O3 7 5 5 5 6 6  Conceptual closeness 
score (SSC) 0.917 

O6 5 6 7 7 7 7  Similarity score (SS) 0.918 
{O1,O2} 1 2 2 1 1 1    
{O1,O6} 3 4 4 1 4 4    

{O3,O8} 3 2 3 1 2 2    

{O4,O5,O6} 2 1 1 1 2 2    

 
Pearson Correlation Coefficient (PCC) [5] is employed to measure the similarity 

between the average participant rankings and the system rankings. If the calculated PCC 
value is closer to 1, it indicates a stronger linear relationship between the two rankings. 
Table 6b shows that the PCC values of the three rankings, based on query coverage, 
conceptual closeness and similarity scores, are significantly high, which imply that the 
rankings proposed by combiSQORE are very close to the participant rankings.  

7   Conclusions and Future Work 

This paper has proposed combiSQORE, a novel approach for computing and ranking 
ontology combinations, which can completely cover the specified user requirements. By 
integrating a number of ontologies, each partially satisfying the given requirements, the 
approach generates a minimal query result that can fulfill all requirements. The primary 
objective of the proposed approach is not only to enable automatic knowledge reuse for 
Semantic Web applications, but also to offer alternatives for ontology engineers and 
practitioners during their ontology search and development processes. In addition, it can 
also be applied to Web-service discovery applications in order to find sub-optimal sets 
of Web services that can meet all user requirements. 

With a focus on a mechanism for ranking the generated ontology combinations, 
this paper has also developed simple methods to measure the conceptual similarity, 
and query coverage of an ontology combination with respect to a given query. These 
two criteria are then used to compute meaningful and practical rankings with the 
promising experimental results. In addition, modification (integration) cost is another 
metric that users are concerned. Future research direction includes an emphasis on 
discovering the inter-relationships among the ontologies in a combination, and 
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integrating such information to compute an accurate modification (integration) cost. 
Moreover, an enhancement by incorporating combiSQORE algorithm into the current 
system available on-line at http://ict.shinawatra.ac.th:8080/sqore is under way.  
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