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Abstract. 2D-3D registration of abdominal angiographic data is a difficult prob-
lem due to hard time constraints during the intervention, different vessel contrast
in volume and image, and motion blur caused by breathing. We propose a novel
method for aligning 2D Digitally Subtracted Angiograms (DSA) to Computed
Tomography Angiography (CTA) volumes, which requires no user interaction in-
trainterventionally. In an iterative process, we link 2D segmentation and 2D-3D
registration using a probability map, which creates a common feature space where
outliers in 2D and 3D are discarded consequently. Unlike other approaches, we
keep user interaction low while high capture range and robustness against vessel
variability and deformation are maintained. Tests on five patient data sets and a
comparison to two recently proposed methods show the good performance of our
method.

1 Introduction

Catheter-guided interventions are carried out on an every-day basis in almost every
hospital throughout the world. Common practice in these interventions is to acquire 2D
fluoroscopic sequences of the patient in which catheter, contrasted vessels, and patient
anatomy can be visualized for navigation. Also, in order to provide a high resolution
visualization of the vasculature only, DSAs are taken. A 3D scan (CTA) of the patient
is usually acquired preoperatively in order to evaluate possible risks and plan the treat-
ment. In abdominal catheterizations (e.g. Transarterial Chemoembolization (TACE), or
Transjugular Portosystemic Shunt (TIPS)) mono-plane X-ray imaging devices are used
more often in contrast to neuroradiology interventions where biplane systems are com-
monly utilized. Only guided by 2D projections of one view, it is often very difficult
for the physician to find a path through the patient’s vessel system to the region of in-
terest. This is mainly due to overlay of vessel structures and, in the case of abdominal
procedures, the breathing deformation of vessel systems. In order to provide a catheter
guidance in 3D, or the transfer of planned information to intraoperative 2D projections,
a 2D-3D registration is needed to align 3D preoperative to 2D intraoperative data set.
Problems and challenges for this data fusion are as follows. First, due to hard time
constraints during the intervention, a 2D-3D registration algorithm should be fast and as
automatic as possible during the treatment. Second, vessel features, which are the only
features that can be used for DSA-to-CTA registration, are rather distinct in the two
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data sets because contrast is injected globally in the preoperative, and locally (through
the catheter) in the intraoperative case. A naive registration would not be able to deal
with these outliers emerging in 2D as well as in 3D and could drive the registration
to “false positives”. Third, an automatic extraction of vessel features in the 2D DSA
would also segment other tubular structures (needles, catheters), which would disturb
a feature-based registration. Fourth, due to patient breathing, structures are deformed
in the 2D data set, when compared to the 3D data set. 2D-3D rigid registration in de-
formable regions can be addressed by a fully intensity-based procedure with gating,
as proposed e.g. by Turgeon et al. [1]] for heart. However, it is difficult to use such an
image-based method without gating information. In fact, the more appropriate approach
to follow would be (partly) feature-based to be able to be robust against deformations.
Recently, two methods for 2D-3D registration in the particular case of abdominal an-
giographic alignment were proposed by Jomier et al. [2] and Groher et al. [3]]. The first
is a model-to-image technique, which only requires a preoperative segmentation step
for aligning DSA images of two views. The second is feature-based aligning extracted
2D and 3D vessel graphs in a one-view scenario. The former is fully automatic during
the intervention but suffers from a small capture range while the latter has high capture
range but requires manual interaction intraoperatively. As will be shown in section 3]
both methods have difficulties to deal with outliers in 3D.

Contribution: We propose a method for 2D-3D registration of preoperative CTA to
intraoperative DSA images for abdominal interventions. It automatically aligns a pre-
operatively segmented 3D vasculature to a 2D DSA image by iteratively segmenting
the image and aligning the extracted 2D and 3D vasculatures. A combination of regis-
tration and 2D segmentation via a probability map allows us to adjust the feature spaces
such that non-corresponding features in 2D as well as 3D vasculature are removed con-
sequently. With this approach we combine robustness and high capture range with a
fully automatic registration technique. Moreover, one-to-one correspondence of vascu-
lar features is assured, which makes it possible to visualize roadmaps in 3D. We mo-
tivate our method through an maximum likelihood (ML) formulation solving for both
registration and segmentation. Unlike traditional ML-based algorithms for combined
segmentation/registration, we only care about the resulting registration and also leave
the algorithm as generic as possible in order to use alternative registration and segmen-
tation steps.

Related Work: A combination of segmentation and 2D-3D registration was proposed
by Hamadeh er al. [4]] and Bansal et al. [3] for the rigid alignment of medical im-
ages. The former only segmented once for aiding the registration, the latter used a
minimax-approach in order to optimize one energy functional that encapsulates the
joint conditional entropy of DRR and X-ray given a segmentation. A recent method
proposed by Brox et al. [6] combines pose estimation with a level set formulation to
let a registration aid the segmentation. In all these methods, the segmentation is inte-
grated into the algorithm and cannot be replaced. Since vessel segmentation is a specific
problem where general approaches cannot be applied without modification we tried to
leave the combination as generic as possible and discarded these methods. Combined
segmentation and registration has also been successfully applied to brain MR images
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(see Pohl et al. [7] and references therein) where an Expectation Maximization (EM)
formulation was favored. In contrast to our proposed algorithm, this work also solves
for MR specific nuisance parameters and serves a diagnostic application not subject to
hard time constraints.

2 Method

We now describe our segmentation-driven 2D-3D registration algorithm. We first justify
our approach via an ML formulation integrating a segmentation into the registration
process and derive a generic algorithm. In section 2.2l we apply our algorithm to 2D-3D
DSA-to-CTA registration for abdominal interventions.

2.1 MLE with Labelmaps

We want to maximize the probability such that certain registration parameters O fit best
the 2D image data I and the 3D model M :

6= argmgxp(eu,M) (1)

Maximizing the likelihood of (), i.e. argmaxg P(I,M|®), is very difficult if there is
no correspondence information between image pixels and model points. Thus, we let a
2D segmentation aid the estimation. We introduce a random variable L representing a
labelmap over the image /. Marginalizing over L we get

6= argm(ngP(@,L\[,fM) )
L

= argmngP(L\I,M)P(G)\L,I,M) 3)
L

using the product rule. From this formulation we can deduce an iterative scheme. If
we had values for variable £ given, we could solve the ML of eq. (). Since £ has to
be estimated also, we iterate between expectation estimation (E-step) of the unknown
random variable £ and optimization of a cost function (M-step) given this expectation:

£Y — E(Lle" V1, a) =Y Lr(£|e" "V, 1,9) (4)
I3
o — argmgxP(®|L(’), 1,M) "% argm@e)le(L(’)7 I,M|©) (5)

The M-step (eq. (@) is rather easy to accomplish since we already have a model in 3D
(M) and can determine the MLE using £) in a model-to-model registration. For the E-
step (eq. @), however, we must determine the expectation value of the labelmap given
the last registration and the data. Since this is not straight-forward, we will discuss it in
more detail. Assuming spatial independence of pixels in image I (which is common in
this context, see [713]), we can determine the expectation for each pixel x separately. If
we restrict our segmentation on one object only, we can deduce an indicator variable (x
for each pixel x, where
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(= { (1): i)ft l):elrs V;izde the object ©)

Thus, the expectation for the label /x of a pixel x becomes
E(4|0 D 1,9) = P(tx = 1|0~V 1, 91) (7)
= oP(OU Dty =1,1,M)P(lxy=1|I) (8)

using Bayes’ rule, where oo = P(©~V|1,9/), and M is dropped in the last term of ()
since the segmentation of I is independent of the model. With eq. (8) we can assign the
expectation of the segmentation to each pixel and thus get a probability map 1 for
LY. We can interpret this map as the probability for each pixel to be registered (has
a correspondence) to the model, given that it is part of the segmented object combined
with the a-priori probability to be part of the segmented object.

Note that we see the expectation as a probability where we joined the registration
parameters from the last iteration and the a-priori knowledge of a pixel belonging to an
object. We still keep the freedom to choose any kind of binarization technique, which
we apply to the probability map. We can give a generic algorithm for the segmentation-
driven 2D-3D registration, which we will henceforth refer to as EBM algorithm:

Algorithm EBM: Given an image I, a model M, and initial estimates for the parame-
ters ®<0>, and labelmap £
Initialize values: ©—1) — @©). £0-1) . (0)
Repeat until convergence

E-step: For each pixel x: if {x = 1 determine the probability for the

new label using eq. (8), else set probability to zero
B-step: Binarize I, to get L"),
M-step: Register M to L) starting from ©0~V 1o ger ©F)

Note that our method does not follow the strict formulation of the EM algorithm [§]],
o :argmngP(g@(’*l),1,M)P(L,I,M|®). )
L

In our algorithm, we directly calculate the expectation of the hidden variable £, whereas
EM calculates the expectation of the probability of the complete data (L, I, M) given
the incomplete data (1, M) and an estimate of ©. Unlike EM, convergence is not proven
for our approach. In our experiments, however, the algorithm always converged given
suitable termination criteria.

2.2 Segmentation-Driven 2D-3D Registration on Angiographic Data

We now describe the single steps of EBM in the particular case of 2D-3D registration
of 3D CTA and 2D DSA data sets as illustrated in Fig. [Tl The object to be segmented
in order to aid the 2D-3D registration is, naturally, the vessels of the DSA. Given a
DSA image I (Fig. and the vasculature model M (laid over the DSA in Fig.
of a CTA volume. The vessel model M is generated by a region growing step and a
centerline extraction. Seed points and thresholds are determined manually. Note that
the CTA data set is acquired preoperatively and thus, the extraction of vasculature is
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(a) (b) (©)

(d) (e) (H

Fig. 1. lllustration of the segmentation-driven registration: [[(a)] original DSA,[T(b)]bothat filtered
DSA, [I(c)|initial segmentation (automatic seed point detection, region growing), [[(d)]probability
map penalizing non-corresponding but extracted features in 2D and 3D, final segmentation
after registration - increased feature similarity, [I(T)] overlay of 3D vasculature and DSA

not subject to hard time constraint{] The 3D point cloud that spatially describes M,
i.e. sampling points on vessel centerlines and bifurcation locations, is denoted by {X}.
We now want to find the rigid registration parameters © = {a, B, V., 1.} describing
the transformation of the model coordinate system into the coordinate system of the
C-arnf] with which the DSA has been acquired. The intrinsic parameters are given and
we assume an absence of image distortion due to flat-panel detectors. We consider all
image intensities normalized to belong to the domain Q = [0;1].

Image Preprocessing: As initialization for the a-priori probability P(¢x = 1|I) we
choose a bothat filtered image whose contours are sharpened by histogram equalization
(Fig.[TI(B)). We refer to this filtered image as 15,

2D Segmentation & Model Creation: The initial (L(*), see Fig. as well as all
subsequent segmentations of the DSA are computed using a region growing technique
based on intensity thresholds. The seed points are detected using a derivative-mean fil-

! In fact, the procedure takes about 5 min at most.
% Siemens Axiom Artis dFA.



532 M. Grobher et al.

ter defined by Can et al. [9] for vessel tracing. It detects pixels that are likely to lie
on a vessel centerline by filter inspection in 12 directions and criteria evaluation. This
method is very fast and yields decent candidate seeds. In order to start with a segmen-
tation, we choose the intensity values for the region growing to be inside the interval
Useeds == 20seeds, Which are mean and standard deviation of the intensity values of all de-
tected seed points. We start the region growing from all detected seed points. Outliers
are removed by choosing the largest connected region as the actual segmentation. From
the segmentation we create a model of a 2D vessel centerline to be able to register it
with the 3D model M and deduce a diameter, which is used as G in the E-step. This is
done with the same technique as in 3D.

Initial Registration: 0 is determined by combining information from the C-arm with
an exhaustive feature search following the approach proposed by Groher et al. [3].

Iteration: We define the pixel error of a pixel x as
g(x) = d(x,C(x, {PoX;}))? (10)

where d(.,.) determines the Euclidean distance of two vectors, C(y,{z;}) determines

the closest point of a point set {z; } to a pointy, {X } are all points on the 3D centerline,

and Pg = K[Rp|te] is the projection matrix with the current pose parameters ©.
E-step: This step computes the probability map as defined in eq. (§). The probability

that a vessel pixel is registered to the 3D model, P(O¢~1)|¢ = 1,1, M), is defined via
the pixel error (eq. (I0)). If we allow a deviation proportional to the maximal width of
a vessel in the 2D image, ¢, and assume the error distribution to be Gaussian, we get

1

PO D =1,1,M) = e/ (11)
oV2n

The a-priori probability for a pixel x to lie inside a vessel is defined by the image 12"

as described above, i.e. P({x = 1|I) = I8 (x). Putting both terms together, we define

the probability map as

E (b0, 1,M) oc ¢ ¥/ [P (x), (12)

where we dropped o from eq. (8) since it just represents an isotropic scaling in pixel
intensities of /.

B-step: After building up the map (Fig. [L(d)), we perform a new region growing
(Fig. and centerline extraction as described above to get a new 2D centerline.

M-step: The 2D-3D registration is computed by minimizing the pixel error €, which is
evaluated only on the 2D centerline points. If a projected centerline point PoX; already
has a closest point, the one with the smaller error is chosen. Thus, we assure one-to-one
correspondence of centerline features. The iteration of the registration is governed by a
Downhill Simplex optimizer minimizing the non-linear cost function Y, €(x), where x
has a corresponding (closest) point in the 3D model M.

We stop the algorithm if the absolute difference of the two labelmaps of current and
last E-step, |£U~1) — £0)|, is very small. We choose a threshold of 5% of the pixels
in an image (size 1024?), at which the difference of the labelmaps becomes visually
insignificant.
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3 Results

We acquired data from 5 patients, who suffer from Hepatocellular carcinoma (HCC)
and were treated with TACE. Fig.[2 shows three data sets, the upper row illustrates the
original DSA, the lower row overlays with the registered 3D vasculature. The results
show that our approach can cope with both variations in 2D as well as in the 3D data
set.

(d) (e) ()

Fig. 2. Registration results on 3 data sets. 2D vessel trees (upper row) are different as are 3D
vasculatures (laid over DSA, lower row). Fig.[2(€)]shows 3D vasculature with vessels that are not
visible in 2D. Large deformations between 2D and 3D can be seen in the lower part of Fig.
or|2(e)

For testing accuracy and robustness, reference registration parameters as well as a
segmentation of the DSA have been manually created by experienced radiologists for
each data set. We added random errors of up to £5mm and £5° to each of the trans-
lation and rotation parameters, respectively, and invoked the registration method 200
times. The pose parameters are given relative to the origin of the object coordinate
system, which was laid in the middle of the moving 3D model. Moreover, as a com-
parison, we implemented the methods of Jomier et al. [2]] and Groher et al. [3] and
compared standard deviation (G) and root mean square errors (€) for all parameters.
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Table 1. Results of standard deviations ¢ and RMS errors € of translations (in mm) and rotations
(in deg). Deviation and error in z-translation are not as significant as those in-plane, or in rotations.

# Oy, O, (R Oy, op Oy € €y €, € € €y

1 Jomier 0.76 1.80 4.66 3.48 3.17 1.60 0.78 2.21 5.30 4.75 3.60 1.66
Groher 0.20 0.06 3.43 0.08 1.89 0.11 0.34 0.23 6.58 0.22 4.41 0.38

EBM 0.54 2.68 34.63  3.79 1.88 1.25 0.54 2.70 36.12  3.79 1.97 1.25

2 Jomier 0.74 0.93 5.06 4.84 3.18 0.58 0.78 3.46 5.38 8.33 3.18 0.78
Groher 0.16 1.33 4.52 4.80 2.59 1.27 1.24 1.49 28.48 5.28 3.85 2.33

EBM 0.04 0.16 1.99 0.45 0.18 0.04 0.07 0.25 3.73 0.72 0.35 0.04

3 Jomier 3.34 2.03 7.39 4.43 4.37 2.04 4.68 2.96 7.43 5.62 4.39 2.07
Groher 2.32 4.56 4372 3.84 3.98 4.78 6.72 6.21 62.07 5.19 11.58  4.87

EBM 3.55 1.53 2411 747 3.33 4.62 3.54 1.54 2436 7.49 3.33 4.62

4 Jomier 2245  6.65 1373 7.74 24.64  9.15 23.18  6.84 13.81 8.40 2541 9.16
Groher 6.30 0.89 55.10 4.55 6.82 4.09 9.05 2.02 70.69  7.54 1473 4.99

EBM 0.95 0.18 9.41 0.29 1.96 0.10 1.09 0.19 13.04  0.36 2.62 0.10

5 Jomier 26.35 1637 10.34  7.15 13.60 5.81 26.66 1637 1087 7.25 18.63  6.07
Groher 20.65 1.82 148.41 14.88 1229 1510 52.74 3.39 422.62 2876 16.95 24.40

EBM 1.22 0.74 16.83  3.05 2.07 0.67 1.41 0.74 20.19  3.05 2.44 0.76

Avrg. Jomier 10.73  5.60 8.23 5.53 9.79 3.83 11.21  6.37 8.56 6.87 11.04  3.95
Groher 5.93 1.70 51.04 5.63 55 5.07 14.02  2.67 118.09 9.39 1030  7.39
EBM 1.26 1.06 17.39  3.01 1.88 1.34 1.33 1.08 19.49  3.08 2.14 1.35

For the method of Groher et al. we used the reference 2D segmentation for 2D graph
creation and registration. The result of this study is summarized in table 1. It can be
seen that error and deviation in z-translation is sometimes outperformed by the other
two methods, however, the more important in-plane translation and rotations have less
error in our method. The large errors of Jomier’s and Groher’s method in the last two
data sets can be explained with a “subset” property. In the first three data sets the 3D
vasculature is a “subset” of the 2D vasculature, whereas in the last two data sets this
property is not fulfilled, i.e. the 3D vasculature shows branches that are not visible in
2D. The results show that our method is more robust with respect to variability in both
dimensions. The number of iterations of our algorithm usually lies between 2 and 5.
The runtime (analyzed on a Intel Core2Duo 2.6 GHz machine) splits into (bothat-) fil-
tering (28.5 sec), seed point extraction (1.0 sec), region growing (0.3 sec), centerline
extraction (2.7 sec), exhaustive initialization (34.9 sec), iteration (12.9 sec), where all
runtimes have been averaged over the 5 patient data sets and the iteration runtime over
the number of iterations. Altogether, applying the registration takes 1.5 - 2 min. The two
critical stages are filtering and exhaustive initialization - both can be further optimized
numerically.

4 Conclusion

We have developed a method for 2D-3D registration of angiographic data. Our empha-
sis lies on a fully automatic registration once the interventionalist starts the treatment.
We believe that a 2D segmentation can yield a more robust (feature-based) registration
with high capture range. Motivated by an ML formulation of a combined segmenta-
tion/registration, we derived a generic method for estimating the 2D labelmap and the

3 Region growing, centerline extraction, and pose optimization.
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registration parameters iteratively linked by a common probability map. In this prob-
abilistic framework, we keep the freedom to choose any segmentation or registration
technique. Unlike other approaches, we keep user interaction low while high capture
range and robustness against vessel variability and deformation are maintained. With
the segmentation-driven registration, we create a common feature space and thus one-
to-one correspondence of vessel features. Hence, we can visualize catheter locations
and roadmaps in 3D and 2D simultaneously (see supplementary material). Application
to different medical procedures and tests of alternative 2D segmentation and/or registra-
tion steps will follow the work in the future. With these future tests, we will also assess
the impact of all processing steps, which are performed in the iteration.
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