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Abstract. Despite many research efforts, accurate extraction of structures of in-
terest still remains a difficult issue in many medical imaging applications. This is
particularly the case for magnetic resonance (MR) images where image quality
depends highly on the acquisition protocol. In this paper, we propose a variational
region based algorithm that is able to deal with spatial perturbations of the im-
age intensity directly. Image segmentation is obtained by using a Γ -Convergence
approximation for a multi-scale piecewise smooth model. This model overcomes
the limitations of global region models while avoiding the high sensitivity of lo-
cal approaches. The proposed model is implemented efficiently using recursive
Gaussian convolutions. Numerical experiments on 2-dimensional human liver
MR images show that our model compares favorably to existing methods.

1 Introduction

Extracting structures of interest through image segmentation is an important task in
medical imaging. Image segmentation is especially needed for better visualization,
quantification of diseases, and planning an intervention. This task of segmenting a
given region from the rest of the image usually relies on image information that can be
edge-based, region-based, or a combination of both. MR imaging is a modality where
these criteria are not sufficient. In MR imaging, various scanning parameters are used
to highlight different living tissues. As a result, image characteristics can vary signifi-
cantly from one acquisition to another, particularly due to inhomogeneities in the radio
frequency field. If one wants to define a generic segmentation problem, robustness to
these intensity variations, often referred to as bias field, is mandatory. One may want
to correct for these artifacts prior to the segmentation [14], but both problems are in-
trinsically dependent on each other. In [15], an Expectation-Maximization technique
was proposed to estimate the bias field jointly with the segmentation. In this paper, a
more straightforward approach is proposed by considering a segmentation model that
is naturally robust to smooth spatial variations of the intensity.

Most of recent geometric segmentation methods use region statistics to model inten-
sity distributions of the objects and the background. These global models have shown
to be more robust to initialization and noise than local or edge-based approaches, but
the assumption of a global intensity distribution is not relevant in most cases,
particularly with MR images like the one shown in Figure 1. Interestingly, these mod-
els are modifications of the seminal work of Mumford and Shah (MS) [9] that origi-
nally did not make such an assumption of regional distributions, but simply intended
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MR image zoom 1 zoom 2 (rotated by 180◦)

Fig. 1. High bias in MR images - We zoom in two different parts of the image shown on the left.
The second zoom is rotated by 180 degrees, so that we can see that the intensity level outside can
be lower than the intensity inside. Our perceptual vision may tell us the contrary.

to recover a piecewise smooth approximation of the image. For this purpose, the im-
age domain Ω is decomposed in a set of regions separated by a smooth boundary Γ.
Then, minimizing the MS functional requires the joint estimation of the boundary Γ
and the “ideal” smooth image. However, such loose assumptions on the objects to re-
cover make this approach very sensitive to the initialization of Γ and computationally
expensive.

There have been several approaches developed to approximate the MS model nu-
merically. Chan and Vese first proposed a level set formulation [10] of the simplified
piecewise constant MS model in [4], before extending it to the more general piecewise
smooth model [5,7]. The first model has the advantage of being relatively robust and
has a low computational complexity, but it is also too simplistic for most applications.
The second one is an elegant numerical implementation of the general MS model, but
still depends highly on the initial conditions and has a high computational complex-
ity. As an alternative, Ambrosio and Tortorelli [1] approximate the measurement of the
length term in the MS model by a quadratic integral of an edge signature function.
In [5,7], the segmentation is represented by characteristic functions using phase field
models [3,8,12,13]. Finally, in [2,12], the piecewise constant MS model is reformulated
using a Γ -Convergence approximation, which motivates our proposed model in this
paper.

A new region based variational formulated model for a piecewise smooth image seg-
mentation is proposed. Image segmentation is obtained using a Γ -Convergence
approximation and multi-scale local statistics. The proposed model is motivated by
[2,4,5,11,12]. Our model differs from commonly used ones, like [2,4,5,12] by rely-
ing on local intensity averages rather than global statistics. Our formulation is closely
related to [6,11]. The improvements brought by our model are twofolds: we introduce a
Γ -Convergence approximation and we integrate multiple scales for local intensity mod-
els. We also present a validation on 2-dimensional slices of human liver MR images.
This paper is organized as follows: In Section 2, both the single and multi-scale models
are proposed. The Euler-Lagrange equations of the suggested model are also presented
in this section. Experimental results of the proposed model with comparison to existing
models are shown in Section 3. Finally, in Section 4, conclusions are drawn and future
work is stated.
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2 Description of the Proposed Model

In this section, we introduce a Γ -Convergence approximation motivated by [2,12] for
the piecewise-smooth model proposed in [11]. For clarity, a single scale model is de-
rived first and then the general model with multi-scale is presented.

2.1 Single Scale Model

Image Segmentation is obtained using a Γ -Convergence approximation and single scale
local statistics. Two phases are assumed for the simplicity of our model. The model aims
at finding the phase field θ by minimizing the following energy:

E(θ) =λ

∫
Ω

f(θ)(I − uin(θ))2 + (1 − f(θ))(I − uout(θ))2dx

+ (1 − λ)
∫

Ω

ε1|∇f(θ)|2 +
f(θ)2(1 − f(θ))2

ε1
dx,

(1)

where I is a given image, Ω ∈ R
3 is its domain, f is a smooth version of the Heaviside

function, ε1 is a positive parameter, and 0 < λ < 1 is a parameter balancing the
influence of the two terms in the model. Following [11], uin and uout are expressed as
local weighted intensity averages that can be obtained by Gaussian convolutions:

uin(θ) =
gσ ∗ [f(θ)I]
gσ ∗ f(θ)

and uout(θ) =
gσ ∗ [(1 − f(θ))I]
gσ ∗ (1 − f(θ))

,

where gσ is a Gaussian kernel with standard deviation σ, and “∗” stands for the convo-
lution in the image domain Ω.

This model is an efficient approximation of the general piecewise smooth MS model.
One can point out that it becomes equivalent to the piecewise constant model [2,4],
when the variance σ goes to infinity. A piecewise smooth approximation of the image
can accommodate a wider range of problems than its piecewise constant counterpart. In
particular, it is well-suited for image modalities with bias, as it is often the case in MRI.

In the second term of Equation (1), ε1 � 1 controls the transition bandwidth. The Γ -
Convergence is used to approximate the length term in the MS model. In the theory of
Γ -Convergence [1], the length of Γ is approximated by a quadratic integral of an edge
signature function p. This model is combined with a double-well potential function
W (p) = p2(1 − p)2 with p ∈ H1(Ω). As ε1 → 0, the first term penalizes unnecessary
interfaces and the second term forces the stable solution to take values of 1 or 0. The
second term in our model is followed from [2,12,13]. For details on phase field models
and double-well potential functions, please refer to [2,12,13].

2.2 Multi-scale Model

The model considered so far is based on local intensity averages (uin, uout). The local-
ity of these terms is determined by the standard deviation σ of the Gaussian kernel gσ,
which has been supposed to be the same for all pixels. This may be a limitation, since
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Fig. 2. Comparison between 3 models - From left to right : Chan and Vese model, An and Chen
model, and our model with a single scale (σ = 15). In this figure, as well as in the next ones, the
initialization is shown in dark (light green) and the final segmentation in bright (yellow).

σ should be big enough to attract the contour to edges and small enough to detect weak
edges. To resolve this problem, σ should be defined pixel-wise. However, this would
highly increase the complexity of the algorithm. An intermediate step is to consider only
two different scales σ1 and σ2, and combine them at each pixel with different weights.
Let σ1 < σ2. We want to use the region term with σ1 where the image gradient is high,
and with σ2 where it is low. This leads us to the following modification of the first term
of Equation (1):

Eregion(θ)=λ

∫
Ω

f(θ)
[
g(|∇I|)(I − uσ1,in(θ))2 + (1 − g(|∇I|))(I − uσ2,in(θ))2

]
dx

+ λ

∫
Ω

(1 − f(θ))
[
g(|∇I|)(I − uσ1,out(θ))2 + (1 − g(|∇I|))(I − uσ2,out(θ))2

]
dx,

(2)
where g(|∇I|) acts as an edge detector, |∇I| stands for the magnitude of the gradient of
a smoothed version of the image that is normalized between 0 and 1, and the function g
is an increasing function from [0, 1] to [0, 1]. This permits us to assign the lower sigma
to low gradient edges that enables the model to capture weak boundaries.

2.3 Energy Minimization

To obtain the best segmentation according to our piecewise smooth model, we need to
minimize the corresponding energy with respect to the phase field θ. For this purpose,
we need to derive the Euler-Lagrange equations with respect to θ. For clarity, we present
the gradient descent obtained for the single scale energy (1):

∂θ

∂t
= − λf ′(θ)

[
(I − uin(θ))2 − qin − (I − uout(θ))2 + qout

]
+ (1 − λ)

[
2ε1div(∇θ (f ′(θ))2) − 2|∇θ|2f ′(θ)f ′′(θ)

]

− (1 − λ)
[
f(θ)(1 − f(θ))(1 − 2f(θ))f ′(θ)

ε1

]
, in Ω

∂θ

∂n
= 0, on ∂Ω,
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σ = 4 σ = 12 (σ1 = 4, σ2 = 12)

Fig. 3. Single scale versus multi-scale - When a single scale is considered for the computation of
local averages, the contour either gets stuck (low σ) or leaks (high σ). Using the multi-scale for-
mulation that combines a low σ for high gradient areas with a high σ for homogeneous regions,
the contour does not get stuck in homogeneous regions and still correctly segments weakly de-
fined edges.

where the terms qin and qout have the expressions:

⎧⎪⎪⎨
⎪⎪⎩

qin = I

[
gσ ∗ 2f(θ)(I − uin(θ))

gσ ∗ f(θ)

]
− gσ ∗ 2f(θ)(I − uinθ))uin(θ)

gσ ∗ f(θ)

qout = I

[
gσ ∗ 2(1 − f(θ))(I − uout(θ))

gσ ∗ (1 − f(θ))

]
− gσ ∗ 2(1 − f(θ))(I − uoutθ))uout(θ)

gσ ∗ (1 − f(θ))
.

The gradient descent of the multi-scale model can be easily obtained by analogy.

3 Numerical Results

In this part, we show different numerical results on 2-dimensional human liver MR im-
ages. Each experiment consists of contouring the liver boundary in axial slices. Several
images include tumors inside the liver, which will be considered as background.

These experiments include the minimization of the single scale and multi-scale cri-
terion. They are minimized by finding a steady-state solution of the corresponding
evolution equations. A finite difference scheme is applied for discretization. f(θ) =
1
2{1 + 2

π arctan( θ
ε )} is used in the numerical calculation and g was empirically cho-

sen as g(v) = αv for 0 ≤ v < 1
α , and 0 otherwise. Parameters (λ, ε, ε1, α) are set to

(0.5, 0.01, 0.01, 0.3) empirically for all the experiments.

3.1 Comparisons and Experiments

In Figure 2, we compare the proposed model with existing methods [2,4]. The piece-
wise constant models use global image information and cannot discriminate the average
intensity of the liver with neighboring structures. This is mainly due to the black region
around the body that corrupts the mean value of uout. Using local averages makes the
approach robust to any disturbing factors far from the object of interest.

In the second experiment, shown in Figure 3, we show the influence of the parameter
σ in the single scale version of our model. With too low values of σ, the contour gets
stuck in homogeneous regions, because local intensity averages inside and outside the
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Fig. 4. Result on an MR image with high synthetic bias - From left to right: modified image,
final segmentation, and a zoom on this segmentation (σ1 = 4 and σ2 = 8). Our multi-scale
approach is able to deal quite easily with this artifact. This is an important advantage since this
type of intensity variation is very common in MR imaging.

Fig. 5. Liver segmentation in an MR volume - Segmentations obtained on 2-dimensional slices
of an MR volume (σ1 = 4 and σ2 = 8)

contour are almost identical. On the other side, if σ is too big, the contour does not stop
in homogeneous regions, but it is not able to capture weakly defined boundaries. The
reason is that structures outside the liver will bias the outside local mean, outweighing
the intensity gradient of weak edges. The last image of this figure shows the result ob-
tained with the multi-scale formulation. In this case, we need to choose two smoothing
parameters: σ1 and σ2. Rather than complicating the approach, this allows us to specify
one locality for pixels close to edges, another one for homogeneous regions, both being
combined together to avoid any sharp decision (see Equation (2)). Figure 4 shows the
numerical result on MR image with high synthetic bias.



Γ -Convergence Approximation to Piecewise Smooth Medical Image Segmentation 501

Fig. 6. Liver segmentation in an MR volume - Segmentations obtained on 2-dimensional slices
of 3 other MR volumes (σ1 = 4 and σ2 = 8)

3.2 Validation

The next experiment is a validation on a complete MR volume. The algorithm has been
tested on each slice intersecting the liver. Figure 5 shows the results obtained on a few
slices of one volume, while Figure 6 shows 3 slices segmented in 3 other patients. Most
of the segmentations follow the liver boundary, even if there is a bias and weakly de-
fined edges in the image. This approach is still not perfect since a few small leakages
are visible. To validate more quantitatively the results, we compared them to the seg-
mentations given by an expert. For each slice, we estimate the Dice coefficient and the
average surface distance. As shown in Table 3.2, the algorithm shows very promising
results.

Image # Dice coefficient ± stdv Average contour distance

1 0.89 ± 0.05 2.24 mm
2 0.86 ± 0.06 2.75 mm
3 0.87 ± 0.05 3.06 mm
4 0.92 ± 0.02 2.00 mm

Average 0.89 ± 0.04 2.51 mm

Fig. 7. Validation of our model on 2-dimensional slices of 4 MR images - The same parameters
were used for each image. The voxel size in each slice 1.4mm×1.4mm and the inter-slice distance
is 3mm.

Regarding the speed of the algorithm, 1000 iterations were run until the convergence
reached in around 20 seconds on a standard computer on a 256×200 image. Depending
on the parameters, 1000 iterations is usually enough to get to a steady-state.

4 Conclusions and Future Work

Multi-scale local intensity statistics have been introduced in a variational formulation
for the segmentation of liver MR images. Our approach combines Γ -Convergence ap-
proximation with a new multi-scale piecewise model. We have shown that it was able
to deal directly with MR images including spatial intensity inhomogeneities. Numeri-
cal results show the effectiveness of the proposed model. Future works will include a
validation on 3D data and learning the different parameters that are now chosen empir-
ically.
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