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René Donner1,2, Branislav Micusik2, Georg Langs1,3, Lech Szumilas2,
Philipp Peloschek4, Klaus Friedrich4, and Horst Bischof2

1 Institute for Computer Graphics and Vision,
Graz University of Technology, Austria

bischof@icg.tugraz.at
2 Pattern Recognition and Image Processing Group, Vienna University of Technology,

Austria
{donner,micusik,lech}@prip.tuwien.ac.at

3 GALEN Group, Laboratoire de Mathématiques Appliquées aux Systèmes,
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Abstract. We present an approach to detect anatomical structures by
configurations of interest points, from a single example image. The rep-
resentation of the configuration is based on Markov Random Fields,
and the detection is performed in a single iteration by the max-sum

algorithm. Instead of sequentially matching pairs of interest points, the
method takes the entire set of points, their local descriptors and the spa-
tial configuration into account to find an optimal mapping of modeled
object to target image. The image information is captured by symmetry-
based interest points and local descriptors derived from Gradient Vector
Flow. Experimental results are reported for two data-sets showing the
applicability to complex medical data.

1 Introduction

The reliable and fast detection and segmentation of anatomical structures is
a crucial issue in medical image analysis. It has been tackled by a number of
powerful approaches, among them are active shape models [3] , active appear-
ance models [4], and graph-cuts [2]. They have successfully been employed to
segment structures in cardiac MRIs [13] or for registration in functional heart
imaging [15]. These methods need to be initialized: ASMs and AAMs need to
be placed with considerable overlap with the object of interest. Graph-cuts need
manually annotated seed points placed within and outside of the object. This
initialization is either done manually or by application specific approaches.
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An approach to a detection of such initialization positions is to use local de-
scriptors like SIFT [10], shape context [1] or PCA-SIFT [6]. They match interest
points between a source (i.e. example) image and the until now unseen target
image, and typically rely on a robust estimation method like RANSAC [5]. These
approaches have several drawbacks: For complex non-rigid transformations be-
tween source and target image a large number of correct interest points matches
is required to correctly estimate the unknowns of the transformation, which
considerably increases computation time for the robust matching. Information
about the spatial relation of adjacent descriptors is difficult to incorporate into
the matching process.

In this paper we propose a deterministic method based on Markov Random
Fields (MRF) that incorporates both interest point positions and local features
to perform the detection of landmark configurations from a single example. The
detection is performed in a single iteration by the max-sum algorithm [16]. The
approach uses all interest point features and positions and finds a solution which
minimizes the combined costs of non-rigid deformations and local descriptor fea-
ture differences. Arbitrary interest points and local descriptors can be used. We
report results for interest points based on local symmetry and a complementary
local descriptor derived from gradient vector flow [17].

Local symmetry detectors were investigated in [8,12], but they are either com-
putationally expensive or use radial symmetry detectors of predefined radii. Re-
cently [11] proposed an approach to detect symmetry in the constellation of
interest points detected by existing point detection methods.

The paper is structured as follows: In Sec. 2 we explain the interest point
detector and local descriptor. In Sec. 4 the mapping of the source- to the target
points by MRFs will be explained in detail. In Sec. 5 we present the experimental
evaluation of our approach, followed by a conclusion and an outlook in Sec. 6.

2 Symmetry Based Interest Points and Descriptors

Many structures of interest to medical experts, like bones, veins and many
anatomical structures or their parts exhibit a shape with a high degree of sym-
metry w.r.t. an axis. This property of (local) symmetry is well preserved even
when dealing with 2D slices of 3D data sets like MRIs, as the cross sections of
these body parts will appear as round or elongated structures. Even regions of
interest that do not exhibit this property can be localized by observing their
neighborhood, e.g. an initialization for e.g. meniscoids can be provided by cor-
rectly localizing the discs and vertebrae of the spine.

2.1 Interest Points from Local Symmetry

Popular interest point detectors which are often used in conjunction with SIFT
are the Harris corner detector and the difference of Gaussians (DoG) approach,
neither of them possessing an affinity to local symmetry. A comparison of the
interest points detected by DoG and interest points derived from local symmetry
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(a) (b) (c)

Fig. 1. Comparison of the (a) interest points found by difference of gaussians (DoG)
and (b) the symmtery points found as minima of GVF magnitude. Note how the sym-
metry points pick up the structures which are of interest to medical experts, greatly
facilitating the correct localization of these structures. (c) Depicts the scale and ori-
entation estimates obtained around the symmetry points.

is shown in Fig. 1 (a,b). To detect points of high local symmetry we use the gra-
dient vector flow (GVF) field originally proposed in [17] to increase the capture
range of active contours. Its strengths include the ability to detect even weak
structures while being robust to high amounts of noise in the image when used
for symmetry detection. To further reduce the influence of noise the image can
be median-filtered prior to computing GVF. The GVF can be computed either
from a binary edge map or directly from the gray level image I. We compute
the GVF of an image as G = u + i ∗ v = GV F (I), yielding the complex matrix
G used for all subsequent computations. The resulting field G is depicted in
Fig. 2 for synthetic examples and a section of a hand radiograph, overlaid over
the image I. The field magnitude |G| is largest in areas of high image gradient,
and the start- and endpoints of the field lines of G are located at symmetry
maxima. E.g. in the case of a symmetrical structure formed by a homogeneous
region surrounded by a different gray level value the field will point away form
or towards the local symmetry center of the structure, as shown in Fig. 2 (a,b).
The symmetry interest points are thus defined as the local minima of |G|.

After detecting the interest points the orientation bi ∈ [0, π] of the local
region surrounding the interest point can be estimated. It is computed as bi =
� G(xi + Δxi, yi + Δyi), which is the orientation of G at a pixel in a local
r × r-pixel neighborhood satisfying

(Δxi, Δyi) = argmin
Δyi∈{−r/2,...,r/2}

Δxi∈{0,...,r/2}

|(� G(xi +Δxi, yi +Δyi)− � G(xi −Δxi, yi −Δyi)|.

(1)
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(a) (b) (c)

Fig. 2. (a,b) Examples of GVF with the detected symmetry interest points (diamonds).
(c) Descriptor extraction from the GVF field. Around each symmetry point patches are
extracted from the vector field according to their scale and orientation. The patch is
then resampled to a 10 × 10 grid to form the actual descriptor. The image is displayed
for better visualization, the symmetry points are marked as circles.

The scale si of the region around the interest point is estimated by the mean
distance from (xi, yi) to the two closest local maxima of |G| in the direction of
bi ± π. Examples for the resulting estimates for orientation and scale are shown
in Fig 1 (c).

2.2 Descriptors from Gradient Vector Flow Fields

A measure is needed to specify the similarity of the local regions around the
symmetry interest points. Several local descriptors have been proposed in recent
years, including SIFT [10] and Shape Context [1]. While most of these approaches
yield descriptors suitable for building the MRF, they would require additional
computations. In contrast, we can directly use G to describe local context.

[6] use normalized patches of the image gradient according to the interest
points’ orientation and scale as local descriptor. Similarly, we extract patches of
G around the symmetry interest points, according to scale si and orientation
bi. They are re-sampled to a 10 × 10 grid, as depicted in Fig. 2, to form the
actual local descriptor. This encodes the information about the image gradients
within and around the patch. Because of the GVF’s smooth structure, Euclidean
distance can be used used to compute the distance between two descriptors. This
eliminates the need for complex histogram construction as performed by SIFT
for example, while still retaining a feature vector of low dimensionality.

As the orientation of the local interest point is only uniquely defined up to
±π, the actual distance between two local descriptors D1 and D2 is computed
as min(‖abs(D1 − D2)‖, ‖abs(D1 − D∗

2)‖), where D∗
2 denotes the descriptor 2

rotated by π.

3 Markov Random Fields and the Max-Sum Problem

The Markov Random Fields considered in this paper represent graphs where
each of the M nodes, called objects, has N fields, or labels, with associated
qualities. The labels of two adjacent nodes are fully connected by N2 edges,
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Fig. 3. The MRF graph consists of M objects with N labels each. Qualities are assigned
to both labels and edges. Finding the solution to a max-sum problem means selecting
a label for each object, such that the sum of qualities of the selected labels and the
edges connecting them is maximized.

again with a weight to encode quality. Which objects are adjacent is encoded in
an additional graph A with a edges. This basic structure is depicted in Fig. 3.
There are 4 objects with 3 labels each, with N2 = 9 edges between the adjacent
objects, a is 5. Of interest is now to select one label for each object, so that
the sum of label and edge qualities of the resulting sub-graph becomes maximal,
illustrated as thick lines. The max-sum solver can be used to tackle this problem.
The max-sum (labeling) problem of the second order is defined as maximizing
a sum of bivariate functions of discrete variables. The solution of a max-sum

problem corresponds to finding a configuration of a Gibbs distribution with
maximal probability. It is equivalent to finding a maximum posterior (MAP)
configuration of an MRF with discrete variables [16].

Let the M × N -matrix C represent the label qualities for each of the objects,
and the a×N2-matrix E represent the edge qualities between the pairs of labels.

The total quality of the label selection S = {n1, . . . , nM} with ni ∈ {1, . . . , N}
is then defined as

C(S) =
∑

m=1...M

C(m, S(m)) +
∑

α=1...a

E(α, β(E, S, α)), (2)

where β(E, S, α) denotes the column representing the quality of the edge between
the labels chosen to represent the edge A(α). Solving the max-sum problem
means finding the set of optimal labels

S∗ = argmax
S

C(S). (3)

Recently, a very efficient algorithm for solving this problem through linear pro-
gramming relaxation and its Lagrangian dual, originally proposed by Schlesinger
in 1976 [14], has been presented [16]. The max-sum solver permits several labels
to be defined while still keeping the processing time within reasonable bounds.
There are other attempts to solve the labeling problem for MRF using, e.g., sec-
ond order cone programming [9], sequential tree-reweighted max-product mes-
sage passing [7] or belief propagation methods [18]. However, neither of the
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algorithms, nor the max-sum approach, solve the problem of a multi-label MRF
exactly, as it is NP-hard. If the graph is a tree the global optimum of Eq. (3) is
guaranteed [7], in the case of a non-tree graph max-sum takes various approxi-
mations into account to reach a possibly optimal solution.

4 Localization of Anatomical Structures

For a model image, a subset of interest points is manually selected to describe
the medical object to be found. The Delaunay triangulation of these M model
points yields the set A of index-tuples describing the edges. An example of the
generated model is shown in Fig. 4 (a,b).
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Fig. 4. (a,b) Model graph A automatically generated from the symmetry points se-
lected on the model image. The additionally placed landmarks (circles) are not part of
the model and are used only for visualization. (c,d) show the graphs matched to test
images, including the landmarks propagated according to the correspondences found
by the matched graph.

The M selected model points represent the objects of the MRF graph, while
the indices of the N target interest points correspond to the labels. A solution S
thus represents a mapping of the model interest points to a subset of the target
interest points, assigning one target interest point to each model point.

The quality of a (model point, target point)-match equals the negative dis-
tance between their local descriptors (as we are solving a maximization problem).
All mutual distances between model and potential target correspondences are
computed, resulting in the M × N -matrix C. The qualities of the aN2 edges in
the model are stored in E. The quality of an edge between two labels ni, nj in E
is computed by comparing its length and angle with the edge between the corre-
sponding objects (model nodes). As the medical structures under investigation
can be assumed to be of similar scale, the edge quality e is set to

e(α, ni, nj) = − (|lengthA(α) − length(ny, nz)| + γ (|� A(α) − � (ni, nj)|)) , (4)
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Fig. 5. Result histograms of the distances of propagated landmarks to standard of
reference landmark positions for (a) the hand and (b) the spine data set

where length(h, k) represents the pixel distance between interest points k and h,
� (h, k) is the orientation of the edge and γ is a normalization factor to compen-
sate for the different scale of angles and lengths.

It can occur that no interest point is detected in one location of the medical
structure in the target image where the model would expect one. It is thus
important to include the possibility of omitting a model point. This is achieved
by adding one artificial target interest point (dummy point), yielding Cd and
Ed of sizes M × N + 1 and a × (N + 1)2, respectively. The last column of Cd
is set to the mean of C multiplied by a factor f controlling how costly it should
be to omit a model point. Similarly, the edges of Ed involving the dummy point
are set to f times the mean of E. The max-sum solver is then applied on Cd,
Ed, yielding the set S = {n1, . . . , nM} of optimal labels for each model node,
maximizing the quality C in Eq. 3. The presented method thus in effect performs
a non-rigid registration of the partial model image to the test image.

As the interest points are not necessarily at the locations medical experts are
interested in, additional landmark points are manually set in the model image.
They are not used for computing the match, but only for result visualization
and evaluation.

5 Experiments

The approach was evaluated on 2 data sets (Fig. 4). 1. For a set of 30 hand
radiographs (300×450pixels) standard of reference annotations (landmarks) for
24 joints in each image were available. 2. On 5 spine MRIs (280×320pixels)
manual annotations of 7 inter-vertebral discs were used. To evaluate the match-
ing accuracy the landmarks were propagated according to the match and the
pixel error between propagated and correct landmarks was recorded. Piecewise
affine transformation of the Delaunay triangulation of the selected source sym-
metry points is used to propagate the source landmarks to the target image.
The typical number of detected interest points was between 400 and 600, the
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model graphs contained 10 to 25 nodes. In Fig. 4 (a,b) the source model graphs
for two examples are depicted. The model graph is depicted by blue lines, green
circles are manual annotations used only for validation. In Fig. 4 (c,d) matching
results are depicted: red lines represent the model graph matched to the target
image, while green circles indicate the propagated landmarks. Quantitative anal-
ysis was performed by a leave-one-out procedure i.e a single image was chosen as
source and the model graph was matched to the remaining 29 or 4 images. The
mean/median error for matches is 14.2 / 9.7 pixels for hand data (a typical joint
width is 25 pixels) and 10.85 / 4.8 pixels for the spine data. This is sufficient
for most initialization purposes. The error histograms in Fig. 5 show the pixel
distances for all propagated landmarks to the correct target landmark positions
from all runs. Typical run times for solving the MRF for one source-target match
are in the order of a few seconds.

6 Conclusion and Outlook

We present a framework for the matching of anatomical structures from a single
example. Configurations of interest points are represented by graphs and Markov
random fields, and the matching is performed in one iteration by the max-sum

algorithm. The approach integrates local descriptor similarities and deforma-
tion constraints in a single optimization step. Results indicate that the method
provides the localization accuracy necessary for the initialization of subsequent
segmentation algorithms. Future research will focus on using combined model
graphs from several model images, and the extension to 3D data sets.
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