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Abstract. A method to estimate the magnitude MR data from several
noisy samples is presented. It is based on the Linear Minimum Mean
Squared Error (LMMSE) estimator for the Rician noise model when sev-
eral scanning repetitions are available. This method gives a closed-form
analytical solution that takes into account the probability distribution
of the data as well as the existing level of noise, showing a better perfor-
mance than methods such as the average or the median.

1 Introduction

Magnetic Resonance Imaging (MRI) or Diffusion Weighted MRI (DW-MRI)
provide the possibility of acquiring several –and fairly aligned– images of the
same slice or even of the same volume. The number of scanning repetitions is
usually known as NEX (number of excitations). These multiple samples may
be used to estimate the magnitude image, as a way to reduce the level of noise
as well as other type of artifacts. Although in literature some methods based
on estimators using the Rician model have been reported, as that based on
Maximum Likelihood (ML) [1], due to their complexity this task is often done
using a simple average or median operator.

In this paper we propose an alternative Bayesian approach based on the Linear
Minimum Mean Squared Error (LMMSE) estimator. If an accurate measure of
the level of noise is feasible, the proposed estimator will be able to remove it more
satisfactorily than the average and median operators and, although suboptimally
with respect to the MLE, much more efficiently.

2 Rician Model and Signal Estimation

Due to the existence of uncorrelated Gaussian noise with zero mean and the same
variance in both the real and imaginary parts of the complex k-space data, the
magnitude signal of MR data may be modeled following a a Rician distribution,
whose probability distribution function (PDF) for a 2D signal is as follows [2]
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being I0(.) the 0th order modified Bessel function of the first kind, u(.) the
Heaviside step function and σ2

n the variance of noise. Mij is the magnitude value
of the pixel {i, j} and Aij the original value of the pixel without noise. Several
samples of each slice will be considered, being Mij [k] the k-th scanning repetition
of pixel {i, j} in the actual slice. These repetitions are usually fused using an
average or median operator. The effect of using the average operator may be
easily observed in the areas of low SNR, like the background, where the Rician
distribution tends to be Rayleigh. After the estimation, the signal value in the
background pixels should be zero. However, when using the average operator,
this value tends to be the mean of a Rayleigh PDF [2], i.e. σn

√
π/2. In a similar

way, the median of a Rayleigh PDF is σn

√
4. In both cases, although there may

be a smoothing of the noisy region, there is also a bias related with σn in the
output values.

One feasible option is to use a ML estimator for the magnitude data [1],
which is defined for multiple samples following a Rician distribution as ÂML =
argmaxA{log L}, being log L the log-likelihood function [1,3]. As this equation
cannot be solved analytically, the maximum of the log-likelihood function must
be found numerically. This task is computationally expensive, the more expen-
sive the higher the number of images to be processed, especially when working
with DTI data, with multiple slices and multiple gradient directions. Alterna-
tive methods to solve the ML estimator have been proposed, as the one based
in Expectation-Maximization [3] or the work by Fillard et al. [4]. Other works
use the Maximum a Posteriori, as Basu et al. [5].

We now propose a different approach to estimate the signal from the magni-
tude image, based on the LMMSE estimator. Instead of modeling A as unknown
constant, we will consider it as a realization of a random variable which is func-
tionally related to the observation. Although this approach may be suboptimal
with respect to the MLE, the fact that a closed-form analytical solution is achiev-
able, makes the whole process faster and more suitable when working with large
amount of data -like DTI- where an optimization method to search ÂML would
be too slow.

3 LMMSE Estimation from Multiple Noisy Samples

The LMMSE estimator of a parameter θ using multiple samples is defined [6]

θ̂ = E{θ} + CθxC−1
xx (x − E{x}) (2)

being C the covariance matrices and x the vector of available samples. The mo-
ments of the Rician distribution have a non-trivial integral expression. However,
the even-order moments, are simple polynomial. In order to achieve a closed-
form expression we will use A2 instead of A. Consequently, all the moments to
be used will be even. With this assumption in mind, the LMMSE estimator for
the Rician distribution is

Â2
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For the sake of simplicity we will suppose that all the equations are pixelwise,
removing the subindexes {i, j}. Assuming that N measures are taken of every
pixel, M = [M [1] M [2] · · · M [N ]]T is the measure vector. M2 must be un-
derstood element-wise, i.e. M2 = [M2[1] · · · M2[N ]]T . CM2M2 is the N × N
covariance matrix of M2, defined

CM2M2 = E{
(
M2 − E{M2}

) (
M2 − E{M2}

)T }

After some algebra and replacing expectations by their sample estimator 〈.〉, we
can finally write the covariance matrix as

CM2M2 =
(
〈M4〉 + 4σ4

n − 4σ2
n〈M2〉 − 〈M2〉2
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where 〈Ma〉 = 1

N

∑N
k=1 Ma[k], 1N is an all 1 vector of length N , and IN is the

N × N identity matrix. Matrix CA2M2 is
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Finally, for each point in the image, the estimator will be

Â2 = 〈M2〉 − 2σ2
n + CA2M2C−1

M2M2

(
M2 − 〈M2〉

)
(5)

This equation must be understood pixelwise (say Mij [k] and Aij) in the two
dimensional case or voxelwise (say Mijl[k] and Aijl) in the three dimensional
case. Note that the value of the variance of noise σ2

n value must be properly
estimated somehow. Several methods have been reported in literature [7]. New
robust methods are also emerging for this task, making the proposed method
useful.

4 Validation

Some synthetic experiments have been carried out in order to validate the
LMMSE estimator previously introduced. Firstly we will compare it with other
fusion methods over a single MR image. The image in Fig. 1-(a) will be consid-
ered as the ground truth. The image is corrupted with synthetic Rician noise with
different values of σn. For each value, 10 independent noisy images are created,
say In[k], k = 1, · · · , 10. This images are fused using the following methods:
average of the images, (Ia), median of the images (Im) and LMMSE estimator
of eq. (5), say Ie.

To compare the performance of the different approaches two structural qual-
ity indexes have been used: the Structural Similarity (SSIM) index [8] and the
Quality Index based on Local Variance (QILV) [9]. Both give a measure of the
structural similarity between the golden standard and the other images. How-
ever, the former is more sensitive to the level of noise in the image and the latter
to any possible blurring of the edges. Both indexes are bounded; the closer to 1,
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(a) (b) (c)

Fig. 1. Data used for the experiments. (a) MR image (256 gray levels) from BrainWeb
database (http://www.bic.mni.mcgill.ca/brainweb/). (b) Synthetic 2D tensor field.
(c) Noisy 2D tensor field, σn = 100 (SNR=2.62dB). Figures (b) and (c) created using
Teem software. (http://teem.sourceforge.net/).

Table 1. Quality measures. Average of 100 realizations with σn = 10. The LMMSE
shows the better results in the structural measures, and the lower MSE and level of
noise.

MSE SSIM QILV LN
In 158.5421 0.3882 0.9890 9.9517
Ia 100.0603 0.4723 0.9918 9.9887
Im 93.4674 0.4693 0.9932 9.4919
Ie 33.7761 0.5227 0.9986 5.1882

MSE SSIM QILV LN
In 112.4711 0.7362 0.9882 9.9517
Ia 31.6995 0.9090 0.9912 9.9887
Im 32.8593 0.8983 0.9924 9.4919
Ie 15.6514 0.9209 0.9982 5.1882

(a) Whole Image (b) Image without background

the better the quality. In addition we will also use the Mean Square Error (MSE)
and the Level on Noise (LN) in the output image, measured as LN = (σ̂n)o

(σn)i
, be-

ing (σ̂n)o the estimated standard deviation of noise in the resulting image and
(σn)i the standard deviation of noise in the original image.

The average of 100 realizations for each method and each value of σn has
been considered. Results are on Fig. 2 and Fig. 3-(a). The whole image and the
image without background have been considered separately. As an illustration,
numerical results for σn = 10 are shown in Table 1.

The proposed method shows a better performance in all the indexes and for
all the levels of noise. It is the one with the lower MSE and the higher values
of SSIM and QILV. When comparing the LN, it is the only one in which a
reduction of noise is noticeable. However, for small levels of noise (say σn < 5
for a 256 gray-level image), the use of the average and the median may be a
feasible alternative.

As we have stated previously, the method here presented is suboptimal with
respect to a nonlinear counterpart or even the MLE. With respect to the latter,
Fig. 3-(b) shows some comparative results for different values of σn. However, a
numerical optimization is needed for the MLE, a fact that is avoided with our
alternative simple (and linear) solution.
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(a) SSIM (whole image)
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(b) QILV (whole image)
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(d) SSIM (without back-
ground)
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Fig. 2. Quality measures of the resulting fused images. In all the cases the proposed
method shows a better performance.

When working with DT-MRI, some scalar measures like the Fractional Aniso-
tropy [10] are directly related to the eigenvalues of the diffusion tensors. To study
the effect of the proposed method over these eigenvalues, a synthetic data set has
been created: a 128 × 128 2D tensor field, as shown in Fig. 1-(b), where tensors
are depicted using ellipses. Tensors with three different eigenvalue combinations
were chosen

λa = [1.9 10−3, 0.4 10−3] λb = [2 10−3, 0.1 10−3], λc = [2 10−3, 2 10−3]}

and the diffusion weighted images (DWI) were simulated using the Stejskal-
Tanner equation [10,11]. Different number of gradients have been considered,
with a constant baseline with a level of 1000. The DWI are corrupted with
Rician noise, Fig. 1-(c), and the tensors are re-estimated, using a Least Squares
approach. Different values of σn have also been used. For the experiments 3,
and 15 gradient directions, σn ∈ [30, 210] and N = 10 will be considered. We
define the signal to noise ratio as SNR (dB) = 10 log10

(
S2/σ2

n

)
, and we will

define the power of the signal as S2 = min
(
S2

i,j,k

)
, in our case S2 = 1.83 104.

The error is defined as the absolute distance of the estimated eigenvalues to the
original values. For each number of gradients and each SNR value the average
of 100 experiments is considered. In Fig. 4 the mean and the standard deviation
of the error are shown. From the results it can be seen that in all the cases
the bias and the variance of the estimation is smaller when using the LMMSE
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Fig. 3. (a) Level of noise: estimated standard deviation of noise of the output image
normalized by the standard deviation of noise in the original image. Same legend as
Fig. 2. the LMMSE scheme is the only one that shows a significant reduction in the
level of noise. (b) Comparison of estimators using the MSE/σ2

n of the image without
background.
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Fig. 4. Mean and standard deviation of the eigenvalue estimation error for 3 and 15
gradient directions

filter. Note that the effect of using more gradient directions positively affects
to the variance or error of the original data and the data fused with LMMSE,
but it hardly affects to the variance of the error when using the average. As in
the previous experiment, results are just slightly better for the MLE but again
a numerical optimization is needed to obtain the solution. In our experiments–
using an optimized MATLAB code–, for 10 samples and 15 gradients LMMSE
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Fig. 5. Mean (left) and standard deviation (right) of the error of estimation of the
eigenvalues for different combination of number of gradient direction and number of
samples. LMMSE estimator has been used for fusion.

Fig. 6. Fusion of MR images from an EPI volume. Original (left) and filtered (right).

is about 28 times faster than MLE using the EM method [3]. In Fig. 5 the same
measures are shown again for LMMSE, this time for a constant number of 30
scans, distributed in multiple samples and multiple sample directions. Although
a larger number of gradients always improves the estimation, if only one sample
is used the results show a bias when the SNR decreases.

Finally, to show the performance of the proposed scheme over real data, we have
chosen a SENSE EPI data set, scanned in a 3.0 Tesla GE system, 51 gradient
directions, 8 baselines, SENSE EPI. Voxel dimensions: 1.7 x 1.7 x 1.7 mm. We
have selected an axial slice and fusing the 8 baselines using the LMMSE estimator.
Results are on Fig. 6. Most of the noise in the original image has been removed
after fusion. All the internal structures has been preserved, as well as the edges.

5 Conclusions

This paper introduced a method to estimate the magnitude signal from several
acquisitions of both MRI and DWI based on the LMMSE estimator. To that
end, a Rician assumption has been made. The proposed filtering method out-
performed the average and the median methods, specially for moderate and high
noise levels. Although a ML approach may have a slightly better performance
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in terms of error, the LMMSE provides a closed-form analytical solution, which
is faster and more suitable when working with large amounts of data. Reducing
the number of operations per pixel is a task of paramount importance when
these large data sets must be dealt with. In addition, when working with DTI,
the proposed method has also shown an important reduction in the bias of the
first eigenvalue of the diffusion tensor, which makes some scalar measures like
the Fractional Anisotropy more reliable.
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