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Abstract. A major challenge in contemporary magnetic resonance imag-
ing (MRI) lies in providing the highest resolution exam possible in the
shortest acquisition period. Recently, several authors have proposed the
use of Lii-norm minimization for the reconstruction of sparse MR images
from highly-undersampled k-space data. Despite promising results demon-
strating the ability to accurately reconstruct images sampled at rates
significantly below the Nyquist criterion, the extensive computational com-
plexity associated with the existing framework limits its clinical practical-
ity. In this work, we propose an alternative recovery framework based on
homotopic approximation of the Lo-norm and extend the reconstruction
problem to a multiscale formulation. In addition to several interesting the-
oretical properties, practical implementation of this technique effectively
resorts to a simple iterative alternation between bilteral filtering and pro-
jection of the measured k-space sample set that can be computed in a mat-
ter of seconds on a standard PC.

1 Introduction

One of the fundamental limitations of MRI is the linear relation between scan
time and the number of measured data samples. With the recent drive towards
dynamic imaging as well as high-resolution scans and those covering an extended
field-of-view (FOV), the need for shorter examination times to improve patient
comfort and improve clinical throughput is substantial. Barring the introduction
of additional hardware such as is used in parallel imaging techniques, conven-
tional undersampled MRI reconstruction techniques such as homodyne detection
[1] and projections onto convex sets (POCS) [2] are often inherently limited by
the Nyquist criterion to a maximum theoretical sampling reduction of 50%. In
practice, even less undersampling is typically employed when using these ap-
proaches.

Recently, there has been great interest in “compressed sensing” methods for
reconstructing MR images from only a small fraction of the complete k-space sam-
ple set [3/4l5]. For naturally sparse scenarios such as MR angiography,
high-quality recovery has been demonstrated even at up to 80% undersampling,
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offering the potential for dramatically reducing clinical scan times. The main lim-
itation of the existing compressed sensing framework lies in the extensive compu-
tation that is required to generate a solution, e.g. the reconstruction of a single
256x256 image can take on the order of several hours [6] using standard descent
methods and even several minutes using state- of-the-art matrix-based solvers [7].
The considerable computational burden of these techniques precludes their use in
clinical practice, especially when considering the extension to 3D data.

In this paper, we consider an alternative formulation of the sparse reconstruc-
tion problem that is both theoretically alluring and computationally practical.
While compressed sensing methods typically deal with L;-norm minimization as
they are the closest convex approximation to the ideal Lp-minimization prob-
lem, we attack the Ly problem directly using a quasiconvex homotopy scheme.
This approximation is closely related to work on robust anisotropic diffusion [§]
and, when considering image gradients across multiple scales, kernel regression
methods such as the bilateral filter [9/T0]. Following these developments, we ad-
dress the handling of complex MR image data and discuss practical and simple
numerical implementation of the technique.

2 Methods

For many MR images, the underlying image structure is piecewise smooth and
thus the signal is sparse in the gradient domain. Let @ represent a k-space
measurement matrix such as that defined by the trajectory of a projection re-
construction or spiral-type acquisition after gridding. The goal of the sparse
MRI reconstruction problem is to recover an image, f, from only a small sub-
set of Fourier transform samples, @ f . The ideal approach to recovering a signal
with limited support involves solving the following combinatorial optimization
problem:

min ||Vullp  s.t. Qu=Pf, (1)

where f denotes the Fourier transform of f and u is the recovered image; however,
as () is NP-complete, it is computationally intractable except for very small
problems. In the recent work by Candes et al. [I1] and Donoho [12], it has been
shown that, given sufficient gradient sparsity, f can be almost exactly recovered
with overwhelming probability by solving the L; analog of (),

min ||Vuly  s.t. Qu=Pf. (2)

While few signals are truly sparse in practice, most are compressible within some
transform domain, e.g. the spatial gradient of a piecewise-smooth image exhibits
exponential decay upon enumeration. In this scenario, the “compressed sensing”
paradigm offers reconstruction whose error is comparable to the best possible
K-term approximation within the sparsity basis [13].

Although (2) is a convex optimization problem closely related to basis pursuit
[14] that can be solved using standard Interior Point methods [T4TTU7], many of
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these modern numerical solvers rely heavily on matrix-based operators that are
not only computationally expensive but also require extensive parameterization.
For example, Kim et al. [7] have recently proposed a method for solving (2
based on preconditioned conjugate gradients (PCG) which, while converging
in only around 100 iterations, requires several minutes to reconstruct a single
256x256 image. In effect, this class of approaches is neither readily implimentable
nor computationally practical and this may preclude their widespread usage in
clinical application.

2.1 Robust Error Norms and Lg-Continuation

Although () is generally impossible to solve directly, it is the ideal formulation
to address for the sparse reconstruction problem whether for MRI or any other
application. Begin by realizing that the zero semi-norm can be defined as

IVulo =) 1(IVu| > 0), 3)
2

where (2 is the image domain and 1 is the indicator function. Consequently,
{1(|Vu| >0) =1} <= {3n € [1, N] | |ug,| > 0}, (4)

where N = dim{{2} and u,, is the partial derivative of u along the n-th dimen-

sion. Given (@),
N

1(|Vul > 0) <Y1 (Jug,| > 0) (®)

n=1

follows trivially and a new sparsity semi-norm can be defined as

N
oo =2 > 1(|ug,| > 0); (6)

2 n=1

IVu

note that this is essentially just a migration of u to Markovian form.

At this point, (@) is still combinatorial much like ||[Vul|o and thus of little
practical use. Suppose a continuous function, p, can be defined such that it is
homotopic with 1 through the limit function, i.e.

lim p(z,0) =1 (|z[ > 0). (7)

Consequently, (@) can be redefined as

N
IVl = Jiy 323 (1, 0) (®)

n=1

yielding the new reconstruction problem,

Il

S
h
—~~
N

min [|[Vullp«  s.t.  Pu
u
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Although there is no guarantee of achieving a global minima when using non-
convex priors, standard continuation schemes simliar to those developed to nu-
merically handle the discontinuity of the total variation (TV) semi-norm at the
origin [15] yield local minima which are more than acceptible in practice.

While one approach to defining p includes using a p < 1 semi-norm as utilized
in [6], the non-differentiability of these functionals requisites need for additional
continuation, limiting their practicality within our approach. Alternatively, con-
sider the class of robust error functions known as redescending M-estimators
[16]. Two of the more common examples, the Gaussian and Tukey Biweight
error functions, are respectively described by

322 3
—3% s z| <o
= o2 ot 0’57 - . 10
o) ={ 7 et (10)

.732

= 1 — e
p(l‘,O’) € 2052

For both measures in (), o is a scale parameter that controls the dilation of the
error functions. Unlike traditional error norms such as the various p-norms, the
influence of outlier values beyond a threshold determined by o is reduced. More
interestingly, as ¢ — 0, these redescending functions naturally approach the
indicator function, and they remain continuous until that limit is reached. We
note that the use of such non-convex estimators have been previously employed in
the imaging community for denoising [I7I8] and deconvolution [I§]; however, to
our knowledge, this approach has not been utilized for the highly-undersampled
reconstruction problem.

2.2 Multiscale Image Sparsity

One approach to discretizing the partial derivatives of u in (@) involves computing
the finite differences between u at a point x and its immediate neighbors. If the
set of all immediate neighbors is denoted as 7, then (8) can be approximated by

[Vullo- = lim 3™ 3" plue + &)~ u2),0), (11)

re neEn

where the vector &, =n — z.

Enforcement of image sparsity can subsequently be generalized to address
multiple scales of image gradients by simply extending the neighborhood over
which finite differences are computed. Spatial proximity can easily be incorpo-
rated into () through the addition of an auxiliary influence function, namely

o =lim SN pur &) —u(@), )0l n),  (12)

TEN nEN

[[Vu

where ¢ is commonly defined by a Gaussian function with scale .

2.3 Practical Implementation and Numerical Considerations

For a fixed value of o, a minima of ([2]) is given when,

Y t(u(@+&) —u(@),0)¢ (&), 5) =0, Vee (13)

nemn
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where the influence function ¢ = p’. Letting g(x) = ¥(z)/x, ([3]) can be written
in operator form as

Yos(u@+&) —u@),0)d (&l k) (6@ +&)—s(@)@|u=0, (14)

nen

where ¢ is the Kronecker delta function and ® is the convolution operator. When
considering (I4)) in the homogeneous form A(u)u = 0, and noting that A(u) is
non-expansive and strongly connected, ([4]) can be solved for iteratively using a
nonlinear Jacobi or Fixed-Point iteration, resulting in
£ Donen 8 (U (x+ &) —u' (2),0) ¢ (1€, k) u' (z + &)
u' T (x) = . (15)
Donen 8 (W (z+&n) —ut (2),0) ¢ (|&n], k)

(@A) can be interpreted as an iterative zero-order or Nadaraya-Watson type ker-
nel regression estimator, or more familiarly as a bilateral filter [9]. Recently,
kernel regression estimators [I0] (including higher-order) have been applied to
the related problems of super-resolution and deconvolution and shown excellent
results. In effect, the derived form in (3] is very promising as there has been
extensive work on developing fast implementations and approximations of the
bilateral filter. In particular, it has been shown that a separable version of (I3])
[19], where 1D bilateral filtering is performed sequentially along each data di-
mension, can provide a dramatic computational speed-up with no substantial
degradation of the result.

When dealing with complex image data such as in MRI, addressing |Vu/| is not
as straighforward as for the strictly real case. For our application, we choose to
assess sparsity in the real and imaginary data channels separately as mentioned
in [4] and is commonly used for MR image denoising. Given (IH), the complex
multiscale extension of ([@) can be solved using the following iterated projection
procedure with continuation:

Let 4 =&f, 0 >>0

1. R {v'*1} = BilateralFilter [R {u'}, o]

2. Ev“‘l = BilateralFilter [S {u'}, o]
3. Puitl = ¢f
4. if ||o'T! —wl|| <tol, o =0xf3

else u!t!l =o'l go to Step 1.

In the above algorithm, R and & denote the real and imaginary operators, re-
spectively, tol is a threshold indicating when filtering at a given o-level has
numerically reached steady-state, and 8 € (0, 1) controls the reduction rate of o
in the continuation procedure. The number of iterations can either be specified
a priori or an intelligent termination scheme can be incorporated when some
target level for o has been achieved.

Note that the presented algorithm is significantly less intimidating than its
matrix-based counterparts for the sparse reconstruction problem as it requires
little more than a simple filtering and Fourier tranform operation. Consequently,
we hope the inherent simplicity and resultant speed of this method will promote
its use in practical application.
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(a) (c)

Fig.1. Example MR images: standard phantom (a), wrist (b), and spine (c)

3 Results

Examples of the presented reconstruction algorithm are given for the three im-
ages in Fig. 1. For each case, image intensities were normalized to unity and
the following parameterizations were used: tol = le—4, 3 = 0.5, 09 = 1, and
iter = 80. Additionally, bilateral filters were implemented in separable form as
described in [I9]. On a 3.4 GHz Pentium IV machine with 4GB RAM, a C++
implementation of the reconstruction algorithm using the FFTW library runs
at roughly 80ms/iteration for a 256x256 image, yielding a total reconstruction
time of around 7s.

The k-space patterns in Fig. 2 imposed 82% (2a), 77% (2b), and 75% (2¢) un-
dersampling, respectively. Additionally, the difference between the fully-sampled
and reconstructed images, shown in Figs. 2j-1, was quantified using a standard
root-mean-square (RMS) measure to yield a per-pixel average intensity error of
only 1.687e-5, 2.256e-5, and 1.989e-5, respectively. While some expected textu-
ral loss is present in the anatomical image examples, notice that all of the main
structural components of the images are accurately recovered as are many of
the smaller objects. Some prominent areas of focus showcasing this capability
include the comb object inside the physical resolution phantom (Fig. 2j), the
carpal tunnel region of the wrist (Fig. 2k), and the walls of the spinal column
(Fig. 21). We note that these results are similar in quality to those obtained by
L; methods but we do not show a comparison here for sake of brevity.

4 Summary

In this work, we have developed a novel approach to the sparse image recon-
struction problem and shown the application of our methods to phantom and
clinical MR images. As detailed in Section Pl we offer a new approach at directly
handling the Lo-minimization problem and extend the formulation to incorpo-
rate multiscale information. Numerically, solving the proposed formulation of
the sparse reconstruction problem resorts to a simple iterative scheme based on
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o)

Fig. 2. Example reconstruction results: k-space sampling patterns (a-c), zero-filled
reconstructions (d-f), proposed reconstructions (g-i), and reconstruction errors (j-1).
Note that images (a-i) are scaled uniformly; images (j-1) have been amplified by 10x.
For more details, see Section Bl
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alternating between bilateral filtering in image space and reinforcement of the
measured Fourier samples in frequency space, two operations which are very
computationally efficient and relatively trivial to implement. Consequently, we
are able to achieve reconstruction results which are comparable to those of Li-
based methods in a clinically practical amount of time and with relatively little
effort spent in the development of the numerical sovler.
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