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Abstract. Significant research has been conducted in radiation beam
gating technology to manage target and organ motions in radiotherapy
treatment of cancer patients. As more and more on-board imagers are
installed onto linear accelerators, fluoroscopic imaging becomes readily
available at the radiation treatment stage. Thus, beam gating parame-
ters, such as beam-on timing and beam-on window can be potentially
determined by employing image registration between treatment plan-
ning CT images and fluoroscopic images. We propose a new registration
method on deformable soft tissue between fluoroscopic images and DRR
(Digitally Reconstructed Radiograph) images from planning CT images
using active shape models. We present very promising results of our
method applied to 30 clinical datasets. These preliminary results show
that the method is very robust for the registration of deformable soft
tissue. The proposed method can be used to determine beam-on timing
and treatment window for radiation beam gating technology, and can
potentially greatly improve radiation treatment quality.

1 Introduction

Radiation therapy is an important treatment modality for various cancers. The
goals of radiation therapy can be better achieved by delivering conformal radia-
tion dose to target volume while sparing normal or critical structures as much as
possible. Various radiation delivery technologies, such as the three dimensional
conformal radiation therapy (3DCRT) and the intensity modulated radiation
therapy (IMRT), have been adopted and used to serve the purpose. However,
the efficacy of these technologies may be compromised because of organ mo-
tion during treatment. It has been well known that organs and tumors located
in the thorax and upper abdomen may exhibit significant respiratory induced
motions [1,2]. These physiologically related motions might well compromise the
efficacy of radiation treatment of the tumors since larger margins are needed
to provide adequate coverage of the targets, which may subsequently lead to
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increased toxicity and prevent dose escalation [3,4]. Many techniques have been
proposed and utilized to address the negative impact of respiratory motion dur-
ing radiation treatment [5,6,7]. Although the method proposed in this paper is
potentially applicable to all these techniques, we will limit our discussion only
to the beam gating technique for simplicity.

In radiation therapy, treatment planning is usually conducted based on sim-
ulation CT images before treatment. At the planning stage, target volume is
delineated on the CT image and the plan is designed so that the target vol-
ume will be adequately covered with radiation beams. The principle of using
beam gating technology is to establish a feedback mechanism between tumor
movement and radiation beam-on control during treatment: if the tumor moves
outside the designed target volume, the radiation beam is turned off; otherwise,
the radiation beam remains on.

In the current beam gating technology, the beam-on timing and treatment
window are determined by a target surrogate that is placed outside the patient’s
body. With this method, to correctly deliver doses to the target, not only is a
reliable correlation between the motions of the surrogate and the tumor required,
but also this correlation needs to be reproducible from the simulation planning
stage to the treatment stage. These two prerequisites, however, are difficult to
satisfy. Another alternative is to implant a few markers into the target volume
and use the markers as tracers to control the beam gating. The drawback of
this approach is that it involves a surgical procedure and it may complicate
the radiation treatment process. Furthermore, if the implanted markers migrate
away from their original locations in the plan, not only is the tumor missed, but
also normal tissue will be unnecessarily damaged.

As more and more on-board imagers are installed onto linear accelerators,
fluoroscopic imaging becomes readily available at the radiation treatment stage.
Since fluoroscopic imaging is able to detect target or organ motion, in this paper,
we propose an automatic and robust registration method for soft tissues registra-
tion between fluoroscopic images and planning CT images (e.g., DRR). Then, we
can derive temporal and spatial information of target volumes at the treatment
stage. This information, instead of the artificial surrogate or implanted markers,
can be used to determine beam-on timing and treatment window.

2 Method

Suppose that N fluoroscopic images are acquired during a period of time at
the treatment stage. Let I(rT (ti)) and I(rO(ti)) denote the representations of
the target and the organ, respectively, on a fluoroscopic image I taken at time
ti, 1 ≤ i ≤ N . Also let I(rT

CT
) and I(rO

CT
) denote the representations of the

target and the organ, respectively, projected onto the digitally reconstructed
radiographs (DRR) from the treatment planning CT or in 3D CT volume. An
image registration algorithm will need to search through I(rT (ti)) and I(rO(ti))
and determine tk such that an entropy function

H
[

I(rT (tk)) − I(rT
CT), I(rO(tk)) − I(rO

CT)
]

(1)
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reaches at its minimum. This time tk can be considered as the time at which the
target and organ move to the locations that match those on the planning CT
images. Therefore, to accurately deliver the radiation dose, the radiation beam
needs to be turned on at tk. However, in reality, if the beam were turned on only
at time tk, the gated radiation treatment would be prolonged to an unacceptable
level. A practical approach to avoid the unacceptably prolonged treatment is to
allow a beam-on window, during which the movements of the target and the
organ are within a pre-specified margin δ. This beam-on window [tk1 , tk2 ] can
be determined by minimizing the following two entropy functions:

H
[

I(rT (tk1)) − I(rT
CT − δ), I(rO(tk1)) − I(rO

CT − δ)
]

(2)

H
[

I(rT (tk2)) − I(rT
CT

+ δ), I(rO(tk2)) − I(rO
CT

+ δ)
]

(3)

Although various registration algorithms between fluoroscopic images and CT
images have been proposed, the registration of soft tissue remains a major chal-
lenge. For example, [8] discussed a method based on robust similarity measure-
ment, while [9] proposed a method based on both robust similarity measurement
and optimization technique. In [10], a 3D volume is reconstructed from fluoro-
scopic images and compared to 3D CT. Soft tissues are not considered in any
of these methods. In [11], deformable soft tissues are considered in the evalua-
tion of the accuracy of similarity measurements; however, the image organ was
a phantom spine and only a region of interest defined by user was registered.

In this section, we describe an automatic and robust method for the regis-
tration of deformable organs in medical images taken at different times using
different modalities. Specifically, we propose a method for the registration of the
lungs in fluoroscopic images to those in DRR images from planning CT. The
proposed method consists of two steps: (1) accurate delineation of lung areas
from both fluoroscopic and DRR images and (2) registration of the delineated
lung areas. For the accurate delineation of lung areas, we use the active shape
model approach with significant improvements [12,13,14,15].

2.1 Active Shape Models (ASM) and Their Limitations

An active shape model (ASM) represents the features of a shape as the point
distribution model (PDM) [12]. Given a set of training images, the feature of in-
terest in each image is manually labeled with n landmark points and represented
as a vector in 2n-dimensional space, i.e., x = 〈x0, y0, x1, y1, · · · , xn−1, yn−1〉. Af-
ter aligning these vectors into a common coordinate system, a set of orthogonal
bases P is computed with the principal component analysis. Then, each aligned
shape can be reconstructed as x = x̄ + Pb, where x̄ and b are the mean shape
and the shape parameter vector, respectively. This equation also allows us to
search for a new example of the shape in an unlabeled image by varying b ap-
propriately, often based on low-level image features such as the gradients along
normal directions to the boundary of an initial shape toward the strongest edge
in the image [12]. Although it has been used successfully in many applications,
ASM has two important limitations for the delineation of lung areas from both
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(a) (b) (c) (d) (e)

Fig. 1. The coarse segmentation of lung areas from DRR images. (a) Original DRR
image, (b) Image after thresholding, (c) Image after morphological filling, (d) Image
after XOR operation, and (e) Image after dilation and erosion operations.

(a) (b) (c)

Fig. 2. The coarse segmentation of lung
areas of fluoroscopic images. (a) Origi-
nal fluoroscopic image, (b) Image after
thresholding, (c) Image after dilation and
erosion operations.

(a) (b) (c)

Fig. 3. Lung area segmentation. (a) and
(b) DRR and fluoroscopic images by
ASM with M-estimator, (c) Fluoroscopic
image by ASM without M-estimator.

fluoroscopic and DDR images. In the next two sections, we will address these
limitations and propose methods to overcome these drawbacks.

2.2 Automatic Initialization of ASM

The major drawback of ASM for searching for a new example of the shape in an
unlabeled image is the initialization of the model. If the model is initialized too
far from the feature of interest, the process may fail. To automate the accurate
initialization of the model, we first rapidly extract the lung areas from unlabeled
images by applying a series of morphological operators. The coarse segmentation
process is illustrated in Figs. 1 and 2.

For DRR images (Fig. 1), the given image in (a) is first normalized and thresh-
olded, using the mean intensity value of the normalized image as the threshold
value, to generate a binary images shown in (b). Next, we perform the mor-
phological filling on (b) to obtain (c). Then, we combine (b) and (c) with XOR
operation to obtain (d). Finally, after applying dilation and erosion operations
on (d), we obtain the coarse lung areas as shown in (e). For fluoroscopic images
(Fig. 2), the given image in (a) is also normalized and thresholded, using the
mean intensity value of the normalized image as the threshold value, to produce
a binary image shown in (b). After applying dilation and erosion operations on
(b), we obtain the coarse lung areas as shown in (c).

Note that our interest at this step is not to accurately segment the lung areas.
The coarse lung areas obtained here are used only to automate the accurate
initialization of the shape model on unlabeled images. We achieve the automatic
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and accurate initialization by aligning the centers of the shape models to the
centers of the segmented coarse lung areas.

2.3 Occluded Lung Area Segmentation

Another limitation of ASM in finding an object in unlabeled images is that it
heavily relies on the low-level image features to guide the search for the optimal
positions of the feature points. For example, the gradient descent search on the
image intensity profile has been widely used to move the model points toward
the strongest edge in the image [12]. However, this approach is not suitable for
the accurate delineation of the lung areas in DDR and fluoroscopic images since
the ribs occlude the lungs and appear as the strongest edge as can be seen in
Fig 1(a) and 2(a). We overcome this difficulty by introducing a robust error
function based on the M-estimator [13,16].

Given an orthogonal basis P obtained in Sec. 2.1, the projection C of a
new example shape X is given by C = P T dX , where X = X̄ + dX and X̄
is the mean shape of the aligned shapes from the training images. Using the
projection C, we can also find a corresponding shape as X̂ = X̄ +PC, in which
X̂ and P C approximates X and dX, respectively. Therefore, in addition to
optimizaing X and dX by the gradient descent search normal to the boundary
only, our goal is to also find the optimal C by minimizing the robust energy
function, E(C) = minC ρ (‖dX − PC‖, σ), where ρ(x, σ) = x2/(x2 + σ2) is the
Geman-McClure error function and σ is a scale parameter that controls the
convexity of the robust function. With an iterative gradient descent search on
E, we get C(n+1) = C(n) + λΔC, where λ is a small constant that determines
the step size and

ΔC =
∂Erpca

∂C
= −2P (dX − P C)

σ2

(‖dX − PC‖2)2

By continuing the iterative process until ‖E(n+1) − E(n)‖ < ε, where ε is a
pre-selected tolerance, we obtain the optimal project C∗ and a robust shape
in the shape space as X̂ = X̄ + P C∗. Fig. 3 shows the typical results of the
process applied to 30 clinical datasets, 25 of which were used as a training set.
In the figure, (a) and (b) show the results of the ASM with M-estimator, where
the lung areas occluded by the ribs are accurately segmented, while (c) shows
the inaccruate result of the ASM without M-estimator.

2.4 Registration of the Segmented Lung Areas

Let xF and xD be the shape models of the lungs in fluoroscopic and DRR
images obtained from the previous section, each containing n landmark points.
The registration of xF onto xD is achieved by finding the parameters of a 2D
transformation that minimizes the weighted least square error:

ε =
n∑

i=0

(
pD

i − M (s, θ, tx, ty) · pF
i

)T
W

(
pD

i − M (s, θ, tx, ty) · pF
i

)
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(a) (b) (c) (d) (e)

Fig. 4. Registration. (a) DRR image, (b) and (c) Fluoroscopic image before and after
registration, superimposed on DRR image (only salient edges of the fluoroscopic image
are shown for display purposes), (d) ASM contours on DRR image (red: ASM of DRR;
yellow: ASM of registered fluoroscopic image), and (e) Registered fluoroscopic image.

where, pi is the i-th point of a shape model in homogeneous coordinate system,

M(s, θ, tx, ty) =

⎛

⎝
s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

⎞

⎠

and W is a diagonal matrix of weights for each pi that can be chosen to give
more weights to the stable points [12]. The results of the registration process are
shown in Fig. 4 and discussed in the next section.

3 Results

We applied our method to 30 clinical datasets from different patients. Fig. 4
illustrates the results of the proposed method applied to three typical datasets.
The given fixed images (DRR images) are shown in Fig. 4(a). Fig. 4(b) shows the
original fluoroscopic images superimposed on the corresponding fixed images be-
fore registration, while (c) shows the same fluoroscopic images after registration.
Note that, in Fig. 4(b) and (c), only the salient edges of the fluoroscopic images
are shown for display purposes. As can be seen from Fig. 4(d), the ASM models
from the fluoroscopic images are accurately registered onto the corresponding
DRR images. Finally, Fig. 4(e) shows the fluoroscopic images transformed and
registered to the corresponding fixed images.

The results are also summarized in Table 1. The table shows that, on average,
the mean distance and the root-mean-square error (RMSE) of the corresponding



Registration of Lung Tissue between Fluoroscope and CT Images 757

model points between the fixed image and the registered moving image are less
than 7 pixels. The table also shows the overlap ratios of the lung areas between
the DRR images and the registered fluoroscopic images. These overlap ratios
can be used to determine the beam-on windows [tk1 , tk2 ] that minimize the two
entropy functions in Eq. (2) and (3) given in Section 2. For example, in the
table, one of the fluoroscopic images registered onto the corresponding DRR
image shows that the lung areas in the two images overlap well over 93%. Thus,
the time that this particular fluoroscopic image was taken can be interpreted as
the tk that minimizes the entropy function in Eq. (1).

4 Discussion

We proposed an automatic and robust method for the registration of fluoroscopic
images and DRR images from planning CT on deformable soft tissue, using an
improved active shape model. We also presented various results of our method
applied to 30 clinical datasets. With these promising results, the method can
be used to determine beam-on timing and treatment window for beam gating
technology without requiring a monitor or implanted markers. Since each of the
fluoroscopic images is time stamped in segquence, the time that corresponds to
the fluoroscopic image that matches the CT image set with the largest overlap
ratio is when the radiation beam should be turned on. In this paper, we limited
our discussion only to the beam gating techniques for simplicity. However, the
proposed method is also applicable to the real-time target tracking as well as
the dynamic multileaf collimator tracking.

Though the method is presented for the registration between fluoroscopic
images and a 3D CT image set, the principle can also be applied to 4D com-
puted tomography (4DCT) images. 4DCT technology has been introduced and
becomes commercially available for clinical applications [17,18]. 4DCT images
are usually reconstructed through time-resolved 3D CT data acquisition and
contain spatiotemporal patient anatomic information. With the 4DCT technol-
ogy, it is possible to obtain more information on organ and tumor motions at
the simulation and planning stage. Theoretically, a dynamic treatment plan can
be designed based on the 4DCT images, but the dynamically designed treat-
ment requires higher degree of motion verification at the treatment stage. With
the registration between the fluoroscopic images and 4DCT images, the derived

Table 1. Summary on 30 clinical datasets (MD, RMSE: mean distance and root mean
square error of the corresponding points between two models; Overlap(L/R): overlap
ratios between two registered left (or, right) lung areas)

Dataset MD RMSE Overlap(L) Overlap(R)
Best 5.618 6.665 0.930 0.980

Worst 9.515 10.163 0.819 0.821
Average 6.036 6.979 0.880 0.901



758 S. Chang et al.

temporal and spatial information can be used not only for the determination of
the gating parameters but also for the verification of motion pattern to ensure
a safe dynamic treatment delivery of the highest possible quality.
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