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Abstract. This paper focuses on the estimation of statistical atlases of
3D images by means of diffeomorphic transformations. Within a Log-
Euclidean framework, the exponential and logarithm maps of diffeomor-
phisms need to be computed. In this framework, the Inverse Scaling and
Squaring (ISS) method has been recently extended for the computation
of the logarithm map, which is one of the most time demanding stages. In
this work we propose to apply the Baker-Campbell-Hausdorff (BCH) for-
mula instead. In a 3D simulation study, BCH formula and ISS method
obtained similar accuracy but BCH formula was more than 100 times
faster. This approach allowed us to estimate a 3D statistical brain atlas
in a reasonable time, including the average and the modes of variation.
Details for the computation of the modes of variation in the Sobolev
tangent space of diffeomorphisms are also provided.

1 Introduction

The construction of brain atlases is central to the understanding of the anatom-
ical variability. Currently there is a great interest in developing 3D atlases of the
human brain. Most research in the framework of Computational Anatomy has
been directed towards the development of 3D brain atlases using image mapping
algorithms [1,2]. In this paradigm the atlas works as a deformable template and
the nonlinear transformations encode the variability of the population.

As the anatomical variability is very large the non-rigid mappings between any
two subjects must have a large number of degrees of freedom. Diffeomorphisms
have been recently proposed to characterise such transformations. While there
is no obvious reason to support the use of diffeomorphisms for inter-subject
registration, the invertibility property is crucial for statistical analysis.

One problem that persists is that most current atlases have been based on
arbitrarily chosen individuals. This introduces a bias into the analysis when
comparing individual brains to the atlas and does not provide a meaningful
baseline with which to measure individual anatomical variation.

Most recent work [3,4] of statistical atlas building avoids the bias introduced
by template selection. These methods compute diffeomorphisms by solving a
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minimization of a functional energy over the set of non-stationary smooth vec-
tor fields. For stationary vector fields, a Log-Euclidean framework was recently
proposed [5] to extend the computation of statistics from finite [6,7] to infinite
dimensional manifolds.

In this work we tackle two issues that arise when trying to estimate statistical
atlases (mean and modes of variation) of 3D brain anatomy. The first issue con-
cerns about the logarithm map required to compute the mean diffeomorphism.
Recently, the Inverse Scaling and Squaring (ISS) method has been proposed
to estimate the logarithm map [5]. An alternative approach is proposed in this
work that drastically reduces the computational time. The second issue concerns
about the selection of the distance on the manifold of diffeomorphisms and its
implication on the estimation of the mean and the modes of variation.

The article proceeds as follows. A review of the properties of the group of
diffeomorphisms is given in Section 2. The methods for the computation of the
logarithm map are described in Section 3. The details of the statistical analysis
are given in Section 4. The results are given in Section 5. Finally, some concluding
remarks are provided in Section 6.

2 The Group of Diffeomorphisms in R
n

A diffeomorphism is an invertible function that maps a subset of points in R
n

to another, such that both the function and its inverse are smooth. The com-
position operator provides a structure of group to the set of diffeomorphisms.
A diffeomorphism can be obtained as the solution of the transport equation
φ̇(t) = v(t, φ(t)) with initial condition φ(0) = e, where v : [0, 1] → V is a flow of
smooth vector fields in a Hilbert space (V, 〈·, ·〉V ) [8,9], and e is the identity. The
inner product in V is usually defined as 〈v, w〉V = 〈Lv, Lw〉L2 where L is a linear
invertible differential operator that guarantees the smoothness of v and there-
fore the smoothness and invertibility of φ(t). The metric obtained from this inner
product endows the tangent space V with a topological structure of a Sobolev
space and the group of diffeomorphisms with a Riemannian manifold structure.
In Computational Anatomy L is usually chosen as L = γ + αΔ, where Δ is the
Laplacian operator, because it is a simple way to guarantee the invertibility of
ϕ [8].

In a recent work [5] a subgroup of diffeomorphisms was obtained by con-
straining v to be a stationary vector field ϕ̇(t) = v(ϕ(t)). On one hand, these
diffeomorphisms have fewer degrees of freedom than the general case, but they
showed to be versatile enough to describe the anatomical variability within a
dataset of human brains from normal subjects [5]. On the other hand, diffeo-
morphisms parameterized by stationary vector fields present some advantages:
the exponential and logarithm maps can be more easily computed1.

Although Lie groups are finite dimensional by definition, diffeomorphisms can
be proven to fulfil the basic properties of Lie groups, except for being infinite
1 To our knowledge there has not been proposed any formula to compute the logarithm

map of diffeomorphisms from non-stationary vector fields.
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dimensional. As in the case of finite dimensional Lie groups, the logarithm map
is required in order to compute statistics of a sample of diffeomorphisms. Re-
cently the ISS method for matrices was applied to compute the logarithm map for
diffeomorphisms parameterized by stationary vector fields [5]. The Baker-
Campbell-Hausdorff (BCH) formula can be applied to compute the logarithm of
a composition of exponentials in finite dimension Lie groups as exp−1

G (expG(x)
expG(y)) is analytic. Many infinite dimensional Lie groups share this property,
they are the so-called BCH-Lie groups [10]. To our knowledge, it has not been
theoretically shown whether the diffeomorphisms group is a BCH-Lie group or
not. Similarly, the applicability of the ISS method has not been theoretically
justified, neither. In this work, we assumed that both approaches may be used
for our application, at least formally. A simulation study with controlled ground
truth was designed for performance comparison.

3 Logarithm of Diffeomorphisms

3.1 Inverse Scaling and Squaring Method (ISS)

A popular method for computing the logarithm of matrices is the ISS method.
In [5] this method was applied to diffeomorphisms making use of log(ϕ) =
2N log(ϕ2−N

). First the squared root of ϕ is computed N times recursively.
Then, as the result is close to the identity, the logarithm can be approximated
by log(ϕ2−N

) ≈ ϕ2−N − I.
Although the approximation looks very simple, it involves the computation

of N ≈ 10 squared roots. In order to compute squared roots, it was proposed to
perform a gradient descent on the functional

ESQRT (T ) =
1
2

∫
‖T ◦ T − ϕ‖2 (x)dx, (1)

that demands a large computation time2.

3.2 Baker-Campbell-Hausdorff (BCH) Formula

In a Lie group, the BCH formula gives a solution of the expression u=log(exp(v)◦
exp(w)) as a series in terms of the Lie bracket [·, ·]3:

u = v + w + 1/2 [v, w] + 1/12 [v, [v, w]] + 1/12 [[v, w] , w] +
+1/48 [[v, [v, w]] , w] + 1/48 [v, [[v, w] , w]] + O((‖v‖ + ‖w‖)5) (2)

2 Even though the original gradient proposed in [5] in order to minimize Equation (1)
was ∇ESQRT (T ) = (DT t) ◦ T.(T ◦ T − ϕ) + ‖det(D(T −1))‖(T − ϕ ◦ T −1), which
involves the need to compute iteratively the inverse of T , we found that it is much
more accurate and faster to use ∇ESQRT (T ) = (DT t) ◦ T.(T ◦ T − ϕ) instead.

3 A Lie bracket [·, ·] is a bilinear operation defined in the tangent space, such that
[x, y] = −[y, x] (and therefore [x, x] = 0), and fulfills the Jacob identity, i.e. [x, [y, z]]+
[y, [z, x]] + [z, [x, y]] = 0.
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In the group of diffeomorphisms the Lie bracket is defined as the Lie derivative
[v, w] = vw − wv, where vw is the derivative of w in the direction of v, i.e.
vw = ∂w

∂v =
∑3

j=1 vj ∂w
∂xj , where vj are the components of vector field v and xj

are the Cartesian coordinates. Thus

[v, w] =
∑

j

vj
∂w

∂xj
− wj

∂v

∂xj
(3)

Although the BCH formula does not provide a method for the computation of
the logarithm map in a general case, in many practical applications the argument
of the logarithm can be written as a composition of two exponentials of known
vector fields. In practice the use of Equation (2) instead of the ISS method results
in a tremendous reduction of computational complexity. Note that this formula
could be straightforwardly applied to non-stationary vector fields.

4 Statistics on 3D Diffeomorphisms

4.1 Average Computation Using BCH

Several distances can be defined on a Riemannian manifold. For example,
d(ϕ1, ϕ2) = ‖ log(ϕ1) − log(ϕ2)‖, which is inversion-invariant, was used in [5]
for diffeomorphisms. This distance has the drawback that it is not invariant un-
der the composition of diffeomorphisms, i.e. it is not translation invariant. The
Riemannian or intrinsic distance is defined as the length of the geodesic connect-
ing ϕ1 and ϕ2, and it is given by D(ϕ1, ϕ2) = ‖ log(ϕ2 ◦ ϕ−1

1 )‖V . This distance
is inversion- and translation-invariant. The drawback now is that an iterative
procedure is required to compute the mean of N instances:

ϕ̄(k+1) = exp

(
1
N

∑
i

log
(
ϕi ◦ (ϕ̄(k))−1

))
◦ ϕ̄(k), (4)

which involves the computation of the logarithm map. Equation (4) is the gen-
eralization to infinite dimension of the algorithm given in [7] to obtain the Rie-
mannian center of mass.

We propose to rewrite Equation (4) in terms of the tangent space representa-
tions:

exp(v̄(k+1)) = exp

(
1
N

∑
i

log
(
exp (vi) ◦ exp

(
−v̄(k)

)))
◦ exp

(
v̄(k)

)
(5)

The BCH formula (2) can be used to compute log
(
exp (vi) ◦ exp

(
−v̄(k)

))
as well

as v̄(k+1) in Equation (5) as follows:

v̄(k+1) = r(k) + v̄(k) +
1
2
[r(k), v̄(k)] + · · · (6)

r(k) =
1
N

∑
i

(
vi − v̄(k) − 1

2
[vi, v̄

(k)] + · · ·
)

(7)
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where r(k) corresponds to 1
N

∑
i log

(
exp (vi) ◦ exp

(
−v̄(k)

))
. With this approach

neither exponentials nor logarithms need to be computed.

4.2 Principal Geodesic Analysis

Principal Geodesic Analysis is the generalization to non-linear spaces [6] of Prin-
cipal Component Analysis defined on Euclidean vector spaces. In a Lie group, it
consists on finding a set of ordered geodesics that pass through the Riemannian
center of mass, orthogonal to each other and with maximum projected variance.
Note that some computational schemes to compute PCA, such as SVD, are only
valid when the norm is Euclidean. As vectors Lvi belong to a Hilbert space with
Euclidean norm SVD can be computed on them.

Let be X = [vec(Lv1), vec(Lv2), . . . , vec(LvN )] the matrix associated to the
N residuals and WSUT the corresponding SVD decomposition. Let wj be the
j-th column of W and wj the vector field such that vec(wj) = wj . As L is a
linear and invertible operator vi =

∑
j(L

−1wj)sjui,j . The vector fields L−1wj

form an orthonormal basis, with respect to ‖.‖V norm, and are the principal
components. The standard deviation of each mode is sj/

√
N . The j-th principal

geodesic is ρj(θ) = exp(θ(L−1wj)), θ ∈ R.

5 Results

5.1 Logarithm of Diffeomorphisms

In the first experiment, we generated two 3D random diffeomorphisms ϕ1 =
exp(v1) and ϕ2 = exp(v2), sampled on a 32 × 32 × 32 regular grid. Then we
measured the accuracy of the estimation of v3 = log(ϕ3), where ϕ3 = ϕ1◦ϕ2. Two
random fields v1 and v2 were generated from zero-mean unit variance Gaussian
random displacements on a 8× 8× 8 regular grid interpolated on the finner grid
with cubic splines. Finally v1 and v2 were scaled in order to get a wide range of
diffeomorphism energy.

Both methods, ISS and BCH formula, were used to estimate v3. Several orders
of accuracy (0,1, and 2) were used for the BCH formula. Left hand side of Fig. 1
shows root mean squared (RMS) difference between ϕ3 and exp(v3). The ISS
method provided valid results only for energies lower than 0.08, which actually
is a deformation energy larger than what one expect in registration between real
brain images. The difference among ISS method and 1st-2nd-order BCH formula
was small compared to the grid spacing (3× 10−2). However, the computational
time spent by the ISS method was more than 100 times longer than the time
spent by the 1st-order BCH formula.

The implementation of the BCH formula is straightforward while many pa-
rameters must be tuned in the optimization procedure used by the ISS method.
Our implementation of the ISS method used the gradient estimation of Equa-
tion 1 avoiding the estimation of the inverse. While faster convergence and more
accuracy is obtained for small deformations, it broke down at an energy value
of 0.07 .
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Fig. 1. Left: RMS difference between ϕ3 and exp(v3) vs. deformation energy. v3 was
estimated using ISS, 0th, 1st and 2nd Order BCH. Grid spacing is 3× 10−2. Right: 2D
projection of a slice of ϕ3 at energy 0.07.

5.2 Statistical Brain Atlas

A statistical brain atlas was built from a set of 19 T1-MRI images, acquired
by a General Electric Signa Horizon CV 1.5 Tesla scan. As preprocessing steps,
the images were resampled yielding a spatial resolution of 0.9 × 0.9 × 0.9 mm,
the skull was removed from the images using [11], the intensity images were
normalised using a histogram matching algorithm, and aligned to a common
coordinate system using a similarity transformation (7 dof).

Our scheme for unbiased atlas estimation is based on diffeomorphic registra-
tion with stationary vector fields, and was described in [12]. In this experimental
section we make use of the benefit of the BCH formula.

The average brain atlas is shown in the bottom panels of Fig. 2. For compari-
son the linear average of brain images is also shown. Sharper details of anatomical
structures can be seen in the atlas obtained with diffeomorphic transformations.

The first two modes of variation at ±2 standard deviations are shown in Fig. 3
and 4. The modes of variation provide a nice and hierarchical illustration of the
anatomical variability of the training set.

6 Conclusions

In this work the Baker-Campbell-Hausdorff formula was applied to the estima-
tion of the logarithm map of 3D diffeomorphisms as well as to build a statistical
atlas of brain images. We set up a simulation study for performance comparison
in terms of accuracy and computational complexity of the ISS method and the
BCH formula. Although the estimation error in both methods was similar, the
computational time for BCH was more than 100 times shorter than for ISS. This
reduction allowed us to estimate the mean and modes of variation from 19 3D
brain images.
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Fig. 2. Top: Linear average atlas. Bottom: Diffeomorphic atlas.

Fig. 3. First mode of variation at ±2 standard deviation
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Fig. 4. Second mode of variation at ±2 standard deviation
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