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Abstract. The goal of this work is the automatic inference of frequent
patterns of the cortical sulci, namely patterns that can be observed only
for a subset of the population. The sulci are detected and identified
using brainVISA open software. Then, each sulcus is represented by a
set of shape descriptors called the 3D moment invariants. Unsupervised
agglomerative clustering is performed to define the patterns. A ratio be-
tween compactness and contrast among clusters is used to select the
best patterns. A pattern is considered significant when this ratio is sta-
tistically better than the ratios obtained for clouds of points following a
Gaussian distribution. The patterns inferred for the left cingulate sulcus
are consistent with the patterns described in the atlas of Ono.

1 Introduction

Human brain cortex folds to increase its surface area during development. It is
intriguing to look at these folds. They are very complicated and variable, yet
there is a certain consistency across brains [1]. Do they contain some information
on the functional organization of the human brain? From the folds alone can we
observe a pattern characteristic of a certain neurological disease? Thanks to
recent advances in softwares dedicated to automatic recognition of cortical sulci
[2,3,5,4], this kind of issues can now be tackled using large brain databases [6].

Each brain looks different and none of them looks exactly like the ones in
the text books. Current studies of this variability focus on simple morphometric
features like the length or the depth of the standard sulci or gyri. Unfortunately,
the standard naming system cannot always account for the folding pattern vari-
ability. Hence some of the standard sulci can be difficult to define or to measure.
This weakness of the nomenclature imposes difficulties on both morphometric
studies and the pattern recognition softwares dedicated to automatic recognition
of the sulci.

The most detailed description of the sulcus variability has been proposed in
the atlas of Ono [7]. This atlas is not based on one single individual but on
twenty different brains. For each sulcus, the authors propose a list of possible
patterns and their frequencies. These patterns are defined for instance from the
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variability of the sulcus interruptions. In a way, the goal of the method proposed
in this paper is to automate the work performed by Ono. We want to discover
folding patterns that can be observed only for a subset of the population. For
this purpose, once a sulcus has been defined in a population of brains, a non su-
pervised clustering method provides subsets of brains with a characteristic trait.
Each of these subsets is supposed to represent one of the patterns of interest.

In the following, we use two datasets of brains provided by the designers of
brainVISA, an open software suite including a package dedicated to the study
of cortical folds (http://brainvisa.info). The folds have been detected first using
BrainVISA, then the sulci have been labeled either manually or automatically.
The first dataset is made up of 36 brains, where each sulcus has been reliably la-
beled manually by a neuroanatomist. This dataset is used to train BrainVISA’s
sulcus recognition system. We also use another set of 150 brains, with the sulci
automatically labeled. This database was provided by the International Con-
sortium for Brain Mapping (ICBM) and acquired in the Montreal Neurological
Institute of McGill University. The automatic recognition of the folds is less
reliable but still gives reasonably good results [5].

The clustering of the sulci is based on 3D shape descriptors called moment
invariants [6]. The first part of the paper describes several studies proving that
these descriptors are well adapted to our purpose. The second part of the pa-
per proposes a sketch of the agglomerative algorithm used to select interesting
brain clusters [8]. Finally some results are shown for the cingulate sulcus, which
provided the strongest patterns according to our criterion.

2 Shape Space and 3D Moment Invariants

The 3D moment invariants have been proposed as an interesting set of descrip-
tors for the study of the shape of cortical sulci because they can be computed
for any topology [6]. Hence they allow the management of the various sulcus
interruptions. The construction of these descriptors is filtering out the influence
of localization, orientation and scale from the 3D coordinate moments in order
to obtain pure shape descriptors. While their theoretical derivation is complex,
they can be computed in a simple and robust way from a black and white image
defining an object. In the following, we use only the 12 invariants derived from
the coordinate moments up to the power three. These 12 invariants denoted by
I1, I2, ..., I12 are calculated from the software brainVISA and used as input to
our clustering program.

Some investigations are carried out to verify that the set of moment invariants
is a reasonably good shape representation to study the fold patterns. In order
to confirm that similar shapes lead to similar representations, we verified first
that a small shape variation leads to a small variation of the invariants. This is
mandatory for our clustering purpose. Our experiments consist in creating series
of shapes sampling a continuous shape transformation. An example of the result-
ing behaviour of the invariants is shown in Fig. 1.left. It is impossible to claim
from these simple investigations that the invariants vary smoothly whatever the



Automatic Inference of Sulcus Patterns 517

OBJECT

 I
1
 +

 I
1
0
 +

 I
1
2
 +

 I
2
 +

 I
3
 +

 I
4
 +

 I
6

−1

0

1

2

0 5 10 15 20 25 30

I6

I10

I4

I12

I2

I1

I3

Object 0 Object 10 Object 20 Object 29

COMP_1

 C
O

M
P

_2

−2

−1

0

1

2

−15 −10 −5 0 5

Fig. 1. Left: Variations of 7 moment invariants following continuous changes of a cylin-
der shape. Right: Two first axes of a PCA performed with 3 different sulci and 36
brains. Some of the sample points have been replaced by a snapshot of the correspond-
ing sulcus in order to visualize the underlying shape. One can see gradual changes of
the shapes, which shows that the invariant-based representation varies smoothly in the
shape space.

underlying shape, and we will see further that we discovered some exceptions.
Nevertheless, the behavior of these invariants seems to be continuous in general,
except for two of them.

Studying the variability of the invariants across brains, we noticed that I6 and
I10 were presenting bimodal distributions for some sulci. One mode was made
up of positive values and the other one of negative values. There is no apparent
correlation between the shape and the sign of I6 and I10. Furthermore, we
managed to create slowly changing series of simulated shapes giving sign changes
in I6 and I10. Such a series is illustrated in Fig. 2.left. This series evolves from
a strong S cylinder towards a flat S by shortening both arms simultaneously.
Notice that while most of the invariants behave smoothly all over the evolution,
I6 and I10 fluctuate unexpectedly. They change sign three times very rapidly. To
investigate this behavior further, we designed a new series using the finest-grain
changes we could afford with our voxel-based representation (see Fig. 2.right).
We discovered that adding only one single voxel could trigger the sign change.
We do not know yet what kind of property would emerge if the shape space was
sampled further with smaller voxels. The behaviour of the invariant could be
continuous but very chaotic. Therefore, for further studies, we have chosen to
discard I6 and I10 from our invariant-based representations.

It should be noted that our observation of the sign change of these two in-
variants has never been reported elsewhere. 3D moment invariants, indeed, have
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Fig. 2. Left: Variations of 7 moment invariants following continuous changes of a S-
shaped cylinder. Note that I6 and I10 change signs abruptly several times. Right: A
zoom on one of the sign change. Each step corresponds to the removal of one single
voxel from the lower arm of the object.

mainly been considered as curiosities, because of the complexity of their deriva-
tion. Therefore, they were almost never used for actual applications. The invari-
ants are made up of a sum of several hundreds of homogeneous polynomials of
the central moments. This complexity is bound to hide some singularities. In
fact we observed some sign change for a few other invariants, but for less than
one percent of our total dataset. Therefore we decided to keep the ten remaining
invariants as the basis of the representation used in this paper.

A second investigation aims at verifying that the information embedded in the
invariants can distinguish the kind of patterns that characterize the cortical folds.
For this purpose, we merge the datasets of several sulci, and we plot the resulting
dataset using the two first axes of a principal component analysis. In most cases,
the plot is made up of several clouds of points corresponding to the different sulci.
An example is shown in Fig. 1.right. These clouds overlap more or less according
to the shape of the sulci. The fact that each sulcus leads to a consistent cloud
means that the invariant-based representations can be used to cluster groups of
folds with similar shapes. To conclude, our different investigations have shown
that the set of ten moment invariants can be considered as a good representation
of the 3D shapes of the folds.

3 Clustering Sulci into Patterns

The cortical folding process can be considered as a chaotic phenomenon, in the
sense that a slight difference among the factors that influence this process can
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lead to a large difference in the folding patterns. The folding patterns are the
result of the competition between a large number of forces influencing brain
geometry. Some of these forces are for instance the tensions induced by the long
fiber bundles trying to pull two different parts of the cortex as close as possible
[9]. In our opinion, the huge variability observed at the level of the folding
patterns results from the large number of attractors embedded in the dynamics
of this folding process. Modeling this dynamics globally is at the present time
largely beyond reach. In this paper, however, we focus only on local aspects:
we try to infer automatically, sulcus by sulcus, some of the alternative patterns
resulting from this multiplicity of attractors. The goal is not yet to perform an
exhaustive enumeration of all the possible patterns but to detect a few very
contrasted patterns. If such patterns can be defined, we hypothesize that their
relative frequencies could be different in some patient populations compared to
control subjects. Developmental pathologies, indeed, could modify the folding
dynamics and favor some specific folding patterns for some of the sulci. Hence,
the folding patterns could provide some signatures useful for diagnosis.

With this goal in mind, we designed a method looking for such patterns on
a sulcus by sulcus basis. For each sulcus, the method is looking for reasonably
large groups of brains that exhibit a similarity in shape. Each such group is rep-
resenting a pattern. At least two patterns are required and the detected patterns
have to be as different as possible. It is important to emphasize that the goal
here is not to assign each sulcus to a pattern. Reproducible patterns may only
characterize a subset of the population.

We have chosen to address our goal using unsupervised agglomerative cluster-
ing methods. Such hierarchical approaches to clustering, indeed, fit completely
our need for finding compact clusters and discarding numerous outliers. Among
the variants of agglomerative clustering algorithms, we have chosen the average-
linkage method for its robustness and space conserving properties [8]. In the
following, the algorithm is applied to the n different instances of a given sulcus.
Each instance comes from a different brain and is represented by a vector of
ten moment invariants. The clustering algorithm is building a tree by successive
agglomeration of the closest clusters of sulci. At the initial stage, each sulcus is
a singleton cluster. The two closest sulci are joined first, leaving us with n − 1
clusters, one of which being the pair of joined sulci. In all succeeding steps, the
two closest clusters are merged.

The complete agglomerative hierarchical tree has n levels. The lowest tree level
corresponds to n singletons and the highest level to one single cluster gathering
the whole set. To decide which level gives the best partition, we introduce a ratio
defined as the average pairwise distance between cluster centers divided by the
average cluster compactness. The compactness of a cluster is simply the average
pairwise distance between the sulci. Note that the ratios are computed using
only a subset of the sulci making up the kernel of each cluster. This kernel is
defined as the t tightest sulci of the cluster, namely the t sulci that agglomerated
the earliest in the hierarchy. Only these sulci will be considered as belonging to
the putative patterns. Furthermore, only the clusters including at least t sulci
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will generate a putative pattern. A good set of patterns should provide a very
high ratio of distance versus compactness.

The optimal kernel size t is defined as the size providing the most reliable
set of patterns. The null hypothesis is that the sulcus set follows a Gaussian
distribution. If the null hypothesis is true, our sulcus set should embed only one
single pattern. Therefore, whatever the choice for t, the ratio should be low. In
order to evaluate the distribution of the ratio for each value of t, 1000 different
random sets are generated using a multivariate Gaussian distribution based on
the covariance matrix of the sulcus of interest. The hierarchical tree is built up
for each of these random sets and the best ratio is obtained for each value of t.
From these ratio distributions, we can test the null hypothesis: for a given t, we
compute the p-value as the percentage of random sets providing a better ratio
than the best ratio obtained with the actual data. Then, the best t is simply
the one providing the best p-value. Finally, this p-value is used to evaluate the
quality of the set of patterns associated with this best t.

4 Results

The method has been applied to the ten largest sulci of the left and right hemi-
spheres using the database of 36 manually labelled brains. Among the 20 sulci,
3 provided a set of patterns endowed with a p-value lower than 0.01 (the left
cingulate sulcus, the left inferior precentral sulcus, and the superior frontal sul-
cus). The sulcus providing the best p-value (0.001 for t = 4) is the left cingulate
sulcus (see Fig. 3). For this sulcus, a first pattern is made up of sulci presenting
a large anterior interruption, a second pattern is made up of sulci presenting a
smaller and more posterior interruption, and a third pattern is made up of sulci
appearing continuous. It should be noted that these patterns can not be inferred
just from the number of connected components. Indeed, the sulci of the third
pattern are only apparently continuous: some of them are made up of several
connected components overlapping each other when the sulcus is viewed from
above. In fact, the moment invariants are blind to connectivity. Therefore, these
three patterns would be interpreted more reliably in terms of shape than in terms
of interruption. For instance, the first pattern corresponds to sulci much deeper
in the posterior part than in the middle, while the last pattern corresponds to
sulci with more homogeneous depth.

It is not an accident that the cingulate sulcus provides the best p-value. This
sulcus is one of the sulci with very varied shapes and many interruptions. Accord-
ing to Ono’s atlas, around 60% of the instances of this sulcus have no interrup-
tion, around 24% have two segments with a posterior interruption or an anterior
interruption, and around 16% are divided into three segments [7]. It should be
noted that the small size of the manually labelled database used here (36 brains)
prevents the detection of rare patterns. Therefore, much larger databases will be
required to achieve a more exhaustive pattern enumeration.

To illustrate possible applications of our pattern inference process, we use the
three patterns obtained with this database to mine the left cingulate sulci of
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Fig. 3. The three patterns detected for the left cingulate sulcus. Row 1,3,5:
the four tightest instances of each pattern in manually labelled database. Row 2,4,6: the
four closest instances to the above pattern center in automatically labelled database.

another database, here the ICBM database. We selected in this database the
closest samples to each of the three patterns. We observed that the shapes of
these samples are consistent with the corresponding patterns (see Fig. 3). Note
that when the anterior part of the sulcus is made up of two parallel folds (fourth
row of Fig. 3), it is equivalent to a deeper sulcus for the moment invariants.
To project the patterns from the first database onto the second database, we
classify the sulci according to the closest distance to the pattern centers. This
classification attributes 14 brains to the first pattern, 97 to the second and 35 to
the third. It was found that the percentage of females increases gradually from
36% in the first class, to 41% in the second and to 49% in the third (global
percentage of female is 42%).

5 Discussion

Compared with the traditional methods to characterize the folds by certain
parameters such as the length, the number and position of interruptions, etc,
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the moment invariants that are used in this study provide a more comprehensive
description of the 3D shapes. The drawback of using the moment invariants is
that the clusters found do not necessarily provide an easy physical explanation
that can be readily observed. This presents a difficulty in the description of the
patterns found. Furthermore, even when we found an explanation of the possible
groupings, that explanation is not necessarily the reason that groups the folds by
the moment invariants. However, the final goal is not necessarily to characterize
the patterns physically using words or a set of measurements such as the length
or number of interruptions. These patterns, indeed, can be directly described by
their moment invariants. A future direction of research could consists in mixing
different kinds of features, for instance simple morphometric parameters like
length and depth with 3D moment invariants. This approach, however, requires
large databases to overcome problems induced by the curse of dimensionality.

In this paper, the search for patterns has been applied to folds already la-
beled, either manually or automatically. A more ambitious project, that will be
addressed in the future, will be the design of methods looking for patterns with-
out the knowledge of the traditional nomenclature. Such an approach applied to
large databases could reveal patterns beyond the reach of the first anatomists.

One possible use of the patterns we found is to compare the frequency of oc-
currence among normal and patient datasets. Similar comparisons can be carried
out on other datasets for pure neuroscience questions: musicians versus athletes,
kids with an early development on language versus an early development on
motor-skills, etc. The hypothesis is that a certain developmental event or a cer-
tain strong training would leave an observable imprint on the folding patterns.
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