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Abstract. We propose a new segmentation algorithm based on competing fuzzy 
connectedness theory, which is then used for visualizing coronary arteries in 3D 
CT angiography (CTA) images. The major difference compared to other fuzzy 
connectedness algorithms is that an additional data structure, the connectedness 
tree, is constructed at the same time as the seeds propagate. In preliminary 
evaluations, accurate result have been achieved with very limited user 
interaction. In addition to improving computational speed and segmentation 
results, the fuzzy connectedness tree algorithm also includes automated 
extraction of the vessel centerlines, which is a promising approach for creating 
curved plane reformat (CPR) images along arteries’ long axes. 
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1   Introduction 

In the past few years, noninvasive imaging of the coronary arteries has attracted 
growing interest. Thanks to the development of image acquisition techniques such as 
64-slice scanners for CT angiography (CTA), the spatial and temporal resolution and 
image quality of the volumetric images have improved remarkably. Compared to the 
rapid development of the image capture technique, however, the visualization tech-
niques used have not evolved correspondingly. Radiologists and cardiologists still 
largely depend on viewing original slices, oblique multiplanar reformatting (MPR) 
and curved plane reformatting (CPR) images, sometimes complemented by a slab 
maximum intensity projection (MIP) image. Panoramic MIP or volume rendering 
(VRT) images are less helpful for coronary artery disease diagnosis, due to the 
concealing effect of contrast medium in adjacent heart chambers and great vessels.  

A key method to solve this problem is to segment the coronary arteries in the 
volumetric datasets. However, due to the close anatomic relationship between 
coronary arteries and heart chambers and resolution limitations in the images, many 
automated algorithms, which have been successfully utilized in peripheral vessel 
extraction, such as pattern reorganization techniques and model-based approaches [1], 
may fail with coronary artery datasets. Although several algorithms specifically 
designed for the coronaries have been published [2-4], they tend to have limited 
success with complicated cases, and important details of coronary artery system may 
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be lost during the segmentation. Interactive approaches may solve part of this problem 
but can be very time-consuming. The concept of fuzzy connectedness (greyscale 
connectedness), which has been proposed to separate arteries and veins in Magnetic 
resonance angiography (MRA) [5-7], shows great ability to separate two contrast-
filled structures from each other. A previous feasibility study showed that this 
approach can be applied to 3D CTA data to separate the coronary arteries from other 
contrast-filled structures and thus permit coronary artery visualization in an angio-
graphic mode similar to invasive X-ray angiography [8]. 

In this paper we propose a new algorithm based on competing fuzzy connectedness 
theory, which only requires limited interaction by the user. In addition to overcoming 
several problems of former algorithms [5-7], the new algorithm includes automated 
extraction of the vessel centerline, which is useful, e.g., for creating CPR images. 

2   Method 

In this section, we will first give a brief review of fuzzy connectedness theory, and 
then present the competing fuzzy connectedness tree algorithm. Finally, we will intro-
duce how it can be extended into a skeletonization algorithm. 

2.1   Fuzzy Connectedness and Relative Fuzzy Connectedness Theory 

Just as the coronary arteries can be bluntly separated from the heart during surgery 
due to the varying connectivity of the wall structures, they can also be separated in 3D 
CTA images depending on the connectivity of the contrast agent in the vessel lumen. 

In a 3D image, a path p joining two voxels, u and v, is a sequence of distinct points 
u = w0, w1, … wn-1, wn = v, such that for each i, 0≤i≤n, wi+1 is a 26-neighbor of wi. Let 
g(wi) be the strength that the voxel wi can contribute to the path. The strength of 
connectedness of p is determined by the weakest point along the path: 
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The connectedness between u and v is the strength of the strongest of all paths 
joining u and v: 
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Although a more sophisticated strategy, such as the Fuzzy Affinity function 
developed by Udupa and collaborators [5] can be used to calculate the contribution 
function g(wi) of each voxel, we have chosen, for convenience and simplicity, to use 
the gray-scale function f(wi) directly, i.e. g(wi) = f(wi), since our research does not 
focus on the evaluation of the “cost” function. 

An example image (Fig. 1A) contains two seeds, s1 and s2 within objects O1 and 
O2, respectively. With the approach above, the degree of connectedness of a pixel u 
to each seed can be calculated. Then it can be easily decided to which object u should 
belong by comparing C(u, s1) and C(u, s2). Applying this strategy to all pixels in the 
image, a natural segmentation by “relative fuzzy connectedness” is achieved [5]. 
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Fig. 1. A: pu-s1 and pu-s2 are the strongest paths from u to s1 and s2. B: segmentation result using 
relative fuzzy connectedness theory. C: competing fuzzy connectedness trees for pu-s1 and pu-s2.  

2.2   Shared Path Effect of Relative Fuzzy Connectedness 

Although relative fuzzy connectedness can separate most parts of objects correctly, in 
some cases it will give wrong results. In Fig. 1A, we give an example of such a case. 
Suppose that pu-s1 and pu-s2 represent the strongest paths from u to s1 and s2 
respectively. Both paths share a segment pu-j, and a point w on pu-j is the weakest point 
for both paths. Based on the theory above, all points between w and u will have the 
same strength of connectedness g(w) to both seeds, and thus the membership of those 
points will depend on the strategy of the implementation of the algorithm. If O1 is the 
object of interest and O2 is the background, all points between u and w may belong to 
background (O2), even if the points on pj-w belong to O1, as the segmentation result in 
Fig. 1B shows. With the “SeparaSeed” approach [6], which implemented fuzzy 
connectedness with a chamfer algorithm [10], the membership of points in pu-w will 
depend on which seed will change the “color label” of those points first; i.e., the 
geometric distance between voxel and seeds will affect the result.  

2.3   Competing Fuzzy Connectedness Algorithm Based on Connectedness Tree 

To avoid the shared path effect, Udupa and collaborators proposed an Iterative 
Relative Fuzzy Connectedness algorithm which iteratively refines the competition 
rules for different objects depending upon the results of the previous iteration [5]. An 
obvious drawback of that algorithm is the computation time demands caused by the 
iteration. Here we propose a new algorithm which can avoid the “shared path effect” 
without adding extra iteration time. The basic idea is to calculate a connectedness tree 
at the same time as the seeds propagate. As a result, each voxel will point to the 
neighbor from which it is connected with its “strongest” seed. As shown in Fig. 1C, 
all points between w and u will be connected with O1 by pointing to the points on pj-

w; thus the potential mistake caused by the shared path will be avoided. 
Our competing fuzzy connectedness tree (CFCT) algorithm is described in the 

following pseudo-code.  

Input: A 3D Image I= (C, f), and n seed regions Sj in C 

Output: a fuzzy connectedness tree pointer and a 3D connectivity map O=(C, g) 

Auxiliary Data Structures: a 3D array marker represents if current voxel should be 
checked, N(v) denotes the set of neighbor points of v. N+(v) denotes the upper 13 
neighbors of v, N-(v) denotes the lower 13 neighbors of v (details in [6]) 

1  for v∈C, set g(v)=0, pointer(v)=nil, marker(v)=false  

2  for v∈Sj(1•j•n) set g(v)=f(v) and for w∈N(v) set 
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marker(w)=true 
3  for v∈Sj(1•j•n) and Sj is stopping seeds, set g(v)=0 
4  repeat 
5     for v∈Sj(1•j•n) from (0,0,0) to (xmax, ymax, zmax)  
6        if marker(v)=true 
7   find wmax in N

+(v) such that g(wmax)= max(g(w))  
8   if g(wmax)>g(v)  
9      g(v) = min(f(v); g(wmax))  
10    pointer(v)= wmax 
11     for all w∈N(v) set marker(w)=true 
12   else 
13     set marker(v)=false 
14    for v∈Sj(1•j•n) from(xmax, ymax, zmax) to (0,0,0)  
15       if marker(v)=true 
16  find wmax in N

-(v) such that g(wmax)= max(g(w)) 
17  if g(wmax)>g(v) 
18     g(v) = min(f(v); g(wmax)) 
19    pointer(v)= wmax 
20    for all w∈N(v) set marker(w)=true 
21   else     
22     set marker(v)=false 
23 until no changes in O 

The extra data structure marker limits the comparison within the 26-neighborhood 
to those voxels whose neighbors have a new optimized connectivity value. This 
strategy reduces the iteration time, as the number of changed points decreases roughly 
exponentially with each iteration in the main loop (rows 3-22). 

By introducing the array marker, the CFCT algorithm has evolved into a variation 
of Dijkstra’s shortest-path algorithm [9]. Here, marker is essentially equivalent to the 
queue Q, and setting marker (v) = true or false, equivalent to a push or pop operation 
on the queue Q. Using an array instead of a queue, multiple duplicated v existing in Q 
at the same time are avoided. Memory being allocated beforehand may prevent 
memory exhaustion during iteration. In practice, the marker array can be merged with 
the pointer array by using 1 bit of 1 byte, saving even more memory.  

A bidirectional scan based on the location of voxels is carried out to decide which 
voxel should “pop out”. This strategy, which was proposed to compute the distance 
transform [10], helps to accelerate the convergence. In addition, memory is read 
sequentially, which is faster than accessing memory randomly. 

After the construction of the fuzzy connectedness tree, every voxel can get a 
property color by recursively asking its predecessor until a seed is reached. This color 
map can be used as a segmentation mask, defining a zone containing the anatomically 
interesting vessels, as well as part of the background 

A new kind of seed, the stopping seed, has been introduced to separate the coron-
ary artery from the root of the aorta. A stopping seed is defined as a seed with 0 as 
initial value (line 3). As it is a seed, its g will keep the initial value, so it will never 
propagate but terminate the propagation of other trees. To cut away the artery totally 
from the aorta, a stopping plane should be used instead of isolated points. 
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2.4   Centerline Extraction Algorithm Based on Fuzzy Connectedness Tree 

Our centerline extraction algorithm is based on the following observation: if only one 
seed is included in a coronary artery segment, the CFCT algorithm can always, from 
any voxel u in this segment, find a path connecting s1 and u by searching upwards in 
the fuzzy connectedness tree (Fig. 2). As every voxel points to its strongest neighbor, 
this path always snaps onto the ridge of the fuzzy connectivity map. As long as the 
highest intensity is found in the center of the vessel, tracing from the distal end of a 
coronary artery to the root seed will actually follow the centerline of the vessel. 

 

Fig. 2. A: Fuzzy connectedness path is distorted at a flat roof after a stenosis. B: Local 
optimization of the fuzzy connectedness tree, the grey-level represents the intensity in the input 
image, the number in the grid represents the distance to the root seed. 

According to fuzzy connectedness theory, the peak intensities will be erased in 
certain areas of the fuzzy connectivity map. In cases such as Fig. 1, after a weak point 
w, a flat roof will appear (cf. Fig. 2A), because for any voxel u after w, Cu-s1 will be 
equal to g(w) as long as g(u)≥g(w). In this area, the fuzzy connectedness path will 
prefer to follow one edge of the flat region as decided by the scan order. 

To avoid distortion of the centerline in such cases, a refining step is added. First, a 
distance map distance(v) is created to indicate the number of points on the path pv-s 
connecting the voxel v and the root seed s. Then local optimization of the fuzzy 
connectedness tree is carried out by searching from the distal end, based on the 
intensity scene of input image and steered by the distance map. Suppose voxel u is the 
point we have just found. To decide the next node, rather than using the pointer(u) 
directly, we search all neighbors having a distance less than distance(u) (in Fig. 2B 
equal to 104), and choose the one with the maximum intensity value in the input 
image. To reduce noise in the input image, a Gaussian smoothing filter can be used. 

In cases with more than one seed in the artery, the connectedness tree is rebuilt 
after deleting the extra seeds, and all voxels not belonging to a vessel segment are 
marked as stopping seeds. In the ensuing propagation, only the root seed will have the 
chance to grow in the coronary artery. 

To find the distal endpoint of an artery, a possible strategy is to use the distance 
map to locate the farthest point, as in [11]. However, the result will be highly depen-
dent on the accuracy of the geometric profile of the segmented artery. When using the 
strategy above, the distal end will sometimes be located in adjacent tissues with lower 
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intensity. To avoid such mistakes, we use a weight function, when creating the 
distance map, to assign the step length of a voxel instead of using integer 1. The 
weight function is defined as: weight(v) = g(v)/H, where H is the highest intensity 
value of the entire input image. 

After the longest centerline has been extracted, the centerline of any branch on the 
main trunk can be found by setting the former centerline as seed and recomputing the 
weighted distance map. The iteration can be terminated by defining the number of 
branches desired or by specifying a minimum length of branches (pruning). 

3   Results 

In 33 clinical coronary CTA datasets (240-450 slices of 0.75mm, 512×512 pixels), we 
tested both the CFCT algorithm and the older “SeparaSeed” algorithm implemented 
as plug-ins to Osirix on a Mac G5 (2.5GHz CPU and 2GB RAM). Fig. 3 compares the 
computation times for each iteration in the main loop for a dataset of 512×512×240 
voxels. With the new algorithm, basic seed planting required 2–3 min for an 
experienced radiologist, the first round segmentation 3–5 min, and interactive seed 
modification 0–8 min. Using only basic seed planting (with one root seed placed in 
each coronary artery) resulted in all visible branches being completely segmented in 
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Fig. 3. Comparison of iteration time between “SeparaSeed” and CFCT algorithm 

 

Fig. 4. A: Segmentation result with SeparaSeed. B: Result of CFCT algorithm using the same 
seeds. C, D: VRT and black-and white inverse MIP images mimicking coronary angiography. 
E: Different vessels shown with different opacity and different color. F: A complete skeleton of 
coronary artery system. G, H: Centerline extracted with CFCT algorithm and CPR along it. 
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18 cases, compared to 12 cases when using the same seeds with the “SeparaSeed” 
algorithm (p<0.05; McNemar’s Test) (Fig. 4). In total, visually correct centerlines 
were obtained automatically in 95.3% (262/275) of the visible branches. 

4   Discussion 

As expected, the CFCT algorithm can run 7–8 times faster than the SeparaSeed 
algorithm. It can also yield more accurate segmentation results with limited user inter-
action by avoiding the “shared path effect”, thus saving interaction time for planting 
more seeds. With a VOI definition tool, the whole procedure, including seed planting, 
segmentation and centerline extraction for the main coronary branches, can be 
completed within 10–15 min, which may be clinically acceptable. It should be noted 
that our goal is not an accurate estimation of arterial dimensions; for visualization, 
suppression of adjacent myocardium is achieved by the rendering algorithm. 

The major difference between the CFCT algorithm and Udupa’s Relative Fuzzy 
Connectedness or Iterative Relative Fuzzy Connectedness algorithm is that only one 
affinity scene is calculated during the whole procedure. By calculating a fuzzy 
connectedness tree, multiple iterative propagations are avoided. Another speed advan-
tage of the connectedness tree is that previous iteration results can be reused after user 
modification to recalculate connectedness trees. When new seeds have been planted 
in the input seed regions, a new round propagation can start running with previous 
results directly from line 2 of the CFCT algorithm. New trees will grow from those 
seeds by “snatching voxels” from other trees. If seeds are deleted, the trees arising 
from those will be removed from the pointer, and the connectivity value g of relevant 
voxels will be reset to 0. After a few iterations, the empty region will be connected to 
branches extending from nearby trees, resulting in fast convergence. With further 
improvements, the user may be able to modify seeds at almost interactive speeds. 

Compared to centerline extraction algorithms based on Minimum Cost Path 
Search, an advantage of the fuzzy connectedness tree is that the cost function will not 
be affected by the Euclidean distance of the “Minimum Cost Path”. Since the 
coronary arteries surround the heart chambers, which may have equal or higher 
intensity than coronary arteries, the minimum cost path may prefer a short-cut across 
the narrow barrier (valley) between the heart chamber and arteries, if the cost function 
is based on intensity. With the fuzzy connectedness tree, this will never happen as 
long as the strength of the connectedness path between the root seed and distal end is 
somewhat higher than the lowest intensity of the barrier. Possibly, more accurate 
centerlines could be obtained by using Hessian-based filters instead of Gaussian 
filters to correct the distorted centerlines, but in coronary CTA, according to our 
experience, the latter is sufficient and probably more time-effective.  

In summary, this study has shown that the CFCT algorithm is a promising 
segmentation and skeletonization tool for coronary CTA, requiring only limited 
interaction by the user. A clinical evaluation of this algorithm will be reported in a 
separate paper. Other future work includes applying the method to MRA datasets and 
extending 3D segmentation to 4D datasets for handling dynamic multiple phase CTA. 
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