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Abstract. There exists a large body of literature on shape matching
and registration in medical image analysis. However, most of the previ-
ous work is focused on matching particular sets of features—point-sets,
lines, curves and surfaces. In this work, we forsake specific geometric
shape representations and instead seek probabilistic representations—
specifically Gaussian mixture models—of shapes. We evaluate a closed-
form distance between two probabilistic shape representations for the
general case where the mixture models differ in variance and the num-
ber of components. We then cast non-rigid registration as a deformable
density matching problem. In our approach, we take one mixture den-
sity onto another by deforming the component centroids via a thin-plate
spline (TPS) and also minimizing the distance with respect to the vari-
ance parameters. We validate our approach on synthetic and 3D arterial
tree data and evaluate it on 3D hippocampal shapes.

1 Introduction

The need for shape matching occurs in diverse sub-domains of medical image
analysis. Whenever a biomedical image is segmented or parsed into a set of
shapes, the need for shape analysis and comparison usually arises [1]. In brain
mapping for example [2], we frequently require the comparison of cortical and
subcortical structures such as the thalamus, putamen etc. extracted from subject
neuroanatomical MRI images. Image databases often use shape features and
here the need is to index and query the shape database. In MR angiography,
the complex network of blood vessels in the brain can be represented as trees or
graphs and need to be compared across subjects. And in cardiac applications, if
heart chamber information is available and extracted as a set of shapes, the wall
tracking problem requires us to solve for shape correspondences in the cardiac
cycle [3].

The need for shape matching is followed by a need for good shape repre-
sentations. When shape features are extracted from medical images, they can
be represented using an entire gamut of representations—points, line segments,
curves, surfaces, trees, graphs and hybrid representations. What should be noted
here is that an inferential stage is present in any shape representation. That is,
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the raw features extracted from the underlying images are then converted into
one of the above mentioned shape representations. Consequently, once a shape
representation is adopted, we are immediately faced with the problem of robust-
ness when we seek to compare two shapes. Some of the raw features present
in (or extracted from) one image may not be present in the other. A second
problem we face is that there may be no or poor correspondences between the
features. It is for this reason that most methods seek to fit curves or surfaces
to the data. Once such representations are fitted, there is no need to seek for
correspondences at the point feature level. However, methods that rely on fitting
curves and surfaces to the data face a more difficult robustness problem. How
do you match one shape consisting of 10 curves to another shape consisting of
15 curves?

For these reasons, we elect to go the probabilistic route. Beginning with raw
point features, we fit probability density functions to the feature vectors [4].
Each feature set is converted into a probability density function. The advantage
here is that we can now compare probability density functions rather than the
original images or other feature representations extracted from the images. The
robustness problem is alleviated since the density functions are compared at all
locations in R

3 and we are not faced with the problem of matching incommen-
surate entities such as one curve in one shape to two curves in the other. There
is no correspondence problem since we are not conducting comparisons at the
point feature level. Shape comparison by matching the density functions between
shapes also has the advantage that the point feature counts (in the two feature
sets) can differ considerably.

We summarize our new method as follows: i) We fit Gaussian mixture models
to point features extracted from the two images. A standard maximum likelihood
expectation-maximization (EM) approach is used for this step. ii) We derive a
closed-form distance between the two Gaussian mixture models by comparing
the probability density functions at each point in R

3. iii) Since the problem
of minimizing this distance w.r.t. non-rigid deformations is ill-posed, we add a
thin-plate spline regularization term to the cost. iv) We use a standard conjugate-
gradient (CG) optimization strategy to minimize the above objective function.
It should be stressed that we minimize the objective function w.r.t. both the
deformation parameters and the variance parameters of the Gaussian mixture
model. The result is a deformable density matching (DDM) method which seeks
to register two shapes by moving the density function parameters of one shape
until the first density closely approximates the other.

2 Previous Work

There exists an enormous literature on feature matching. We restrict our focus
to methods that seek to fit and/or match probabilistic representations of shape
features. The joint clustering and matching (JCM) approach [5] begins as we do
with fitting Gaussian mixture models to feature point-sets. However, instead of
minimizing a distance between the two density functions, they seek to augment
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the mixture model objective by linking a diffeomorphism between the centroid
parameters of the mixture model. Consequently, they are forced to keep two sets
of cluster centers in correspondence which we do not require. The methods in
[6] and in [7] seek to convert a point matching problem into an image matching
problem which is somewhat similar to density matching. However, the meth-
ods make no attempt to fit a probabilistic shape representation via maximum
likelihood (or equivalent) to the features. Essentially, both methods convert the
sparse feature set into dense images and then employ an image matching strategy.
Furthermore, the method in [6] uses a deformation field parametrization which
has to be applied at each point in R

3 and this is computationally expensive
compared to our approach. The method in [7] does not use a deformation field
parametrization but the main differences are that they restrict their approach
to point matching and make no attempt to fit a density function to the data via
maximum likelihood or minimize their distance w.r.t. the centroid and variance
parameters. Instead, they apply a thin-plate spline (TPS) on the original, noisy
data. Perhaps the method that is closest in spirit to our approach is the recent
work in [4]. They minimize the Jensen-Shannon divergence between the feature
point-sets w.r.t. a non-rigid deformation. The Jensen-Shannon divergence cannot
be computed in closed form for a mixture model and is estimated from the data
using a law of large numbers approach. In sharp contrast, our distance between
the two densities is in closed form and we apply the deformation parametrization
to the centroidal parameters of the Gaussian mixture model.

3 Theory

3.1 Maximum-Likelihood Model for Shape Representation

As mentioned in the Introduction, the first step in our overall method is proba-
bilistic shape representation based on the raw shape features.

The notation used in this paper is as follows. The two sets of input shape
features are denoted by {X

(1)
i ∈ R

d, i ∈ {1, . . . , N1}} and {X
(2)
j ∈ R

d, j ∈
{1, . . . , N2}}. The maximum likelihood approach assumes that the shape fea-
tures {X

(1)
i } and {X

(2)
j } are independent and identically distributed (i.i.d.).

The features of shape X(1) are represented by a Gaussian mixture model [8]

p(x|θ(1)) =
K1∑

a=1

Ω(1)
a

1

(2π)
d
2 |Σa| 1

2
exp{−1

2
(x − μa)T Σ−1

a (x − μa)} (1)

(where x ∈ R
3) and that of shape X(2) is represented by a second Gaussian

mixture model with parameter set θ(2) = {Ω
(2)
α , να, Ξα}. Constraints on Ω(·)

are {Ω
(·)
a > 0,

∑K1
a=1 Ω

(·)
a = 1} where the superscript index can be either 1

or 2 corresponding to the two shapes respectively. Both probability density
functions define measures on location with x ∈ R

3. We see that the set of
model parameters for shape X(1) is θ(1) = {Ω

(1)
a , μa, Σa, a ∈ {1, . . . , K1}} and
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θ(2) = {Ω
(2)
α , να, Ξα, α ∈ {1, . . . , K2}} for shape X(2). Since {X

(1)
i } and {X

(2)
j }

are assumed to be i.i.d., the likelihood of the set of features of X(1) is

p({X
(1)
i }|θ(1)) =

N1∏

i=1

K1∑

a=1

Ω(1)
a

1

(2π)
d
2 |Σa| 1

2
exp{−1

2
(X(1)

i − μa)T Σ−1
a (X(1)

i − μa)}

(2)
where {X

(1)
i } is the set of instances of X(1). For both shapes, we fit the model

parameters by minimizing the negative log-likelihood objective function of the
above mixture model w.r.t. the model parameters. In the experiments, we spe-
cialize to the case where the occupancy probabilities are uniform (Ω(1)

a = 1
K1

)
and where we have one isotropic covariance matrix (Σ2 = σ2I3), for the entire
shape. This is done for reasons of computational efficiency. The objective func-
tion for this reduced version is minimized over its parameter set ({μa}, σ) to
obtain the model representation of the feature set.

We use the well known expectation-maximization (EM) algorithm [8] for the
above minimization. While fitting mixture models is computationally difficult
in the general case, in our special case of uniform occupancy probabilities and
isotropic covariances it is not as difficult. Also, this computation is done off-
line for all the shapes once we fix the number of centroids (K1 and K2). Model
selection for mixture models needs to be performed to fix the number of centroids.

3.2 A Closed-Form Distance Measure Between Two Gaussian
Mixtures

We now derive the distance measure between the two probabilistic shape rep-
resentations. Since this distance measure can be derived in closed form for the
most general Gaussian mixture model case, we present this below. (Other dis-
tance measures like Kullback-Leibler cannot be derived in closed form for the
Gaussian mixture model.) We hasten to add that the general mixture model can
be quite unwieldy in practice and that specializations of the sort considered in
the paper—like isotropic covariances and uniform occupancy probabilities—are
very useful. Below we derive the distance measure as the squared pointwise dif-
ference between the two Gaussian mixture models with parameter sets (θ(1) and
θ(2)) integrated over R

d (where d = 3). [We have dropped terms that do not
depend on θ(2) since it is only θ(2) that is deformed during the optimization.]

D[p(x|θ(1)), p(x|θ(2))] =
∫

Rd

[p(x|θ(1)) − p(x|θ(2))]2dx ∝

−
K1∑

a=1

K2∑

α=1

2 exp{− 1
2(σ2+ξ2) ||μa − να||2}

K1K2(σ2 + ξ2)
3
2

+
K2∑

α=1

K2∑

β=1

exp{− 1
4ξ2 ||να − νβ ||2}
2

3
2 K2

2ξ3
. (3)

This is the final expression for the distance function used in this paper. The
number of centroids and the variances of the two models can be different.
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3.3 Deformable Density Matching

We now turn to the description of the deformation model. We assume that the
parameters θ(1) of shape 1 are held fixed and that the parameters θ(2) = ({να}, ξ)
(comprising the centroids and variance) of shape 2 are deformed so that p(x|θ(2))
approaches p(x|θ(1)).

We use the familiar thin-plate spline (TPS) deformation model [9] for the
centroids. That is, the action of the deformation takes the centroids {να} to
new locations {ν̃α

def= Aνa +
∑K2

β=1 K(vα, νβ)Q2γβ} where A is the unknown
(4 × 3) affine matrix, the TPS kernel K(να, νβ) = −||να − νβ || in 3D, Q2 is the
K2 × (K2 − 4) part of the QR decomposition of ν (in homogeneous coordinates)
and γ is the unknown (K2 − 4) × 3 matrix of deformation parameters. To avoid
degenerate solutions which include all permutations of ν when K1 = K2, we add
a deformation regularization term λ trace(γT QT

2 KQ2γ) to the objective function
in (3) with λ being a regularization parameter. In addition a regularization term
λA trace[(A − I)T (A − I)] is added to prevent reflections and unphysical affine
transformations. We use a standard nonlinear conjugate-gradient (CG) algorithm
(with line search) on the affine and deformation parameters (A, γ) and a 1-D
search on the variance ξ2. The variance parameter is updated separately from
the remaining parameters and is not allowed to abruptly change.

4 Results

4.1 Synthetic Example: Sphere to Ellipsoid Density Matching

To showcase our approach of density matching, we begin with a synthetic ex-
ample. We generate a sphere and an ellipsoid with 600 points each. We run
a mixture model EM algorithm on the ellipsoid and sphere representing them
with 120 and 60 centroids respectively. We then warp the ellipsoid using a Gaus-
sian radial basis function (GRBF) using the 120 centroids as the centers for the
GRBF. Subsequently, we run the deformable density matching (DDM) on the
two synthetic datasets. The goal is to deform the sphere so that it matches the
warped ellipsoid. Here the fixed variance σ2 was set to the mean of the cluster
variances resulting from the EM algorithm (σ = 0.04) and a 1-D search was
performed over the parameter ξ, obtaining ξ = 0.06 as the optimum. The initial
overlay of the sphere and the warped ellipsoid, the overlay of the centroids after
matching and the final overlay of the warped sphere (using the recovered defor-
mation parameters) are shown in Figure 1. Our results clearly demonstrate that
the lack of correspondences at the point level as seen in the final shape overlay
in Figure 1 is no deterrent to recovering the shape of the deformed ellipsoid.

4.2 Validation of Recovered Deformation: Bending and Stretching

Our approach to validation is based on comparing the recovered deformation vec-
tors against the true (synthetically generated) deformation vectors generated at
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Fig. 1. Left: Initial overlay of sphere and warped ellipsoid, Middle: Cluster centers of
the two shapes after density matching and Right: Overlay after registration
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Fig. 2. Left: Vessel tree structure; Right: Validation over 30 noise trials, 10 warps

a set of vessel tree structure feature points [Figure 2]. Since we are not perform-
ing point matching, we cannot validate our results by using prior correspondence
information. We begin with a point-set X consisting of about 200 points. A de-
formation field is applied to the point-set X to obtain a deformed point-set Y .
We remove 50% of the points in Y to get a reduced set and this is done so that
the two mixture densities have a large discrepancy in the number of centroids.
Then we match X to the reduced Y using deformable density matching using
60 and 30 centroids for the two sets respectively. The recovered TPS parameters
are used to compute the estimated displacement vector at each point in X . We
compare the estimated displacement to the true displacement by separately plot-
ting the stretching and bending components of the mean-squared displacement
error: 1

N2

∑
i ||ûi −ui||2 = 1

N2

∑
(||ûi||− ||ui||)2 + 1

N2

∑
i 2||ûi||||ui||(1− ûT

i ui

||ûi||||ui||)
where ûi is the estimated deformation, ui is the true deformation and we have
separated the total error into stretching (first term) and bending (second term)
components. We executed 30 noise trials at different TPS warp factors w ranging
from 0.1 to 1 in steps of 0.1. The TPS warp factor specifies that the TPS coeffi-
cients be uniformly generated from the interval [−w, w]. Higher the warp factor,
greater the degree of deformation. The medians of the two error measures are
shown in Figure 2, illustrating the difference between bending and stretching.
The bending errors are more sensitive and increase more rapidly with w.
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(a) Initial overlay of LATL
hippocampal datasets

(b) Final overlay of LATL
hippocampal clusters

(c) Final overlay of LATL
hippocampal datasets

Fig. 3.

(a) Initial overlay of RATL
hippocampal datasets

(b) Final overlay of RATL
hippocampal clusters

(c) Final overlay of RATL
hippocampal datasets

Fig. 4.

4.3 Evaluation on 3D Hippocampal Datasets

The general problem of building a hippocampal atlas is a clinical application
requiring multiple registrations of shapes from different patients. Here we use
deformable density matching to register 3D hippocampal point-set pairs from a
database of 60 cases. We showcase results on two pairs of patients scheduled for
left and right anterior temporal lobectomy (LATL and RATL) respectively. The
point-sets consisting of a few hundred points each are clustered into about 80
centroids, and we set λ = 0.01. After matching, we overlay the two point-sets by
warping one set onto the other using the recovered TPS parameters. The initial
overlay of the data, the final overlay of the centroids and the final overlay of the
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warped datasets are shown in Figures 3 and 4 for LATL and RATL respectively.
In both cases, the final overlay shows that we have achieved good registration.
We are currently looking at entropic registration measures for more objective
evaluation of all pairwise registrations across our database.

5 Discussion

In summary: i) We used a maximum likelihood EM approach to fit centroids
and variances to raw feature data. ii) We determined a closed-form distance
between two Gaussian mixture models. iii) We recovered a TPS deformation of
the centroids of one shape while also allowing the shape variance parameter to
change in order to best match the two shape representations. iv) Finally, we
applied the recovered TPS deformation to the original data and showed that
shape matching was possible even though there were few correspondences at the
point feature level.

Our goal was to obtain a robust shape distance with very few free parameters
and with the deformation parameters only affecting the model parameters and
not specified over R

3. The TPS model only warps the centroids and the variance
parameters are allowed to move until the best fit is achieved. There are four free
parameters in our model: K1, K2 and the regularization parameters λ, λA. Since
the process of fitting probabilistic representations is offline, we can take recourse
to model selection in order to fit K1 and K2. The regularization parameters
can be learned via a Bayesian MAP procedure. There also do not appear to be
any technical barriers to generalizing the TPS deformation parametrization to a
diffeomorphism and optimizing over the occupancy probabilities as well.
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