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Abstract. In medical image analysis there is frequently a need to invert
dense displacement fields which map one image space to another. In this
paper we describe inversion techniques and determine their accuracy in
the context of 18 inter-subject brain image registrations. Scattered data
interpolation (SDI) is used to initialise locally and globally consistent
iterative techniques. The inverse-consistency error, EIC is computed over
the whole image and over 10 specific brain regions. SDI produced good
results with mean (max) EIC ∼ 0.02mm (2.0mm). Both iterative method
produced mean errors of ∼ 0.005mm but the globally consistent method
resulted in a smaller maximum error (1.9mm compared with 1.4mm).
The largest errors were in the cerebral cortex with large outlier errors
in the ventricles. Simple iterative techniques are, on this evidence, able
to produce reasonable estimates of inverse displacement fields provided
there is good initialisation.

1 Introduction

In most pair-wise non-rigid registration applications, either by design or because
of the available registration software, there is an implied direction i.e. one im-
age is designated the target (reference) and the other is the source (floating
image). The transformation, T , is defined at points t in the target space and
specifies the point in source space s = t + T (t) corresponding to each target
voxel. The transformation may be parameterised at a coarser level but voxel-
wise displacements can always be obtained by interpolation. Often the choice
of target and source is application-specific e.g. to propagate a mesh from one
image to another requires the mesh to be defined in the target space but to
propagate a set of dense labels requires the labels to be defined in the source
space. Similarly, to create a group average template requires the template space
to be the target, but to subsequently transform labels from the template space
to individual scans requires the template to be the source. The inverse trans-
formation (from source to target) cannot be trivially deduced from the forward
transformation. A registration algorithm can be run in reverse (i.e. with target
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and source exchanged) but the reverse transformation is not generally consistent
with the forward transformation.

Some registration algorithms are designed to be inverse-consistent [1][2] and
compute consistent forward and backward transformations. The related sym-
metric approaches [3] are conceptually similar but improve robustness without
computing explicit inverses. In theory, inverse-consistent algorithms should re-
move the need to worry about the reverse transformation. In practice, these
algorithms are not all that mature or widely available and the effect of enforcing
strict inverse-consistency on the registration optimisation can be computation-
ally expensive and has not been studied in any detail. In addition, it is clear
that for many applications strict inverse-consistency is not appropriate. For in-
stance, registering scans of a single patient anatomy subject to some mechanical
deformation is a case where inverse-consistency is appropriate. However register-
ing inter-subject brain scans is a case where strict inverse consistency has little
biological foundation [4].

Some study of the computation of inverse transformations has been made
in the registration literature, most notably in [1] and [5]. In [6] methods for
making a discrete transformation topology-preserving, and therefore invertible,
are described which could be embedded in a registration algorithm. However,
to date there has not been a systematic evaluation of numerical methods for
inversion of non-rigid registration transformations. Therefore, in this paper we
evaluate different methods for computing the inverse of a dense, non-parametric,
displacement field. We make no assumptions beyond assuming that the Jacobian
determinant remains positive and comment on exceptions later. We focus on
two classes of techniques (i) scattered data interpolation (SDI) and (ii) inverse-
consistent iterative approaches. We evaluate the acuracy of these techniques
globally and over specific neuroanatomical regions for transformations obtained
from inter-subject MR brain registration.

2 Method

2.1 Inversion Problem

The inversion problem is sketched in figure 1. We assume the forward trans-
formation is known at the target voxel centres, t, where solid arrows point to
corresponding points in the source space. To invert this transformation the mag-
nitude and direction of the dashed arrows must be deduced at voxel-centres, s,
in the source space.

Inversion Using Direct Interpolation. The simplest interpolated inversion
is a nearest-neighbour (NN) approach where the inverse transformation is defined
as the negative nearest forward transformation vector. We adopted an extended
NN method (NNe) as the simplest initialiser for the iterative methods described
below. Where the nearest forward transformed point did not lie within the cur-
rent source voxel because of local divergence, an average of forward transformed
points in surrounding voxels was used. This was computed hierachically so that
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Fig. 1. Left: The forward transformation is defined in the target space at t. Right: The
inverse transformation must be deduced in the source space at s. Filled dots indicate
where the inverse transformation is defined by the forward transformation. The dashed
circle indicates a possible search space for a scattered data interpolation approach.

averages with the highest number of nearest-neighbours were computed before
averages with a smaller number of neighbours.

Inversion can also be cast as a simple scattered data interpolation (SDI) prob-
lem. In figure 1, the inverse transformation is known by definition at the points
in the source image pointed to by the forward transformation and can be de-
duced at the voxel centres s by interpolation [7]. A distance weighting function,
w () sets the relative contribution of each scattered point to the interpolated
inverse displacement; we chose an inverse-square (Shepard) weighting function
(equation 1) where di is the distance from the interpolated point to the ith data
point.

I (s) =
∑

i w (di) ∗ I (ti + T i)∑
i w (di)

(1)

As only local points contribute significantly, we use a modified weighting func-

tion incorporating a search radius, R, given by w (di; R) =
(

1
di

− 1
R

)2
when

di ≤ R and w (di; R) = 0 otherwise. R is initially chosen to be twice the maxi-
mum voxel dimension but if no points are found it is arbitrarily increased until
at least 4 scattered points are included.

Inversion Using Iterative Techniques. We compared two iterative tech-
niques, one inverting point-by-point iteratively in target space (the local method)
and one inverting the entire field iteratively in source space (the global method).

The local method is implemented as described in [1] and searches for the posi-
tion in target-space, t where the trilinearly interpolated forward transformation,
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FOREACH VOXEL, t
i = 0
DO

RL = t + T (t) − s
ti+1 = ti − RL/2
i = i + 1

UNTIL (RL ≤ tol) OR (i > 200)
I (t) = −T

�
ti−1�

NEXT VOXEL

Fig. 2. Pseudo-code for local iterative inversion

t+T (t) points to the current source voxel centre, s. A residual error RL is used
to update the current estimate of t at each voxel. Figure 2 shows pseudo-code
for the local method.

The global method uses the current estimate of the inverse transformation I
to interpolate (trilinearly) the forward transformation T to each source voxel-
centre, s. Then the residual difference between the estimated inverse and the
interpolated forward transformation is used to update the inverse as before. The
magnitude of the update is capped for stability and each iteration is computed
over the whole field before the next iteration. Figure 3 shows pseudo-code for
the global method.

Both methods have a maximum number of iterations (200) specified and a
stopping criterion based on residual size. The stopping criterion (residual <
0.01mm) for the local method is inherently stricter than for the global method
as it is computed on a point-by-point basis rather than averaged over the volume.
For this reason the global method has an additional stopping criterion based
on the maximum inverse-consistency error being ≤ 0.1mm.

i = 0
DO

max = av = 0
INTERPOLATE T (s) FROM T (t) USING I ()
FOREACH VOXEL, t

RG (s) = I (s) + T (s)
I i+1 (s) = I i (s) − αRG (s)
av = av + |RG|
max = MAX (|RG|, max)
i = i + 1

NEXT VOXEL
av = av/nvox

UNTIL ((av ≤ tol) AND (max ≤ tolmax)) OR (i > 200)

Fig. 3. Pseudo-code for global iterative inversion
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2.2 Image Registration Experiment

Image-data and structural labels from 18 subjects were supplied by the Centre
for Morphometric Analysis, Boston. The scans were MRI T1-weighted coronal
volume acquisitions of dimensions 256x256x128 and voxel sizes 1.0x1.0x1.5mm.
All subjects were of normal appearance (i.e. had no obvious pathology or re-
section). A standard (i.e. not inverse-consistent) non-rigid (fluid) registration
algorithm [8] was used with two multi-resolution steps with a maximum of 200
iterations per step, driven by intensity cross-correlation. The 18 images were
grouped randomly into 9 pairs and registered in both directions giving 18 reg-
istrations, i.e 9 forward and 9 reverse, so that the inherent inverse-consistency
error of the registration algorithm could also be computed. Then the inverse of
each registration transformation was computed using (a) SDI (b) NNe+local
(c) SDI+local (d) NNe+global (e) SDI+global.

EIC = |t′ − t| where t′ = t + T (t) + I (t + T (t)) (2)

We evaluated the different inversion methods by computing the inverse-
consistency error (equation 2) at each point and compared this with the inherent
registration inverse-consistency in corresponding forward and reverse registra-
tions. We also computed the inversion error over ten specific brain structures
(amygdala, caudate, cerebellum, cortex, hippocampus, lateral ventricles, pal-
lidum, putamen, thalamus, white-matter). To assess how the error scaled with
transformation magnitude a single transformation from the test set was (a) com-
posed with global rotational components between 2.5◦ and 25.0◦ (b) globally
scaled by factors in the range 1.25 to 5.00, and inverted as above.

3 Results

Figure 4 shows the mean and maximum global inverse-consistency error for the
five inversion techniques. SDI produces sub-voxel inverse-consistency on average

Fig. 4. The mean (left) and maximum (right) inverse-consistency error over 18 inter-
subject brain registrations. S=Scattered Data Interpolation, N = Nearest-Neighbour-
extended, L = Local Iterative and G = Global Iterative.
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and using SDI to initialise either iterative method reduces the mean error further
by ∼ 75%. In this experiment the SDI+local and SDI+global iterative methods
are virtually indistinguishable as regards mean error but there is some regional
variation apparent from maps of EIC (figure 5). The SDI+global method had
a lower maximum error averaged over all the registrations but the SDI+local
method had a lower worst-case maximum error. By comparison, the inverse-
consistency error determined directly from the forward and reverse non-rigid
registration was much larger (0.7mm compared with 0.02mm for the SDI case).

Fig. 5. Example of an inverse consistency error map for a single subject. Left Panel =
subject anatomy. The left-hand-side of the middle and right panels shows the error dis-
tribution for S+L and S+G inversion methods respectively ranging from 0.0mm=black
≥ 0.6mm=white. For comparison the error distribution for fwd-rev registration is
shown on the right-hand-side scaled from 0.0mm = black ≥ 6.0mm = white.

Figure 6 shows that the mean inversion error for all brain structures was
� 0.1mm and that with the exception of the cerebral cortex (where the global
error had signifcantly smaller mean error), the performance of local and global
techniques is virtually identical. These errors should be considered in the con-
text of the mean (maximum) displacements computed over all registrations for
all structures of 4.2 (20.7)mm. We expect most inversion problems in the cortex
region as inter-subject variation results in particularly tortuous non-rigid trans-
formations. Figure 6 also shows the maximum inversion error over all registra-
tions associated with each label. Overall the global inverses have lower maxima
than the local with the most notable exception being in the hippocampus. Most
structures have maximum errors ≤ 1mm, but the cortex, lateral ventricles and
white matter structures have maximum errors ∼ 3mm. The ventricle results are
dominated by two outlier cases with mean errors 10 times the rest of the cohort.
Excluding these outliers gives a mean (maximum) error of 0.03 (0.08)mm for
ventricles for both local and global methods. More detailed analysis is required
to understand these cases which do not exhibit significantly larger deformation
magnitudes than the rest of the cohort or have ventricle errors correlated with
errors in the cortex. Figure 7 shows how the inversion error increases with the
maximum rotational or scaled displacement. Note that the rotational displace-
ment, which preserves local volume change, has a shallow linear error relationship



906 W.R. Crum, O. Camara, and D.J. Hawkes

Fig. 6. The mean (left) and maximum (right) inverse-consistency error over 18 inter-
subject brain registrations. am=amygdala, ca=caudate, ce=cerebellum, co=cortex,
hp=hippocampus, lv = lateral ventricles, pa=pallidum, pu=putamen, th=thalamus,
wm=white-matter.

Fig. 7. The scaling of the mean inverse-consistency error with applied (left) rotation
and (right) scaling

but the scaled displacement, which results in negative Jacobian determinants,
has a polynomial error relationship.

4 Discussion

We have evaluated simple techniques for inversion of dense displacement fields
in the context of inter-subject non-rigid registration algorithms and quantified
the inversion error over a range of neuroanatomical structures. Both locally
and globally consistent techniques initialised with a scattered data interpolation
approach proved generally reliable and accurate in this study. We confirmed that
inverting transformations matching convoluted structures such as the cortex
is prone to relatively higher errors. While this is not unexpected it suggests
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that inverse-consistent registration approaches which rely on an explicit inverse
calculation to enforce inverse-consistency will also perform less well in these
regions.

All the original registration transformations were diffeomorphic i.e. the Ja-
cobian determinant |J | > 0 everywhere and the transformation inverse was
therefore well-defined throughout the domain. Many non-rigid algorithms do not
guarantee a positive Jacobian determinant and therefore some transformation
regularisation or transformation model-based constraints may be necessary.

The methods described here are completely generic and make no assumptions
about the classes of permitted displacements. However these methods should be
considered the ”lowest common denominator” of inversion techniques and more
sophisticated approaches will improve robustness. In future work we will analyze
regions of displacement fields with high EIC and investigate the use of regularis-
ing techniques in the spirit of [6] for regions with |J | < 0. These findings will be
used to improve the performance of inverse-consistent registration algorithms.
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