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Abstract. In this paper, we present an unsupervised 2D/3D reconstruc-
tion scheme combining a parameterized multiple-component geometrical
model and a point distribution model, and show its application to auto-
matically reconstruct a surface model of a proximal femur from a limited
number of calibrated fluoroscopic images with no user intervention at all.
The parameterized multiple-component geometrical model is regarded
as a simplified description capturing the geometrical features of a prox-
imal femur. Its parameters are optimally and automatically estimated
from the input images using a particle filter based inference method.
The estimated geometrical parameters are then used to initialize a point
distribution model based 2D/3D reconstruction scheme for an accurate
reconstruction of a surface model of the proximal femur. We designed and
conducted in vitro and in vivo experiments to compare the present un-
supervised reconstruction scheme to a supervised one. An average mean
error of 1.2 mm was found when the supervised reconstruction scheme
was used. It increased to 1.3 mm when the unsupervised one was used.
However, the unsupervised reconstruction scheme has the advantage of
elimination of user intervention, which holds the potential to facilitate
the application of the 2D/3D reconstruction in surgical navigation.

Keywords: proximal femur, fluoroscopy, surface reconstruction, particle
filter, multiple-component geometrical model, point distribution model.

1 Introduction

A patient-specific surface model of a proximal femur plays an important role
in planning and supporting various computer-assisted surgical procedures in-
cluding total hip replacement, hip resurfacing, and proximal femur osteotomy.
Accordingly, various reconstruction methods have been developed.

One of these methods is to extract a three-dimensional (3D) surface model
from volume data pre-operatively acquired from Computed Tomography (CT)
or Magnetic Resonance Imaging (MRI) and then intra-operatively to register
the extracted surface model to the patient anatomy. However, the high logis-
tic effort and cost, the extra radiation involved with the CT imaging, and the
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large quantity of data to be acquired and processed make them less functional.
The alternative is to reconstruct a patient-specific surface model from a limited
number of intra-operatively acquired two-dimensional (2D) fluoroscopic images
using a statistical model.

Several research groups have explored the methods for reconstructing a patient
specific model from a statistical model and a limited number of calibrated X-ray
images [1][2][3][4]. Except the method presented in Yao and Taylor [1], which
depends on a deformable 2D/3D registration between an appearance based sta-
tistical model and a limited number of X-ray images, all other methods have
their reliance on a point distribution model (PDM) in common. The common
disadvantage of all these PDM based reconstruction methods lies in the fact
that they require either knowledge about anatomical landmarks [4], which are
normally obtained by interactive reconstruction from the input images, or an in-
teractive alignment of the model with the input images [2][3]. Such a supervised
initialization is not appreciated in a surgical navigation application, largely due
to the strict sterilization requirement.

To eliminate the user intervention constraint, we propose in this paper an
unsupervised 2D/3D reconstruction scheme combining a parameterized multiple-
component geometrical model and a point distribution model, and show its ap-
plication to automatically reconstruct a surface model of the proximal femur
with no user intervention at all. The parameterized multiple-component geo-
metrical model is regarded as a simplified description capturing the geometrical
features of a proximal femur. The constraints between different components are
described by a causal Bayesian network. A particle filter based inference algo-
rithm [5] is applied to automatically estimate their parameters from the input
X-ray images. The estimated geometrical parameters of the proximal femur are
then used to initialize a point distribution model based 2D/3D reconstruction
scheme for an accurate reconstruction of a surface model of the proximal femur.

This paper is organized as follows. Section 2 briefly recalls the supervised
2D/3D reconstruction scheme. Section 3 describes the approach for unsupervised
initialization. Section 4 reports the experimental results, followed by conclusions
in Section 5.

2 Supervised 2D/3D Reconstruction Scheme

2.1 Image Acquisition

We use calibrated fluoroscopic images. Due to the limited imaging volume of a
fluoroscope, we ask for four images for the proximal femur from different view
direction, of which two images focus on the proximal femoral head and the
other two focus on the femoral shaft. The calibrated fluoroscopic image set is
represented by I. Although all four images are used to estimate the parameters
of the multiple-component geometrical model, only those two images that focus
on the proximal femur are used for surface reconstruction.
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2.2 Statistical Model of the Proximal Femur

The PDM used in this paper was constructed from a training database con-
sisted of proximal femoral surfaces from above the less trochanter. Let xi, i =
0, 1, ..., m−1, be m = 30 members of the aligned training surfaces. Each member
is described by a vectors xi with N = 4098 vertices:

xi = {x0, y0, z0, x1, y1, z1, ..., xN−1, yN−1, zN−1} (1)

The PDM is obtained by applying principal component analysis.

D = 1
(m−1) ·

m−1∑

i=0
(xi − x̄) · (xi − x̄)T

σ0 ≥ σ1 ≥ · · · ≥ σm1−1 > 0; m1 ≤ m − 1
D · pi = σ2

i · pi; i = 0, · · · , m1 − 1

(2)

where x̄ and D are the mean vector and the covariance matrix, respectively.
{σ2

i } are non-zero eigenvalues of the covariance matrix D, and {pi} are the
corresponding eigenvectors. The sorted eigenvalues σ2

i and the corresponding
eigenvectors pi are the principal directions spanning a shape space with x̄ rep-
resenting its origin.

Then, an instance M generated from the statistical model with parameter set
Q = {s, α0, α1, · · · , αm1−1} can be described as:

M : x(Q) = s · (x̄ +
m1−1∑

i=0

(αi · pi)) (3)

where s is the scaling factor; {αi} are the weights calculated by projecting vector
(x/s − x̄) into the shape space. The mean surface model x̄ is shown in Fig. 1,
left.

2.3 2D/3D Reconstruction Scheme

Our 2D-3D reconstruction scheme is a further improvement of the approach
we introduced in [4], which combines statistical instantiation and regularized
shape deformation with an iterative image-to-model correspondence establishing
algorithm. The image-to-model correspondence is established using a non-rigid
2D point matching process, which iteratively uses a symmetric injective nearest-
neighbor mapping operator and 2D thin-plate splines based deformation to find
a fraction of best matched 2D point pairs between features detected from the
fluoroscopic images and those extracted from the 3D model. The image contours
of the proximal femur are extracted from the input images by a graphical model
based Bayesian inference [6] whereas the apparent contours of the 3D model
are extracted using an approach described in [7]. The obtained 2D point pairs
are then used to set up a set of 3D point pairs such that we turn a 2D-3D
reconstruction problem to a 3D-3D one. The 3D/3D reconstruction problem is
then solved optimally in three sequential stages. For details, we refer to our
previous works [4] and [6].
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Fig. 1. The mean surface model of our point distribution model (left) and a schematic
view of landmark reconstruction (right)

2.4 Supervised Initialization

The convergence of the 2D/3D reconstruction scheme introduced in [4] relies
on a proper initialization of scale and pose of the mean surface model of the
PDM. In our previous work [4], three anatomical landmarks, i.e., the center of
the femoral head, a point on the axis of the femoral neck, and the apex of the
greater trochanter were reconstructed interactively from the input fluoroscopic
images, as shown in Fig. 1, right, and were used to compute the initial scale s0
and the initial rigid transformation T0 of the mean surface model of the PDM
in relative to the input images.

3 Approach for Unsupervised Initialization

3.1 Proximal Femur Model

The proximal femur is approximated by a simplified geometrical model consisting
of 3 components: head, neck and shaft, which are described by a sphere, a trunked
cone and a cylinder with parameter set XFemur = {XHead,XNeck,XShaft} re-
spectively as shown in Fig. 2, left. These three components are constrained by
the anatomical structure of the proximal femur. The advantage of using such a
model is apparent. On the one hand, this simplified 3D model has the capability
to catch the global structure of the anatomy from the fluoroscopic images and is
not dependent on the view directions of the input images. On the other hand, us-
ing such a model to estimate the geometrical parameters of the proximal femur is
much less computational expensive than using a point distribution model, largely
due to the simple and parameterized geometrical shape of its components.

The constraints among components are represented by a causal Bayesian net-
work as shown in Fig. 2, right, where all π(·)’s are prior distributions and all p(·)’s
are conditional distributions. The prior distributions are designed according to
the information estimated from the two images that focus on the proximal fe-
mur and the prior information about the geometrical features of each component,
e.g., the centroids of three components are assumed uniformly distributed in the
common view volume of the fluoroscopic images, which can be obtained by calcu-
lating the intersection of their projection frustums; the radii and the lengths (for
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neck and shaft) of different components are assumed to be uniformly distributed
in their associated anatomical ranges. The structural constraints among compo-
nents are set so that the component configuration that fulfills these constraints
will show a higher probability of being assembled to represent a proper proximal
femur. These constraints are regarded as the conditional distributions of those
components when the configuration of their parent components is given. The
reason why the network starts from shaft component is that the shaft compo-
nent is much easier to be detected from the images than other two components,
which will accelerate the convergence of the model fitting algorithm as described
below.

3.2 Geometrical Model Fitting by Particle Filter

Particle filter, also known as the Condensation algorithm [8] is a robust filtering
technique, based on the Bayesian framework. This technique provides a suitable
basic framework for estimating paramerers of a multiple-component geometrical
model from images: particle filter estimates the states by recursively updating
sample approximations of posterior distribution. In this work, we implement a
particle filter based inference algorithm as follows.

1. Initialization: Generate the first generation of particle set with M particles
{P 0

i = X0
Femur,i}i=0,...,M−1 from the proposal distributions

q0(XShaft) = π(XShaft)
q0(XNeck) = π(XNeck)q0(XShaft)p(XNeck|XShaft)
q0(XHead) = π(XHead)q0(XNeck)p(XHead|XNeck)

2. Observation: Given the current generation of particle set, calculate the
weight of each particle as wn

i ∝ Prob(I|Xn
Femur,i), where Prob(I|Xn

Femur,i) is
called observation model and is defined by the product of two items:

p(I|Xn
Femur,i) =

∏

(I∈I)

pE(I|Xn
Femur,i) · pG(I|Xn

Femur,i) (4)

The first item pE(I|Xn
Femur,i) measures discrepancies between extremal con-

tours of the model obtained by simulating X-ray projection to the Ith image
and the edges E(I) extracted from the Ith image by applying a Canny edge
detector. For details about this similarity measure, we refer to chapter 6 of [10].

The second item pG(I|Xn
Femur,i) measures differences between the intensity

distribution of the projected silhouettes of the model and that of the fluoroscopic
image along the profile normal to the projected extremal contours of the model.
For details about this similarity measure, we refer to chapter 7 of [10].

3. Update: Update the proposal distributions as

qn+1(XShaft) = NPDE(wn
i ,Xn

Shaft,i)
qn+1(XNeck) = π(XNeck)qn+1(XShaft)p(XNeck|XShaft)



Unsupervised Reconstruction of a Patient-Specific Surface Model 839

Fig. 2. The parameterized multiple-component geometrical model (left) and a causal
Bayesian network for encoding the conditional distribution among components (right)

qn+1(XHead) = π(XHead)qn+1(XNeck)p(XHead|XNeck)

where NPDE(wn
i ,Xn

Shaft,i) is a nonparametric density estimation [9] . Generate
the next generation of particle set from the updated proposal distributions.

4. Go to 2 until the particle set converges.

3.3 Unsupervised Initialization of the PDM

From the mean surface model x̄ of the PDM, the model vertices can be classified
into three regions, femoral head, neck and shaft. The femoral head center and
radius, axes of femoral neck and shaft can be determined in the mean surface
model coordinate space by a 3D sphere fitting to the femoral head region and
cylinder fittings to the femoral neck and shaft regions. The initial rigid transfor-
mation and scale can then be computed to fit the PDM (the scaled mean surface
model) to the estimated geometrical model of the proximal femur.

4 Experimental Results

We designed and conducted two experiments to validate the present approach.
The first experiment was conducted on 3 clinical dataset. Due to the lack of
ground truth, we used the clinical dataset to verify the robustness of the particle
filter based inference algorithm. We run the algorithm for 10 trials on each
dataset with particle number M = 200. In each trial the proximal femur was
correctly identified in about 4 minutes on a 3.0 GHz Pentium IV computer with
1 GB RAM, when the algorithm was implemented with GCC 4.0 on a Fedora
4.0 Linux system. The statistical results are shown in Table 1. An example of
the unsupervised initialization using the inference results is shown in Fig. 3.

The second experiment was performed on 10 dry cadaveric femurs with dif-
ferent sizes and shapes. The purpose was to evaluate the accuracy of the un-
supervised 2D/3D reconstruction. For each bone, two studies were performed.



840 G. Zheng, X. Dong, and M.A. Gonzalez Ballester

Fig. 3. An example of unsupervised initialization of the PDM. The color lines show
the projected extremal contours of different components.

Table 1. Satistical results of the particel filter based inference algorithm, all results
are relative to the mean values of the 10 trials

Parameter Data Set 1 Data Set 2 Data Set 3

Head Center (mm) 1.4±1.1 0.1±0.1 0.1±0.2

Head Radius (mm) 0.3±0.4 0.6±0.2 1.0±0.8

Neck Length (mm) 1.0±1.4 1.3±1.8 1.2±1.7

Neck Axis (degree) 0.8±0.7 2.3±1.0 1.8±1.1

Shaft Radius(mm) 0.2±0.3 0.1±0.2 0.2±0.2

Neck/Shaft Angle(degree) 0.8±1.0 2.0±2.5 1.8±2.6

Table 2. The reconstruction errors when different initialization methods were used

Bone Index No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

Errors of supervised reconstruction

Median (mm) 1.7 1.3 0.8 0.9 1.3 1.0 0.9 0.8 0.8 1.1

Mean (mm) 1.7 1.4 0.9 1.3 1.4 1.1 1.1 1.0 1.0 1.2

Errors of unsupervised reconstruction

Median (mm) 1.8 1.4 0.9 1.6 1.3 1.2 1.0 1.2 1.5 0.8

Mean (mm) 1.9 1.6 0.9 1.5 1.2 1.2 1.2 1.1 1.5 1.1

In the first study, the 2D/3D reconstruction scheme was initialized using the
interactionvely reconstructed landmarks as described in Section 2, whereas in
the second study, the present unspervised initialization was used to initialize
the 2D/3D reconstruction scheme. It took about 1 minute to interatctively re-
construct the landmarks for a supervised initilization for each case in the first
study. To evaluate the reconstruction accuracy, 200 points were digitized from
each bone surface. The distance between these points to the reconstructed surface
of the associated bone were calculated and used to evaluate the reconstruction
accuracy. The median and mean reconstruction errors for each study when using
different initialization methods were recorded. The results are presented in Table
2. It was found that the unsupervised reconstruction was a little bit less accurate
when compared to the supervised one. An average mean reconstruction error of
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1.3 mm was found for the unsupervised reconstruction. It decreased to 1.2 mm
when the supervised one was used.

5 Conclusions

In this paper, an unsupervised 2D/3D reconstruction scheme combining a param-
eterized multiple-component geometrical model with a point distribution model
was presented. We solved the supervised initialization problem by using a parti-
cle filter based inference algorithm to automatically determine the geometrical
parameters of a proximal femur from the calibrated fluoroscopic images. No user
intervention is required any more. The qualitative and quantitative evaluation
results on 3 clinical dataset and on dataset of 10 dry cadaveric bones indicate
the validity of the present approach. Although the unsupervised reconstruction
is a little bit less accurate and needs longer time than the supervised one, it has
the advantage of elimination of user intervention, which holds the potential to
facilitate the application of the 2D/3D reconstruction in surgical navigation.
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