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Abstract. In the literature there exist many proposed architectures
for sensor fusion applications. This paper briefly reviews some of the
most common approaches, i. e., the JDL fusion architecture, the Wa-
terfall model, the Intelligence cycle, the Boyd loop, the LAAS archi-
tecture, the Omnibus model, Mr. Fusion, the DFuse framework, and
the Time-Triggered Sensor Fusion Model, and categorizes them into ab-
stract models, generic and rigid architectures. While an abstract model
does not guide the designer in the concrete implementation, the generic
architectures provide a generic design but leave open several design deci-
sions regarding operating system, hardware, communication system, or
database system. Rigid architectures specify at least some of these as-
pects and therefore provide existing hardware designs, tools, and source
code at the cost of flexibility.

1 Introduction

Sensor fusion, “the combining of sensory data or data derived from sensory data
such that the resulting information is in some sense better than would be possible
when these sources were used individually” [1], encompasses a wide variety of dif-
ferent application types (e. g., automation, automotive driver assistance systems,
autonomous robots, C3I (command, control, communications, and intelligence)).
An example for sensor fusion applications are current innovations in automotive
electronic driver assistant systems [2].

Due to the fact that sensor fusion models heavily depend on the application,
there exists no generally accepted model of sensor fusion. According to Kam,
Zhu, and Kalata, it is unlikely that one technique or one architecture will provide
a uniformly superior solution [3]. Thus, there exist numerous architectures and
models for sensor fusion in the literature. In order to use sensor fusion for an
application, it is of interest which models and architectures can be used as design
patterns.

It is the objective of this paper to review several sensor fusion models and
architectures that have been used for sensor fusion. The different approaches will
be assessed with respect to their eligibility for real-time applications.

The rest of the paper is structured as follows: The following section briefly
describes nine sensor fusion architectures or architectures that have been used
to implement sensor fusion applications. Section 3 introduces a classification
and discusses the implications of design decisions and design freedom for an
implementation. The paper is concluded in Section 4.
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2 Architectures for Sensor Fusion

2.1 The JDL Fusion Architecture

A frequently referred fusion model originates from the US Joint Directors of Lab-
oratories (JDL). It was proposed in 1985 under the guidance of the Department
of Defense (DoD). The JDL model [4] comprises five levels of data processing and
a database, which are all interconnected by a bus. The five levels are not meant
to be processed in a strict order and can also be executed concurrently. Figure 1
depicts the top level of the JDL data fusion process model. The elements of the
model are described in the following:

Sources: The sources provide information from a variety of data sources, like
sensors, a priori information, databases, human input.

Source preprocessing (Level 0): The task of this element is to reduce the
processing load of the fusion processes by prescreening and allocating data to
appropriate processes. Source preprocessing has later been labelled level 0 [5].

Object refinement (Level 1): This level performs data alignment (transfor-
mation of data to a consistent reference frame and units), association (using
correlation methods), tracking actual and future positions of objects, and
identification using classification methods.

Situation refinement (Level 2): The situation refinement tries to find a con-
textual description of the relationship between objects and observed events.

Threat refinement (Level 3): Based on a priori knowledge and predictions
about the future situation this processing level tries to draw inferences about
vulnerabilities and opportunities for operation.

Process refinement (Level 4): Level 4 is a meta process that monitors sys-
tem performance (e. g., real-time constraints) and reallocates sensor and
sources to achieve particular mission goals.

Database management system: The task of the database management sys-
tem is to monitor, evaluate, add, update, and provide information for the
fusion processes.

Man-machine interaction: This part provides an interface for human input
and communication of fusion results to operators and users.

Fig. 1. JDL fusion model (from [4])



A Review on System Architectures for Sensor Fusion Applications 549

The JDL model has been very popular for fusion systems. Despite its origin in
the military domain it can be applied to both military and commercial applica-
tions. The JDL model also has categorized processes related to a fusion system.
However, the model suffers from the following drawbacks:

– It is a data-centered or information-centered model, which makes it difficult
to extend or reuse applications built with this model.

– The model is very abstract, which makes it difficult to properly interpret its
parts and to appropriately apply it to specific problems.

– The model is helpful for common understanding, but does not guide a de-
veloper in identifying the methods that should be used [4] – thus, the model
does not help in developing an architecture for a real system.

The basic JDL model has also been improved and extended for various ap-
plications. Waltz showed, that the model does not address multi-image fusion
problems and presented an extension that includes the fusion of image data [6].
Steinberg, Bowman, and White proposed revisions and expansions of the JDL
model involving broadening the functional model, relating the taxonomy to fields
beyond the original military focus, and integrating a data fusion tree architecture
model for system description, design, and development [7].

2.2 Waterfall Fusion Process Model

The waterfall model, proposed in [8], emphasizes on the processing functions on
the lower levels. Figure 2 depicts the processing stages of the waterfall model. The
stages relate to the levels 0, 1, 2, and 3 of the JDL model as follows: Sensing and
signal processing correspond to source preprocessing (level 0), feature extraction
and pattern processing match object refinement (level 1), situation assessment
is similar to situation refinement (level 2), and decision making corresponds to
threat refinement (level 3).

Being thus similar to the JDL model, the waterfall model suffers from the
same drawbacks. While being more exact in analyzing the fusion process than
other models, the major limitation of the waterfall model is the omission of any
feedback data flow. The waterfall model has been used in the defense data fusion
community in Great Britain, but has not been significantly adopted elsewhere [5].

  Signal Processing

Sensing

  Feature Extraction

   Pattern Processing

 Situation Assessment

Decision Making

Fig. 2. The waterfall fusion process model (from [8])
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2.3 The Intelligence Cycle

Another approach to model a fusion application is to line out its cyclic character.
Representatives of such an approach are the intelligence cycle [9] and the Boyd
control loop [10].

The Intelligence Cycle [9] comprises the following five stages:

Planning and Direction: This stage determines the intelligence requirements.
Collection: Gathering of appropriate information, e. g., through sensors.
Collation: Here the collected information is lined up.
Evaluation: The actual fusion is done and the information gets analyzed.
Dissemination: Dissemination distributes the fused intelligence.

2.4 Boyd Model

Boyd has proposed a cycle containing four stages [10]. This Boyd control cycle or
OODA loop (depicted in figure 3) represents the classic decision-support mech-
anism in military information operations. Because decision-support systems for
situational awareness are tightly coupled with fusion systems [11], the Boyd loop
has also been used for sensor fusion. Bedworth and O’Brien compared the stages
of the Boyd loop to the JDL [5]:

Observe: This stage is broadly comparable to source preprocessing in the JDL
model.

Orientate: This stage corresponds to functions of the levels 1, 2, and 3 of the
JDL model.

Decide: This stage is comparable to level 4 of the JDL model (Process refine-
ment).

Act: This stage has no direct counterpart in the JDL model.

The Boyd model represents the stages of a closed control system and gives an
overview on the overall task of a system, but the model lacks of an appropriate
structure for identifying and separating different sensor fusion tasks.

Decide

Orientate

Observe

Act

Fig. 3. The Boyd (or OODA) loop
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Fig. 4. LAAS Architecture (from [12])

2.5 The LAAS Architecture

The LAAS (Laboratoire d’Analyse et d’Architecture des Systèmes) architec-
ture [12] was developed as an integrated architecture for the design and imple-
mentation of mobile robots with respect to real-time and code reuse. Due to the
fact that mobile robot systems often employ sensor fusion methods, we briefly
discuss the elements of the LAAS architecture (depicted in figure 4).

The architecture consists of the following levels [12]:

Logical robot level: The task of the logical robot level is to establish a hard-
ware independent interface between the physical sensors and actuators and
the functional level.

Functional level: The functional level includes all the basic built-in robot ac-
tion and perception capabilities. The processing functions, such as image
processing, obstacle avoidance, and control loops, are encapsulated into sep-
arate controllable communicating modules.
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Execution control level: The execution control level controls and coordinates
the execution of the functions provided by the modules according to the task
requirements.

Decision level: The decision level includes the capabilities of producing the
task plan and supervising its execution while being at the same time reac-
tive to other events from the execution control level. Depending on the ap-
plication, the decision level can be composed of several layers that provide
different representation abstractions and have different temporal properties.

The LAAS architecture maps low-level and intermediate-level sensor fusion
to modules at the functional level. High-level sensor fusion is represented in
the decision level. The timing requirements are different at the decision level
and the functional level. In contrast to the JDL model, the LAAS architecture
guides a designer well in implementing reusable modules as part of a real-time
application.

2.6 The Omnibus Model

The Omnibus model [5] has been presented in 1999 by Bedworth and O’Brien.
The model was created after analyzing the strengths and weaknesses of existing
models and integrates most of the beneficial features of other approaches.

Figure 5 depicts the architecture of the Omnibus model. Unlike the JDL
model, the Omnibus model defines the ordering of processes and makes the
cyclic nature explicit. It uses a general terminology that does not assume that
the applications are defense-oriented. The model shows a cyclic structure com-
parable to the Boyd loop, but provides a much more fine-grained structuring
of the processing levels. The model is intended to be used multiple times in
the same application recursively at two different levels of abstraction. First, the
model is used to characterize and structure the overall system. Second, the same
structures are used to model the single subtasks of the system.

Although the hierarchical separation of the sensor fusion tasks is very sophis-
ticated in the Omnibus model, it does not support a horizontal partitioning into
tasks that reflect distributed sensing and data processing. Thus, the model does
not support a decomposition into modules that can be separately implemented,
separately tested, and reused for different applications.

2.7 Mr. Fusion

Mr. Fusion [13] is a middleware framework supporting data fusion. Mr. Fusion
is not exactly tailored to the communication and processing of sensor measure-
ments but aims at data at application level, as for example the output from
several network servers.

The architecture consists of two main subsystems, a fusion core running a
Fusion Virtual Machine (FVM) and a Fusion Status Service (FSS). The commu-
nication between the main components is done via CORBA (Common Object
Request Broker Architecture). The FVM gathers so-called ballots, i. e., messages
from the replicas and evaluates a given policy in order to create an output ballot
or an exception. The FSS monitors the output from the fusion core and col-
lects information about value and timing errors for each fusion session into a
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Fig. 5. The Omnibus model (from [5])

database. Information from this database is used by a component named Fusion
VM Manager in order to eventually adjust a policy for the FVM.

2.8 DFuse Framework

The DFuse framework for distributed data fusion [14] has been designed to sup-
port data fusion applications in heterogeneous ad hoc wireless sensor networks.
DFuse models an application as a task graph of data sources, fusion points and
data sinks. DFuse assumes data sources to have data available, whenever it is re-
quired. If requested data does not arrive at a fusion point in time due to extended
computation time or communication failures, the fusion points may perform the
fusion over an incomplete set of data.

Figure 6 depicts the two main components of the DFusion architecture, the
fusion module implementing the fusion API and the placement module that
tries to find a good mapping of the fusion functions within the sensor network.
DFuse provides an automatic deployment of applications on the network. An
application is launched by passing the task graph and fusion code to a designated
root node. The DFuse architecture then performs a distributed algorithm that
automatically deploys the application onto the network nodes.

While being a very powerful approach, DFuse requires an underlying hardware
and middleware that provides support for timestamping data and a reliable

Application
task graph

Fusion
function code

Fusion module

Placement module

Resource monitor
Routing layer interface

Operating system / Routing layer

Fig. 6. DFuse Architecture (from [14])
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transport layer. Therefore, DFuse cannot be deployed in small wireless sensor
architectures such as the Mica platform [15]. Kumar et al. present a case study
running on a set of iPAQ 3870 handheld computers providing each at least 32
MB RAM and a 206 MHz StrongARM processor.

2.9 Time-Triggered Sensor Fusion Model

The Time-Triggered Sensor Fusion Model [16] proposes the implementation of a
sensor fusion application on top of the Time-Triggered Architecture [17].

The Time-Triggered Architecture proposes a strictly synchronous design,
where each task and communication activity is planned a priori in a static
schedule. All distributed nodes are synchronized to a global time base, which
enables the nodes to perform coordinated actions like measurement or actua-
tor settings. Furthermore, the design supports an easy verification of the timing
constraints.

The Time-Triggered Sensor Fusion Model describes a set of jobs that rep-
resent all necessary activities like measurement, data processing, decision, and
actuation. The jobs are represented as vertexes in a distributed graph, whereas
each communication activity is represented by an edge between the service pro-
viding linking interface (SPLIF) of the job that provides the data and the service
requesting linking interface (SRLIF) of the job that receives the data. A physical
node may host one or several jobs, thus two logically different tasks may be split
up into two jobs but still executed on the same microcontroller subsequently.

The job graph is furthermore structured hierarchically into three levels in
order to distinguish between transducers (direct interfaces to the environment),
fusion and dissemination activities, and decision activities.

Figure 7 depicts a control loop modelled by the time-triggered sensor fusion
model. Interfaces are illustrated by a disc with arrows indicating the possible
data flow directions across the interface. Physical sensors and actuators are
located on the borderline to the process environment and are represented by
circles. All other components of the system are outlined as boxes. The model
distinguishes three levels of data processing with well-defined interfaces between
them. The transducer level contains the sensors and actuators that interact di-
rectly with the controlled object. A smart transducer interface provides a consis-
tent borderline to the above fusion/dissemination level. This level contains fault
tolerance and sensor fusion tasks. The control level is the highest level of data
processing within the control loop. The control level is fed by a dedicated view of
the environment (established by transducer and fusion/dissemination level) and
outputs control decisions to a fault-tolerant actuator interface. User commands
from an operator interact with the control application via the man-machine
interface.

The breakdown into these three levels is justified by the different tasks the
three levels have to fulfill and the different knowledge necessary for designing the
corresponding hard- and software. Table 1 describes the task and the attributes
of the different levels. The following sections describe the three levels in detail.

Prerequisites for implementing an application in the Time-Triggered Sensor
Fusion Model are a deterministic time-triggered communication system that sup-
ports coordinated task execution and a known upper bound for the computation
time of each job in the real-time control loop. Thus, the Worst-Case-Execution
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Fig. 7. Data flow in the time-triggered sensor fusion model

Table 1. Properties of transducer, fusion/dissemination, and control level

Level Task Implementer Knowledge
Transducer level Deliver sensor

measurements, in-
strument actuators

Transducer manu-
facturer

Internals of sen-
sor/actuator

Fusion/Dissemina-
tion level

Gather, process,
and represent sen-
sor information;
disseminate con-
trol decisions to
actuators

System integrator Sensor fusion algo-
rithms, fault toler-
ance concepts

Control level Find a control deci-
sion, navigation and
planning

Application pro-
grammer

Mission goals, con-
trol theory, deci-
sion finding

Operator Definition of goals — Conceptual model
of system

Time (WCET) has to be determined for each job, an overview of appropriate
methods and tools for WCET estimation can be found in [25].
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There are several protocols available for wired time-triggered systems [18,
19,20,21,22] but only a few solutions are available for wireless systems. Notable
exceptions are Kim and Li’s work on time-triggered tasks [23] that have also been
implemented on the wireless Mica platform [15] and the work on time-triggered
wireless communication by Huber and Elmenreich [24].

The time-triggered approach works well with typical sensor fusion algorithms,
such as:

– Kalman Filtering [26] requires periodic sets of measurements. The measure-
ments have to be taken at the same instant and the communication system
should avoid out-of-sequence behavior of messages.

– Abstract reliable sensors [27] and the confidence-weighted averaging algo-
rithm [1] require measurements to be taken at approximately the same in-
stant with respect to the change rate of the measured variable.

3 Comparison

3.1 Classification

The presented sensor fusion architectures can be roughly classified into the fol-
lowing categories:

Abstract Models: These approaches serve as a way to think of or explain an
aspect of a fusion system without guiding the engineer in its implementation.
As a consequence, a fusion system may contain references to several abstract
models. Members of this group are the Waterfall model, the Boyd control
loop.

Generic Architectures: A generic architecture gives an outline how to im-
plement an application, but for example does not specify which operating
system, hardware, communication system or database should be used. Ex-
amples for this group are the JDL model and the Omnibus Model.

Rigid Architectures: These systems guide the engineer well in its implemen-
tation, but at the cost that several design decisions have already been taken.
While new systems can be realized quickly by taking advantage of exist-
ing hardware designs, tools, and source code, the cost of migrating a design
from one rigid architecture to another is unnecessarily high. Examples for
this group are the LAAS architecture, Mr. Fusion, DFuse, and the Time-
Triggered Sensor Fusion Model.

The three categories should not imply a valuation. Abstract models are very
important to understand and model the problem statement at the beginning.
Using a generic architecture will provide the necessary designer’s freedom if a
special solution for a special problem is required. On the other hand, selecting a
rigid solution will be often the best way to avoid unnecessary re-implementations
of already available solutions.

3.2 Real-Time Support

Typically, sensor fusion applications interact with a real environment where it
is necessary to fulfill some timing constraints, e. g., for a timely reaction on a
particular situation.
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For most architectures, especially the abstract and generic ones, it is possible
to support real-time behavior, if the implementation of the system is provided
with the respective means, like timestamping, deterministic communication, etc.
Thus, these architectures neither support nor hinder real-time behavior. How-
ever, in order to reduce system complexity such real-time issues should be in-
trinsic to the architecture.

We will quickly review the rigid architectures regarding this issue:
The LAAS architecture provides real-time support within the functional level

by the Generator of Modules (GenoM) [28]. Modules are annotated by the user
stating period, delay, and priority properties. GenoM creates the concrete real-
time architecture for the application.

Mr. Fusion has been designed at a higher network level, where several sources
of indeterminism like possible network delays or unpredictable execution time of
the virtual machines jeopardize hard real-time behavior. Therefore, Mr. Fusion
is not suited to real-time control applications.

The DFuse framework does not provide predictable timing due to the na-
ture of the underlying wireless communication network. One cannot predict how
the heuristic placement algorithm assigns the roles in the networks. Moreover,
a wireless transmission may be arbitrary delayed due to inference from other
wireless nodes. Therefore, the DFuse framework will not fulfill hard real-time
requirements.

The Time-Triggered Sensor Fusion Model is very rigid regarding the timing
assumptions and therefore well apt to design real-time fusion applications. How-
ever, in applications with soft real-time requirements, the approach still requires
a strict analysis and design of the communication schedule. Although this is
supported by tools like [29], this strictness comes with some overhead.

4 Conclusion

The large number of proposed sensor fusion architectures makes it difficult for
a system engineer to decide which model best fits his or her needs.

While some fusion models are too vague in order to support and guide an
implementation, the more concrete models propose different interfaces that do
not interoperate with each other. Some systems, especially the ones that stem
from the robotic domain are in principle compatible regarding their basic data
items and the role of time (that is supporting real-time communication and
being implementable on small embedded devices). In contrast, high-level network
systems such as Mr. Fusion are tailored to their specific application requirements.

For the future it would be advantageous to elaborate ways that provide inter-
operation between components of existing fusion architectures instead of creating
even more isolated systems anew.
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