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Abstract. This article presents the concept of an artificial hormone system for a
completely decentralized realization of self-organizing task allocation. We show
that tight upper bounds for the real-time behavior of self-configuration can be
given. We also show two simulation results using the artificial hormone sys-
tem demonstrating the operation of the artificial hormone system under different
workloads.

1 Introduction

Today’s computational systems are growing increasingly complex. They are build from
large numbers of heterogeneous processing elements with highly dynamic interaction.
Middleware is a common layer in such distributed systems, which manages the coop-
eration of tasks on the processing elements and hides distribution to the application.
It is responsible for seamless task interaction on distributed hardware. As shown in
figure [I all tasks are interconnected by the middleware layer and are able to oper-
ate beyond processing element (PE) boundaries like if they would reside on a single
hardware platform. To handle the complexity of today’s and even more tomorrow’s
distributed systems, self-organization techniques are necessary. Such a system should
be able to find a suitable initial configuration by itself, to adapt or optimize itself to
changing environmental and internal conditions, to heal itself in case of system failures
or to protect itself against attacks. Middleware is a good place to realize such self-X
features (self-configuration, self-optimization, self-healing) by autonomously control-
ling and adapting task allocation. Especially for self-healing, it is important that task
allocation is decentralized to avoid single points of failure.

This work presents an artificial hormone system for task allocation to heterogeneous
processing elements. In the following, we will present our approach in detail and we
will discuss several properties considering real-time aspects induced by the hormone
system.

2 Using an Artificial Hormone System to Obtain Self-X-Properties

For task allocation, three types of hormones are used:

Eager value: This hormone determines, how well a PE can execute a task. As higher
the hormonal value, as better the task executes on the PE.
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Fig. 1. Middleware in a distributed system

Suppressor: A suppressor represses the execution of a task on a PE. Suppressors are
subtracted from eager values. Suppressors are e.g. used to prevent duplicate task
allocation or to indicate a detoriating PE state.

Accelerator: An accelerator favors the execution of a task on a PE. Accelerators are
added to eager values. The accelerators can be used to cluster cooperating tasks in
the neigborhood or to indicate an improved PE state.

The following figure [2] sketches the basic control loop used to assign a task 7; to a
processing element. This closed control loop is executed for every task on every pro-
cessing element. It determines based on the level of the three hormone types, if a task
T; is executed on a processing element PFE., or not. The local static eager value FE;,
indicates how well task 7; executes on PE.,. From this value, all suppressors S%7 re-
ceived for task T; on PE., are subtracted and all accelerators received for task 7; on
PE, are added. The result of this calculation is a modified eager value Em,, for task
T; on PE,. The modified eager value is sent by the middleware to all other PEs in
the system and compared to the modified eager values Em" received from all other
PE:s for this task. Is E'm;, greater than all received eager values Em®, task T; will be
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Notation: #” Hormone for task 7; executed on PE,
H,y: Hormone from task 7; executed on PE,, Latin letters are task indices, Greek letters are processing element indices

Fig. 2. Hormon based control loop
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taken by PFE, (in case of equality a second criterion, e.g. the position of a PE in the
grid, is used to get an unambiguous decision). Now, task T; on PE, sends suppressors
Si to all other PEs to prevent duplicate task allocation. Accelerators A;., are sent to
neighbored PEs to favor the clustering of cooperating tasks. This procedure is repeated
periodically.

It should be emphasized in this point that the strength of the different types of hor-
mones is initially set by the applicants who want to influence the task allocation. In
section 3.1l we show the task allocation process based on the hormone values in detail.

The described approach is completely decentralized, each PE is responsible for its
own tasks, the communication to other PEs is realized by a unified hormone concept.
Furthermore, it realizes several self-X properties:

— The approach is self-organizing, because no external influence controls the task
allocation.

— It is self-configuring, an initial task allocation is found by exchanging hormones.
The self-configuration is finished as soon as all modified eager values become zero
meaning no more tasks wants to be taken. This is done by sending suppressors
which have to be chosen strong enough to inhibit an infinite task assignment.

— The self-optimization is done by offering tasks again for re-allocation. The point
of time for such an offer is determined by the task respectively the PE itself. It can
be done periodically or at a point of time where the task or the PE is idle.

In this context it is simple to handle the entrance of a new task in the system: At
first, all processing elements have to be informed about their hormone values for
the new task. Then, the task is allocated as described for self-optimization.

— The approach is self-healing, in case of a task or PE failure all related hormones are
no longer sent, especially the suppressors. This results in an automatic reassignment
of the task to the same PE (if it is still active) or another PE.

In addition, the self-configuration is real-time capable. There are tight upper time
bounds for self-configuration which we will present in the next sections.

3 Dynamics of the Artificial Hormone System

In the this section, the dynamics of the artificial hormone system and the conditions and
rules for its correct working will be presented. Figure 3] shows the cyclic sequence of
sending the hormones followed by the task allocation. The sequence starts with ”send
hormones” (S) to create the knowledge base for the first decision. At least the eager

1es
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Fig. 3. Hormon cycle
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values need to be available. After sending the hormones and waiting the time tgp,
a decision (E) on the task allocation, based on the received hormones, is taken. This
process is repeated after a waiting time of t 5.

3.1 Dynamics of Task Allocation

Let PE., be a processing element willing to run a task 7;. We need to distinguish three
cases:

Case 1: All eager values of all processing elements for task 7; are constant and spread
over the whole system. Thus, the system is in a steady state and all PEs make their
decisions based on up-to-date and constant values. Then, PE,, can allocate a task
if it has the highest eager value, respectively, with equal eager values, a higher
priority.

Case 2: The eager value of processing element P[., for task 7} decreases (e.g. by
suppressor influence). In this case, PE, may allocate the task T7; if the decreased
eager value is still sufficient. All the other PEs will not allocate the task, as they
know either the old or the new eager value of PE, which wins with both values.

Case 3: The eager value of the processing element PE,, for task T; increases (e.g.
by accelerator influence). This case is critical if PE, becomes the winner by the
increased eager value, because other PEs might not yet know it and therefore decide
wrongly. Thus, PE, may only allocate the task T; after the new eager value has
successfully been submitted to all PEs and until PE, itself has possibly received
a suppressor from another PEs (v # ¢), which allocated the task 7; based on the
old, lower eager value of PFE,,.

The question, however, is how long the waiting times should be chosen? Figure
[ shows the worst-case scenario in which PEj allocated the task T} just before it
has received the new eager value from PE,. PE, must not come to a decision
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Fig. 4. Worst-case timing scenario of the hormone exchange with the task allocation

until it has received the possibly incoming suppressor from P FEs. Therefore, the
communication time ¢ x needed by a hormone to be spread over the whole system
is very important to be known. Knowing ¢ 5 we present a rule for the task allocation
with increased eager values as well as conditions for the times tgs and tsg.
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Rule: If a processing element PE,, gets able to allocate a task T’; only based on an
increased eager value, then it has to delay it’s decision to the next communica-
tion cycle to ensure the transmission of the increased eager value and to wait
for possible suppressors for the same task from other PEs. This comes true if
(follows directly from figure [):

tsg > tps + 2tk

The cycle time ¢y defines as follows:

toyele = tse +tps

Of course the cycle time should be minimized, thus:
1) tgs should be as small as possible, ideally 0.
2) tsg > tps + 2tk, ideally withtgs = 0: tgp > 2tk

3.2 Self Configuration: Worst Case Timing Behavior

Figure [3] shows the precise cycle of the hormone distribution and interpretation based
on figure Bl First of all, the hormones (eager values, suppressors and accelerators) for
all the tasks which PE, is interested in are emitted by PF.,.

After waiting the time {5, the decision for a task T; (P E, is interested in) will be
taken. Afterwards 7 is incremented and the next cycle starts (tgs = 0). In this way
the hormones for all the relevant tasks are emitted in each cycle and the decision for
exactly one task will be taken. This allows the hormones to take effect. If the allocation
decisions for all tasks would take place in parallel, the emitted accelerators would not
have any impact (as all tasks would already be allocated in the first cycle).

tpgs =0

send hormones
for all tasks . : decide on
T; € M, relevant wait (isz) task T;

for PE,

—> =i+l

Fig. 5. Cycle of the hormone distribution and the decision making for a PE,

Let’s assume that all m tasks have to be distributed on all PEs and all PEs are inter-
ested in all tasks.

We introduce a further assumption to simplify the scenario: Let all eager values
be constant, i.e. there are no accelerators and suppressors. Then all tasks have been
inspected and allocated after m cycles and it follows:

Worst-case time behavior = m cycles

In the following we remove the simplifying assumption of constant eager values, i.e.
we allow accelerators and suppressors. Now some tasks might not have been allocated
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Fig. 6. Accelerator caused delay of the task allocation

after m cycles. This can be caused by accelerators and suppressors, see fig. [0l Let’s as-
sume three PEs checking one after another the possibility to allocate the task 7;. While
PE., and PEjs are checking PE, is the winner. After P Es has checked, it increases its
eager value caused by a received accelerator. If afterwards PE, checks its status, P FEs
is the winner now. However, P Es has already checked its status regarding task 7; and
will not repeat this check within the the next m cycles.

So at worst case task 7; will not be checked again until a complete cycle of all other
tasks, thus after m cycles. Afterwards the same scenario could occur again.

However, the maximal number of cycles is limited: A change of the eager value by
suppressors or accelerators only takes place if a task has been allocated somewhere in
the system (Assumption: Monitoring accelerators and suppressors are constant during
the initial self-configuration). It follows that in each allocation cycle at least one task
will be allocated. Thus, in the case of a variable eager value we get the following worst
case timing behavior for the self-configuration:

Worst Case Timing Behavior = m? cycles

4 Simulation Results

We started to implement a hormone simulator in order to evaluate and demonstrate the
behavior of our artificial hormone system approach. The first simulations confirmed the
worst-case time bound for self-configuration. We also registered that the accelerators
have to be smaller than the suppressors to get a stable task allocation. The reason is that
if a task is scheduled, accelerators will be submitted to the neighbor cells to allocate
cooperating tasks nearby (see section[2)). If these accelerators are stronger than the sup-
pressors (which prevent the task from being allocated onto another processing element)
the task allocation will not be stable. The reason is that the modified eager values will
continuously increase.

In the first configuration we have chosen a grid of 64 processing elements with 64
tasks to be distributed. The tasks were grouped in 8 X 8 cooperating tasks. Assuming
light-weight tasks, the suppressors indication processor were chosen weak. Therefore it
is possible that several tasks can run on one processing element. Figure[Z]shows the sim-
ulation result. Coopearting tasks were scheduled right next to each other which would
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lead to a small communication overhead in a real-world scenario. These clusters are not
scattered at all and several tasks were scheduled onto a single processing element.

The second configuration is the same as the first one - the only difference is that the
suppressors indicating processor load were chosen strong so that each processing ele-
ment can execute exactly one task. As shown in figure [§ the related tasks form clusters
again. This shows the efficiency of the artificial hormone system because, even under
full load it is able to form entire clusters which are not scattered.

We also tested self-optimization by spontaneously increasing a task’s eager value of
a PE. As expected, the task moved to this PE if the eager value was high enough and
the accelerators of the cooperating tasks were not too strong. In this way we were also
able to move complete organs for optimization.

In addition, we simulated the failing of one or more PEs and the simulation results
shows that the artificial hormone system was able to re-allocate the affected tasks if
there were enough PEs able to take a task.

5 Related Work

There are several approaches for clustered task allocation in middleware. In [2]], the
authors present a scheduling algorithm distributing tasks onto a grid. It is implemented
in the Xavantes Grid Middleware and arranges the tasks in groups. This approch is
completely different from ours because it uses central elements for the grouping: The
Group Manager (GM), a Process Manager (PM) and the Activity Managers (AM). Here,
the GM is a single point of failure because, if it fails there is no possibility to get
group information from this group anymore. In our approach there is no central task
distribution instance and therefore the single point of failure can not occur.

Another approach is presented in [3]. The authors present two algorithms for task
scheduling. The first algorithm, Fast Critical Path (FCP) makes sure time constrains to
be kept. The second one, Fast Load Balancing (FLB) schedules the tasks so that every
processor will be used. Using this strategy - especially the last one - it is not guaranteed
that related tasks are scheduled nearby each other. In contrast to our approach, these
algorithms do not include the failing of processing elements.

In [1]], a decentralized dynamic load balancing approach is presented. Tasks are con-
sidered as particles which are influenced by forces like e.g. a load balancing force (re-
sults from the load potential) and a communication force (based on the communication
intensities between the tasks). In this approach, the tasks are distributed according to
the resultant of the different types of forces. A main difference to our approach is that
we are able to provide time bounds for the self-configuration. Besides our approach
covers self-healing which is absolutely not considered by this decentralized dynamic
load balancing.

6 Conclusion and Further Work

We presented an artificial hormone system to allocate tasks to processing elements
within a processor grid. The assignment is completely decentralized and holds self-
X-features. Furthermore, we showed that we can guarantee tight upper bounds for the
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real-time behavior of the artificial hormone system for the self-configuration. We started
testing the presented algorithms using a hormone simulator which confirmed the theo-
retical results so far.

As ongoing work, we will investigate additional quality properties of the artificial
hormone system i.e. if it is possible to find time bounds for self-optimization and self-
healing. We will also investigate if we can guarantee stability of the task assignment.
Another question in this scope is how to find an optimal task assignment and is the
artificial hormone system able to find it (if it exists)?
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