
R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 20–29, 2007.
© IFIP International Federation for Information Processing 2007

A Task Decomposition Scheme for Context Aggregation
in Personal Smart Space

Hoseok Ryu, Insuk Park, Soon J. Hyun, and Dongman Lee

School of Engineering, Information and Communications University,
119, Munjiro, Yuseong-gu, Daejeon, 305-732, Korea

{hsryu, ispark, shyun, dlee}@icu.ac.kr

Abstract. In context-aware computing, the context aggregation is an important
function of the context management. In an infrastructure-based smart space, a
centralized context management system need not concern about its resource
consumption for context aggregation. However, in a personal smart space
which consists of only resource-constrained mobile devices, not only global
resource consumption of the personal smart space but also that of the device
which plays a role of a context manager (coordinator) must be minimized. In
this paper, we propose a task decomposition scheme in which heavy context
aggregation tasks to be imposed on a centralized coordinating device are
decomposed and distributed to all the participating mobile devices (clients) in a
mobile smart space. By decomposing and distributing the heavy aggregation
operations the processing overhead upon the coordinating device can be
minimized while providing equivalent context aggregation capability for
applications, but maintaining the total amount of processing of all devices not to
be significantly increased.

Keywords: Ubiquitous computing, Context awareness, Personal smart space,
Context aggregation, Task distribution.

1 Introduction

In recent years, most existing context-aware services are offered in an
infrastructure-based smart space like a smart home or an office. A centralized
context management system on a powerful, resource-rich machine gathers,
processes, aggregates, and disseminates the context information. Context-aware
services request and get notified of context information from the centralized
context management system.

As a user carries several mobile devices, it composes a personal area network
(PAN). The PAN environment with context management configures a new type of
smart space, called a personal smart space [1], [2]. Each personal smart space
includes a coordinator device and zero or more client devices. Each device may
include several sensors and corresponding context providers which capture context
information from them. Additionally, a coordinator device which has relatively more
resource than client devices provides additional capabilities such as rule-based

 A Task Decomposition Scheme for Context Aggregation in Personal Smart Space 21

context aggregation, and managing context information and a list of context
providers.

A context aggregation method such as logic inference requires high resource
consumption [4], [5]. If a coordinator device is wholly responsible for context
aggregation in a personal smart space, its processing overhead is significantly
increased and its battery is exhausted. As a result, the personal smart space can last no
longer. To solve this problem, the distribution of context aggregation has been
proposed. By distributing the aggregation function, EDCI [6] focuses on reducing
processing time taken in context reasoning, and Solar [7] focuses on increasing the
reusability of existing context providers. However, none of them considers mobile ad-
hoc settings. A recent work presents a middleware for context provisioning in a
mobile environment which consists of resource-constrained devices. However, it does
not consider resource consumption caused by context aggregation [3].

In this paper, we propose an efficient context aggregation scheme which avoids
overburdening the coordinator device with context aggregation by distributing sub
tasks of high level context in the client devices. The proposed scheme decomposes an
aggregation task into several sub tasks based on the placement of the context
providers on mobile devices in order for the sub tasks not to incur the wasteful
network transmission. The evaluation results shows that the processing overhead of
the coordinator device decreases about 70 percent while maintaining that of each
client device is increased by only 8 percent, comparing with the total amount of
processing in previous work.

The rest of the paper is organized as follows. Section 2 explains the motivation of
the proposed scheme. Section 3 introduces the requirements for context aggregation
in personal smart space. We discuss design consideration and describe the context
management architecture for a personal smart space in Section 4. The implementation
details of the proposed scheme are described in Section 5. Section 6 shows the
performance analysis of our approach. The related work is presented in Section 7.
Finally, conclusion follows in Section 8.

2 Motivation

We develop an example scenario for an over running status. In that scenario, Mr. Kim
carries a cell-phone, a smart watch, a MP3 player, and a PDA. Each device has its
sensors and their corresponding context providers as shown in Fig 1. The example
scenario is as follows.

Mr. Kim is exercising on the running machine in a fitness center. While running
continuously, Mr Kim's pulse and blood pressure may exceed his normal status and he
may be wet with his sweet during his exercising. If his physical condition excesses
beyond normal values, he is on the over running status which has to be taken care of.
Therefore, his PDA alerts to Mr. Kim about adjusting the level of exercise, and shows
the current physical condition information about him on PDA. To support this
example scenario, there is an aggregation rule and ECA policy rule. Aggregation rule
and ECA policy rule included in the context-aware exercise assistant application are
represented as shown in Table 1 and 2, respectively. A mobile device can include
several condition rules for an aggregation task. In this case, the centralized context

22 H. Ryu et al.

aggregation may delay the context aware service not provided on a right time and
cause the concentration of computational overhead on a coordinator device. It is
inefficient to conduct the execution of aggregation processing on every context
change only in a coordinator device.

Fig. 1. An example of context information in a personal smart space

Table 1. The aggregation rule for example scenario

Condition rules:
 a) Vibration(Kim, Running) ^
 b) Pulse(Kim, Over 140) ^
 c) BloodPressure(Kim, Over 160) ^
 d) Sweat(Kim, Wet) ^
e) -> Status(Kim, OverRunning)

Provided by cell-phone
Provided by smart watch
Provided by smart watch
Provided by smart watch
On PDA

Table 2. The ECA rule of context-aware exercise assistant application

On(Status(Kim, OverRunning))
 If(true)
 Do(start(service set2))
 { Alert to Kim for adjusting amount of exercise,

 Show the health information on PDA };

3 Requirements for Context Aggregation in Personal Smart Space

To provide the function of context aggregation in resource limited personal smart
space, we introduce two main requirements of context management.

First, in personal smart space, constrained resource on each mobile device means
that load balancing is an important issue for the context aggregation. Centralized
context aggregation can cause the failure of coordinator device by exhausting the
battery resource and the delay of context aware service by over-loaded aggregation
processing on a coordinator. Therefore, to perform context aggregation effectively on

 A Task Decomposition Scheme for Context Aggregation in Personal Smart Space 23

resource limited environment, the aggregation processing requires small processing
overhead, and the aggregation task has to be distributed. To deal with these issues, we
use simple inference mechanism instead of heavyweight ontology based inference
engine, and we propose decomposition scheme for the distribution of aggregation task.

Second, the reliability of the context aware system is also an important issue. There
are two kinds of aspects for reliability. One aspect is the reliability of a personal smart
space. To deal with this aspect, Mobile Gaia [2] proposes election algorithm to select
suitable coordinator when previous coordinator dies or disappears. Another aspect is
the reliability of context event subscription. A personal smart space is configured with
several devices including a coordinator device in an ad-hoc manner. Ad-hoc
connectivity among devices can cause the change of network environment. In that
case, it is not impossible to define all possible context event subscription for sub task
rule according to network change. Therefore, characteristics of dynamic network
change require flexible and adaptive context event subscription based on dynamic
operating conditions varying over time and space.

4 Context Management Architecture for Personal Smart Space

To achieve the decomposition of context aggregation tasks, we need to consider three
issues. First, we have to consider how to decompose an aggregation task into several
sub tasks. As mentioned in Section 3, a large number of network transmissions can
cause more processing overhead. Therefore, we decompose an aggregation task into
several sub tasks based on the locality of context provider. If a client device processes
a sub task locally, it is possible to reduce the number of network transmission. In
personal smart space, locality is the most important consideration of any other factors.
Second, it can be possible that a device has two context providers of same type. In
that case, decomposition mechanism must select a suitable provider. Except for
locality of context provider, there are other considering factors to select a suitable
provider like frequency, accuracy, and granularity of context. Third, we also deal with
the reusability of current sub tasks in personal smart space. It is wasteful that a
coordinator delivers existing sub task to the same device every decomposition time.
This fact makes our mechanism require the reusability of current sub task.

4.1 System Architecture

Fundamental functionalities of the context management are gathering, reasoning, and
delivery of context information. We define five components as follows. Context
Widget abstracts the raw sensor data and provides abstract context information.
Context Aggregator provides high-level context information from low-level contexts
according to aggregation rules. In our architecture, to provide small processing
overhead, we use composite event detection mechanism [11] as an inference mechanism
instead of logic based inference engine. Context Interpreter keeps track of the context
in which the user is interested and notifies to application when one of contexts is set to
true. Context Aware Application implements context sensitive application policy,
which is ECA policy performing action according to context event change. Context
Manager has the role of context repository and includes minimal context ontology.

24 H. Ryu et al.

Fig. 2. Context management architecture for a personal smart space

In addition to these components, our efficient aggregation mechanism requires
some extra components to provide the task decomposition scheme. Details of
additional components are as follows. Context Registry manages the list of context
providers. All context providers register themselves to context registry. Moreover, it
supports to lookup the provider with the combination of context name and type.
Moreover, it has the context properties for all existing context providers.
Decomposition Manager receives decomposition requests and applies decomposition
algorithm to generate context event subscription tree and sub task rule tree. After
configuring two kinds of trees, decomposition manager adds sub task rules to the
local aggregator and adds composite event rule to context aggregator..Local
Aggregator detects that a certain sub task rule is satisfied and generates composite
event. Then it notifies composite event change generated from sub task rules to
context aggregator. And all devices in personal smart space have a local aggregator.
Fig 2 shows an overall architecture of the context management in personal smart
space depending on the role of devices.

4.2 Decomposition Algorithm

Decomposition algorithm uses aggregator name as an input parameter. In a personal
smart space, several context aggregators can function as the status aggregator. A
context aggregator includes one or more context aggregation rules. When a context
provider appears or a context aggregator requests the decomposition of context
aggregator, the decomposition manager gets aggregation rules from a context
aggregator, and gets the device list currently available in a personal smart space from
the context registry. This algorithm generates two kinds of trees: the one represents
context event subscription and the other composite event rules and sub task rules. For
a context aggregation rule, decomposition algorithm generates a sub task rule tree
with the result rule of the duplicated random value. Each result rule of a sub task is
represented as RDF triple, SubTaskRule(ip, random value). And after finishing above
sequences, sub task rules are inserted into sub task rule table, and a subscription tree
is generated for a context aggregator.

 A Task Decomposition Scheme for Context Aggregation in Personal Smart Space 25

Fig. 3. Flowchart of task decomposition algorithm

Fig 3 shows the algorithm for task decomposition. In this algorithm, there are some
mechanisms to select context provider of same type and to increase the reusability of
existing sub task rules. We explain later in detail about these issues.

4.2.1 Selection of Suitable Context Provider
If there are several context provider of same type on the same device, we need to
select more suitable provider among them. The function of selectProvider
(possibleProviderList) provides the mechanism for selection of suitable provider.
When a context provider list is registered to Context Registry, some considering
factors like frequency of context change, accuracy of context, and granularity of
context are also registered as the form of ContextProperties class. Then we measure
the utility value from the result of utility function. Fig 4 shows the utility function for
a suitable context provider.

Each factor has its weight value according to developer's policy. This algorithm
calculates utility values for every possible provider, and selects the appropriate
provider which has the highest utility value.

Fig. 4. Utility function for selection of context provider

4.2.2 Reusability of Existing Sub Task Rules
Reuse of existing sub task rules makes it possible to avoid the delivery of a new sub
task rule. Before adjusting the function of addSubTaskRule(), Decomposition
Manager checks that a certain sub task rule exists or not in personal smart space.
Decomposition manager on coordinator device has the list of sub task rules provided

26 H. Ryu et al.

in personal smart space. Just before delivering a sub task rule to other device, this
algorithm check the list of sub task rules. Then if there is a certain sub task rule in
personal smart space, it does not deliver that sub task rule. It only subscribe to context
provider which already has reusable sub task rule.

5 Implementation

We implement the proposed architecture as part of our ubiquitous computing
middleware, called Active Surroundings [10]. Context management components in
Active Surroundings run on IBM J9 (J2ME VM). In this section, we show the
interaction among components in our proposed architecture.

Fig 5 shows the interaction among components to decompose an aggregation task
into several sub tasks. Interaction among components is divided into two phases:
registration phase and decomposition phase. In registration phase, all context widgets,
aggregators, and local aggregators register itself to context registry. In decomposition
phase, decomposition manager conducts a decomposition processing when a context
aggregator or context registry requests decomposition. The overall interaction
procedure among components works as follows.

Fig. 5. Interaction among components for task decomposition

When other context aggregator appears, it requests decomposition to
decomposition manager, and repeat the above procedure of the task decomposition.

6 Performance Analysis

In this section, we show how decomposition scheme reduces processing overhead for
context aggregation. We expect that computational overhead for context aggregation
is distributed in personal smart space. In the experiments, we measure the aggregation
processing time on both coordinator and client devices and compare them with total
processing time taken in the previous approach.

 A Task Decomposition Scheme for Context Aggregation in Personal Smart Space 27

The over-running scenario in Section 2 is used for the experiments. We generate
100 context event changes randomly. Then we compare two cases: processing time in
the previous and our approach. Total processing time for two cases is derived from
the sum of processing time on coordinator, processing time on clients, and network
transmission time for delivery context change events as shown in Equation (1).

PT(total) = PT(coor) + PT(cli) + NTT (1)

PT(total) represents total processing time, PT(coor) represents processing time
on coordinator device, PT(cli) represents processing time on clients, and NTT
represents network transmission time, respectively. We use two PDAs, HP
rx3715(Processor speed: 400MHz, Installed RAM: 152MB), and their operating
system is Microsoft Windows Mobile Pocket PC 2003. We use IBM J9 as the VM
to run our systems.

Fig 6 shows the result of the experiments considering four metrics: PT(total), NTT,
PT(coor), and PT(cli).

0

50

100

150

200

250

300

350

400

PT(total) NTT PT(coor) PT(cli)

A
v
e
ra
g
e
 p
ro
c
e
s
s
in
g
 t
im
e

prev

our

Fig. 6. The processing time and network transmission time on coordinator and clients

As Fig 6 shows, NTT takes the most part of PT(total). It means that network
transmission affects the processing overhead for context aggregation significantly.
Additionally, in case of our scheme, processing overhead only on client device is
larger than that of previous work. However, processing overhead on client devices is
slight to be ignored, comparing with the network transmission overhead.

The previous approach requires more PT(total) because it notifies context event
to other device for every context change. On the contrary, our approach notifies
the context change event only when a sub task rule is satisfied. In this way, the
proposed scheme reduces the processing time for context aggregation. By
reducing the aggregation processing overhead, it is possible to provide context
aware services more efficiently and minimize the resource usage in personal
smart space.

28 H. Ryu et al.

7 Related Works

Previous research projects present infrastructure based context management
architecture in typical smart space. Ontology based context aware middleware
approaches like SOCAM, Context aware middleware in Gaia, and Cobra provide
context information in resource plentiful environment [3], [4]. However, as a new
concept of personal smart space appears, context aware systems need to consider
limited resources on each device.

To provide context information in resource constrained mobile devices, Contory
presents a context factory middleware for context provisioning on smart phone [5]. It
supports three kinds of context provisioning methods including distributed context in
ad hoc networks. The flexibility on switching one method to another at run time
allows optimizing the utilization of computing and communication resources.
However, unfortunately, it does not consider the processing overhead concentrating
on a coordinator device for context aggregation.

Some researches motivating our works consider efficient aggregation processing
by distributing a context aggregation. [6], [7], [8]. Event driven context interpretation
presents the event driven distributed context aggregation model of context aware
system [6]. In this work, distributed processing is easily supported through the use of
several context providers helping an aggregation task. Moreover, as another approach
for distributed aggregation, context fusion network presents graph based context
aware middleware [7], [8]. Graph based abstraction make it easy to collect, aggregate,
and disseminate context information. This approach increases the reusability of
existing operators like context aggregator in context aware middleware. Although
these works provide better processing time and increase the reusability of existing
context providers, limitations of these works is that they conduct the aggregation
processing in a centralized manner on a coordinator device.

8 Conclusion

We propose a resource efficient context aggregation scheme in personal smart space.
We present the context management architecture to distribute aggregation tasks
without predefined sub task rule in personal smart space. With this approach, we
achieve reducing the processing overhead on a coordinator device by distributing an
aggregation task into several sub tasks.

In this approach, we propose a lightweight context aggregation mechanism using
composite event detection. Although it can reduce the aggregation processing
overhead, the lightweight aggregator limits to support semantic context reasoning. We
have a plan to consider providing semantic context information.

Moreover, as an extension of this work, we plan to consider multi-user
environment where all devices are connected in an ad-hoc manner without
coordinator device. Currently, we only support personal smart space considering
single user environment and including a coordinator. With multi-user environment,
we are also investigating some more complex scenarios and planning to present
context management architecture in ad-hoc environment.

 A Task Decomposition Scheme for Context Aggregation in Personal Smart Space 29

Acknowledgments. This research was partially supported by the Ubiquitous
Computing and Network (UCN) Project, the MIC(Ministry of Information and
Communication) 21st Century Frontier R&D Program and the KT-ICU Joint
Research Center in Korea.

References

1. Karypidis, A., Lalis, S.: Automated context aggregation and file annotation for PAN-based
computing. In: Personal and Ubiquitous Computing(PUC 2006), Oct. 2006 (2006)

2. Chetan, S., Al-Muthadi, J., Campbell, R., Mickunas, M.D.: Mobile Gaia: A Middleware
for Ad-hoc Pervasive Computing. In: IEEE Consumer Communications & Networking
Conference (CCNC 2005), Jan. 2005 (2005)

3. Riva, O.: Contory: A Middleware for the Provisioning of Context Information on Smart
Phones. In: Riva, O. (ed.) the Proceedings of the ACM/IFIP/USENIX 7th International
Middleware Conference (Middleware’06) (2006)

4. Gu, T., Pung, H.K., Zhang, D.Q: A Service-Oriented Middleware for Building Context-
Aware Services. Journal of Network and Computer Applications (JNCA) 28(1), 1–18
(2005)

5. Ranganathan, A., Campbell, R.H.: An Infrastructure for Context-Awareness based on First
Order Logic. Personal and Ubiquitous Computing 7 (2003)

6. Tan, J.G., Zhang, D., Wang, X., Cheng, H.S.: Enhancing Semantic Spaces with Event-
Driven Context Interpretation. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.)
PERVASIVE 2005. LNCS, vol. 3468, Springer, Heidelberg (2005)

7. Chen, G., Kotz, D.: "Context Aggregation and Dissemination in Ubiquitous Computing
Systems", Dartmouth Computer Science Technical Report TR, -420 (2002)

8. Chen, G., Li, M., Kotz, D.: Design and Implementation of a Large-Scale Context Fusion
Network. In: Proceedings of the First Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services (MobiQuitous 2004) (2004)

9. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Anchor article of a
special issue on context-aware computing in the Human-Computer Interaction (HCI)
Journal (2001)

10. Lee, D., Han, S., Park, I., Kang, S., Lee, K., Hyun, S.J., Lee, Y.-H., Lee, G.: A Group-
Aware Middleware for Ubiquitous Computing Environments. In: ICAT (2004)

11. Pietzuch, P.R., Shand, B., Bacon, J.: Composite Event Detection as a Generic Middleware
Extension. In: IEEE Network Magazine, Special Issue on Middleware Technologies for
Future Communication Networks (2004)

12. Chen, H., Finin, T., Joshi, A.: An Ontology for Context-Aware Pervasive Computing
Environments. The Knowledge Engineering Review(2003)

	A Task Decomposition Scheme for Context Aggregation in Personal Smart Space
	Introduction
	Motivation
	Requirements for Context Aggregation in Personal Smart Space
	Context Management Architecture for Personal Smart Space
	System Architecture
	Decomposition Algorithm

	Implementation
	Performance Analysis
	Related Works
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

