
A Language for Quality of Service Requirements
Specification in Web Services Orchestrations

Fabien Baligand1, Didier Le Botlan2, Thomas Ledoux2, and Pierre Combes1

1 France Telecom - R&D / MAPS / AMS,
38-40 rue du general Leclerc, 92794 Issy les Moulineaux, France

firstname.name@orange-ftgroup.com
2 OBASCO Group, EMN / INRIA, Lina

Ecole des Mines de Nantes,
4, rue Alfred Kastler, F - 44307 Nantes cedex 3, France

firstname.name@emn.fr

Abstract. Service Oriented Architectures industry aims to deliver ag-
ile service infrastructures. In this context, solutions to specify service
compositions (mostly BPEL language) and Quality of Service (QoS) of
individual services have emerged. However, architects still lack adapted
means to specify and implement QoS in service compositions. Typically,
they use ad-hoc technical solutions that significantly reduce flexibility
and require cost-effective development. Our approach aims to overcome
this shortcoming by introducing both a new language and tool for QoS
specification and implementation in service compositions. More specifi-
cally, our language is a declarative domain-specific language that allows
the architect to specify QoS constraints and mechanisms in Web Service
orchestrations. Our tool is responsible for the QoS constraints processing
and for QoS mechanisms injection into the orchestration. A key property
of our approach is to preserve compatibility with existing languages and
standards. In this paper, we present our language and tool, as well as an
illustrative scenario dealing with multiple QoS concerns.

1 Introduction

A Web Service is a component accessible over the Web that aims to achieve loose
coupling between platforms through the use of XML documents and standard-
ized protocols. As a platform neutral technology, Web Services bring a relevant
solution to companies that wish to open their Information System and to al-
low other businesses to connect to their services. Quality of Service (QoS) is an
essential criterion for customers seeking a service. A way to specify the customer-
provider relationship is to enrich Web Services with QoS documents that aim to
provide some guarantees (e.g. throughput, response time, price). For the time
being, several approaches [7,3,12,4] allow to publish service QoS so that both
customers and providers can agree to a certain QoS level.

Additionally, because of their loose coupling property, Web Services can be eas-
ily assembled. This feature is especially useful for business companies that want to

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 38–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Language for Quality of Service Requirements Specification 39

integrate several services from different sources. For instance, telecommunication
companies plan to provide their products (cell phones) with integrated services,
built on top of other services delivered by external businesses. Multiple tools and
languages [1,2] are available for Web Service composition purpose.

When composing services, some issues dealing with QoS arise. First, a crucial
issue is to guarantee global properties of the assembly. Architects need methods
or tools either to deduce the global QoS of a composition where each service
QoS is known, or to enforce QoS requirements over the composition. For now,
architects still have to deal manually with SLA combinatory of services involved
in their composition. The second issue relates to the complexity of adapting a
composition to a specific context. At deployment time, the system architect has
to ensure that the workflow fits to some specific QoS requirements. Dealing with
security, reliability and other QoS mechanisms (e.g. load balancing or message
queuing) requires a consequent expertise of the platform and of WS-* standards
(e.g. WS-Security, WS-Reliability). System architects lack abstractions to ad-
dress such QoS requirements.

In this paper, we present a new approach aiming to provide the architect with
adequate means to specify QoS requirements in Web Service compositions. To
this end, we design a language, named “QoSL4BP” (Quality of Service Language
for Business Process) or “QoSL” for short, that abstracts QoS concerns from the
low-level details of Web Services compositions. Additionally, we propose a tool,
named “ORQOS” (ORchestration Quality Of Service) that interprets QoSL4BP
and that produces an orchestration enhanced with QoS concerns. We illustrate
the whole approach with a scenario.

The remainder of the paper is organized as follows: Section 2 gives a brief
introduction of Web Service QoS and composition, before we talk about the is-
sues that result from the intersection of these two topics. Section 3 describes the
approach we propose to overcome these shortcomings, introducing both the lan-
guage and the mechanisms related to the implementation of QoS specifications.
Section 4 illustrates our approach through an illustrative use case. Section 5
discusses of related works while Section 6 concludes and outlines future work.

2 Background

2.1 Quality of Service in Web Service World

Web Services are built on standards widely adopted. Best known among these
standards are WSDL (interface specification), SOAP (communication proto-
col), and UDDI (service description and discovery). There also exist multiple
WS-* standards that address non functional properties (e.g. WS-Security or
WS-Addressing). Although most of these definitions have resulted into solid
standards, there still is no consensus to the question of how one should publish
the QoS of Web Service.

Among different approaches to predict the QoS of a service, current works fo-
cus on promoting the use of Service Level Agreement (SLA). SLA consists in a
prescription concerning QoS between a consumer and its provider. For the time

40 F. Baligand et al.

being, there is no standardSLA definition and each vendor has designed and imple-
mented its platform specific solution (IBM Web Service level Agreement, HP Web
Service ManagementLanguage,Web Service OfferingLanguage,WS-Agreement).

2.2 Web Service Composition

Using several Web Services as building blocks, architects may design more elab-
orated Web Services by composing them. A possible way to achieve Web Service
composition is to design a message workflow and specify the services to be called
within the workflow. Such a composition is called an orchestration. Orchestra-
tion processes are centralized and one entity is responsible for the execution logic
of the whole workflow. This method is convenient for maintenance and evolution
since the architect can design the workflow in the boundaries of his own business.

To design such orchestrations, many languages have merged into a standard
and widely agreed language named “Business Process Execution Language for
Web Services” (BPEL4WS or BPEL for short) [2]. This language is based on a
small set of primitives (e.g. invoke, receive, reply, flow, throw), hence allowing
any architect to specify the structure of his orchestration.

2.3 Current Issues

At pre-deployment time, the SLA of local services (i.e. services that take part
in the composition) is computed to deduce the SLA of the composite service
(bottom-up approach), or, conversely, the architect must resolve a set of local
services whose SLA aggregation match the SLA of the composite service (top-
down approach). However, both approaches do not take into account architects
advanced QoS requirements. For instance, the architects may want to guaranty
the SLA of their orchestrations, while specifying QoS of some parts of their
orchestrations and requiring that some local services are discovered to match the
global SLA. In this case, SLA documents do not provide expressivity to address
such QoS requirements. Furthermore, being able to specify QoS mechanisms,
such as security, over parts of the orchestration is a major concern that SLA
cannot address either.

Because BPEL language does not provide expressivity for QoS management,
and since SLA are limited, architects cannot easily declare QoS requirements
and logic in their orchestrations. Instead, they specify QoS management at the
message level, using multiple frameworks and languages. Making all these frame-
works work together leads to code that lacks flexibility and portability, that
decreases loose coupling nature of the composition, and which is error-prone.

3 Quality of Service Requirements Specification

3.1 Motivation

BPEL is a language allowing the architect to design orchestrations. From the
outside, an orchestration can be seen as a composite service with a WSDL func-
tional interface. A SLA document can be associated to a service or a composite

A Language for Quality of Service Requirements Specification 41

Table 1. Web Services related Languages

Functional Description QoS Description
External Interface WSDL SLA

Composition Implementation BPEL Lack of expressivity

service to specify its QoS properties. However, there is a lack of expressivity
for architects willing to specify QoS objectives and mechanisms in the orches-
tration (e.g. the architect may want to specify security, performance or even
pricing requirements over parts of his orchestration). We give an illustration of
this discussion in Table 1.

To overcome this lack of expressivity, we can consider several guidelines, such
as specifying a QoS extension for BPEL, or implementing a QoS-aware BPEL
engine, or designing a specific language and platform for QoS requirements spec-
ification and enactment in BPEL. Because a key decision of our approach was
not to be intrusive, in order to preserve existing infrastructures and languages,
we choose not to extend BPEL language or to implement a new BPEL engine.
Moreover, because languages improve reusability and portability, we decided to
provide an appropriate language, namely “QoSL4BP” (Quality of Service for
Business Process) or QoSL for short, for QoS requirements specification in Web
Service compositions. More specifically, QoSL allows to specify QoS constraints
and mechanisms in Web Service orchestrations.

3.2 Design

To design the QoSL language, we focussed on a couple of properties that seem
relevant to our application domain:

– QoSL is a domain-specific language (DSL) [9]. Domain expertise is captured
in the language implementation rather than being coded explicitly. The do-
main of QoSL corresponds to “Quality of Service applied to Web Service
Orchestrations”, encompassing sub domains (e.g. security or performance).

– QoSL is a declarative language [10] as it meant to be goal driven. Control is
not the concern of the architect who does not need to provide a fully detailed
list of instructions to specify QoS objectives and mechanisms.

– QoSL is modular. Separation of concerns is the process of breaking a pro-
gram into distinct features, hence increasing code clarity and evolutivity. In
order to separate concerns, the QoSL language isolates the code into several
modules (policies), each of them capturing one particular QoS concern.

3.3 Specification

Policies are the basis of QoSL language structure. A policy represents a single
QoS concern of the service and contains a set of rules, which are composed of
QoS constraints and mechanisms. In QoSL, a policy has a name, targets a scope
of the orchestration (a scope represents a single activity, multiple activities or

42 F. Baligand et al.

Table 2. QoSL Language Entities

Language Entity Meaning
scope abstracts away an orchestration subset. represents a single activity,

(Where) multiple activities, or even the whole orchestration.
concern specifies which QoS concern is addressed in a specified scope.
(What) enforces separation of concerns.
policy consists in a module encompassing QoS constraints and
(How) mechanisms in a scope for a specific QoS concern.

even the whole orchestration) and refers to a particular QoS concern to enforce
homogeneity of the body of the policy. Since QoSL aims to bind BPEL, SLA and
WS-* standards, then QoSL borrows some abstractions from these languages.
Table 2 shows entities of the QoSL language.

To implement the body of policies, we focussed on adapted constructs. QoSL
allows to bind variable names to values (using “let variableName = value”), to
define constraints (“check QoSproperty > quantitativeRequirement”) and to
set mechanisms (“set QoSmechanism(parameterList)”). It allows the architect
to specify essential parameters, related to the policies he defines, as well as
parameters that would otherwise be inferred (e.g. weights for weighted round-
robin load balancing algorithm). We present here a first version that will be
refined and extended later on (e.g. to integrate policy composition primitives).
Figure 1 illustrates the structure of actual QoSL language.

orqos orqos name {
policy policy name scope BPEL scope name concern QoS concern {

// specify some variable
let variable name = value ;
// specify some constraint
check QoS property > quantitative requirement ;
// specify some mechanism
set QoS mechanism(parameterList) ;

}
}

Fig. 1. QoSL Policy Template

It is worth noting that although our approach enables the architect to write
policies, it is different of WS-Policy. WS-Policy provides a grammar for express-
ing the capabilities and requirements of a single entity, whereas QoSL allows to
set objectives and actions over parts of a workflow.

3.4 Interpretation

Figure 2 shows the QoSL interpretation process. This process is static and occurs
before the workflow is instantiated in the BPEL engine.

A Language for Quality of Service Requirements Specification 43

Fig. 2. QoSL Interpretation Process

At development time, the business architect is responsible for designing the
workflow, using BPEL language. Then the system architect has to specify the
non functional properties of the architecture. He collects SLA related to services
involved in the orchestration and specifies QoS policies, using QoSL language.
QoSL interpretation is performed by our tool ORQOS. The result is a new BPEL
document and its associated SLA. BPEL document contains QoS mechanisms,
and is ready to be deployed on a BPEL engine. Once deployed the BPEL work-
flow can be executed. While running, calls are made to some Web Services that
contain QoS mechanism logic. For the time being, runtime monitoring and SLA
violation are not handled by ORQOS.

3.5 ORQOS Process

ORQOS aims to process the QoSL policies specified by the architect. A major
issue consists in dealing with policies composition to avoid possible interactions
during the processing. For now, each policy is processed sequentially based on
their order in the QoSL document. We plan to improve this model in our future
works. So far, processing a QoSL document consists in five steps.

– First, ORQOS checks policies consistency to ensure that the code contained
by a policy is homogeneous and that it addresses a single concern. For in-
stance, a security mechanism should not be called within a policy whose
concern is performance. By clearly separating the different concerns, it be-
comes easier to figure out how policies should be composed one with another.

– Second step corresponds to modifying the original BPEL graph in such a
way that QoS mechanisms are introduced at specific places determined by

44 F. Baligand et al.

the scope of the policy (application domain). Such mechanisms are specified
by the policies and are injected into the BPEL as “extra BPEL” activities.
Potentially, extra BPEL activities set can include a wide range of QoS mech-
anisms such as traditional QoS mechanisms found in regular Web application
servers, as well as mechanisms involving WS-* standards.

– Once the new workflow is generated, ORQOS sets constraints on each activ-
ity. Constraints are provided by SLA of local services and composite service,
and by QoSL specifications concerning QoS requirements over scopes.

– Constraints are checked by a constraint solver. At this step, if the constraints
defined by the architect cannot be satisfied, ORQOS stops and returns an ex-
ception. In the opposite case, ORQOS keeps processing and may use some of
the results as parameters for QoS mechanisms settings (e.g. balance weights
or capacities for message queuing) and to generate the SLA of the composi-
tion.

– Final step is the production of a BPEL document that can be read by any
BPEL engine. Extra BPEL activities are refined into plain BPEL activity
sequences that can involve some “invoke” activities that reach infrastruc-
tural Web Services containing mechanism logic (e.g. for security concern, an
infrastructural Web service is responsible for WS-Security implementation
logic). Thus, the potential boundaries of the approach correspond to the set
of actions that can possibly be performed by modifying a BPEL document
and calling logic contained in infrastructural Web Services.

4 Illustrative Scenario

4.1 Urban Trip Planner Scenario

Depicted in Figure 3, the “Urban Trip Planner” (UTP) scenario illustrates a Web
Service orchestration. It aims to plan trips in big cities, by using transportation
services. By calling the UTP service, a client gets the complete transportation
route, as well as a map showing the path from the last station to his final des-
tination.

As can be seen on Figure 3, the Urban Trip Planner Service is composed of
multiple services. It requires both a destination and a device identification num-
ber as inputs. Next, the request is sent to two different services in parallel. These
services belong a flow named “OrangeScope”. The first service uses the device
identification number and returns the client current location (for instance, using
a Wifi access point location service). The second service takes the destination in
input and returns the exact address, using the Yellow Pages service. Upon recep-
tion of both replies, the UTP service sends both addresses to a Transportation
service that returns the route and commutes details. The final station address
and the destination address are sent to a Grapher service that delivers a map of
the path from the station to the destination. Eventually, both the route details
and the map are returned to the user.

Let us now give an example of our approach through a scenario involving three
QoS properties: throughput, capacity and authentication properties. Through-
put is the number of requests by second that a service can process. Capacity

A Language for Quality of Service Requirements Specification 45

Fig. 3. Urban Trip Planner Service Workflow

relates to the limit of the number of simultaneous requests which should be pro-
vided with guaranteed performance. Authentication is the ability of a client to
show credentials to access a service. To address these QoS properties, the archi-
tect would like to specify some QoS constraints and some QoS mechanisms in
the UTP orchestration.

4.2 Specification of QoS Concerns

Once the business architect has implemented the workflow using BPEL, the
system architect has to ensure it fits to some QoS requirements. Thus, before
deploying the orchestration, the system architect reads each SLA document,
then deduces and validates the global QoS of the assembly.

To adjust to services offers and requirements, he also needs to implement
QoS mechanisms such as load balancing, message queuing and username token
authentication. Such information can be specified using QoSL policies. For this,
constraints and mechanisms targeting a same QoS concern in a same scope are
gathered in a same policy. The policies corresponding to the requirements of the
architect are shown on Figure 4.

– The first policy is called “IncreaseGrapherThroughput” and targets the sin-
gle “InvokeGrapher” activity. It specifies that the throughput property of
the Grapher service should be more than 5 000 requests/sec and introduces
a load balancing mechanism using the weighted round robin algorithm over
Mappy, GoogleMap, and MapQuest services with weights 3, 2 and 5.

– The second policy, called “ManageGlobalCapacity” aims to force the or-
chestration capacity to be more than 200 parallel requests. It specifies that
a queuing mechanism can be used to increase the capacity.

– The third policy affects the security settings when calling services of the
“OrangeScope” (which are the Localiser and the Yellow Pages services). The

46 F. Baligand et al.

orqos UTPpolicies {
policy IncreaseGrapherThroughput scope InvokeGrapher concern Performance {

check Throughput ≥ 5000 ;
let $MyLinks={Mappy, GoogleMap, MapQuest} ;
set LoadBalancing(Algorithm=WeightedRoundRobin, PartnerLinks=$MyLinks,

Weights={3, 2, 5}) ;
}
policy ManageGlobalCapacity scope UTPFlow concern Capacity {

check Capacity ≥ 200 ;
set Queue() ;

}
policy OrangeAuthentication scope OrangeScope concern Security {

let $MyToken = {ORQOSuser, mypassw} ;
set Authentication(Token=$MyToken) ;

}
}

Fig. 4. QoSL Document for UTP Orchestration

architect defines a username token (with name “ORQOSuser” and password
“mypassw”) and specifies the authentication mechanism to use.

4.3 Interpretation of QoSL

As said earlier, ORQOS processes QoSL documents through five steps. At first
step, it takes the BPEL document of the UTP orchestration document, as well
as the QoSL document stating the three policies (IncreaseGrapherThroughput,
ManageGlobalCapacity and OrangeAuthentication) and the SLA of each ser-
vice (Localiser, Yellow Pages, Transportation and Grapher services). These doc-
uments are translated to objects and policies homogeneity is verified.

Next, the graph describing the UTP workflow is modified. A “Load Balanc-
ing activity” replaces the Grapher invoke activity and encapsulates a Mappy,
MapQuest and GoogleMap invoke activities. Each invoke activity is encapsu-
lated in a “Message Queuing activity”. The OrangeScope is encapsulated in an
“Authentication Activity”.

Next step consists in setting constraints on each activity of the workflow.
In this example, we focus on throughput and capacity properties. Each activ-
ity encapsulates both a throughput and a capacity parameter. Simple activities
(invoke activities to services involved in UTP workflow) are linked to SLA infor-
mation related to these properties, while composite activities (Load Balancing
activity, Message Queuing activity, Orange Scope parallel branches) aggregates
encapsulated activities parameters. Eventually, it results in a constraint network
that is solved by a java constraint solver (Choco constraint solver).

The solver returns solutions to determine the capacity of the Message Queues
activities, as well as weights for the weighted round robin algorithm of the Load
Balancing activity. It also computes the SLA of the composite service so that
the service customer can get a guaranty of the service QoS.

A Language for Quality of Service Requirements Specification 47

Finally, the graph is transformed back to plain BPEL. First, the Load Bal-
ancing activity gets replaced by a sequence of two activities: an invoke activity
to a load balancing infrastructural Web Service to figure which Grapher service
should be called for this specific instance of the workflow, then a switch activity
tests the output and calls the appropriate Grapher service. Message queuing
activities get replaced by an invoke activity to a message queue infrastructural
Web Service before each invoke activity of the workflow. With regards to per-
formance issues, tests have shown that load balancer service or message queues,
using a cache mechanism for state management, do not significantly impact the
BPEL engine performance. Then the Authentication activity gets replaced by
two invoke activities, located around the Orange Scope, to an authentication in-
frastructural Web Service. This security service injects a security token through
the filters of the BPEL engine when the orchestration reaches the Orange Scope.
Because infrastructural Web Services are located on the same server as the BPEL
engine, performance overhead is minimal. The new BPEL document is eventually
generated and ready to be deployed.

5 Related Works

“Aspect Oriented for Business Process Execution Language” (AO4BPEL) [6]
aims to bring AOP (Aspect Oriented Programming) mechanisms to BPEL. The
authors have given examples of their solution with security aspects and use de-
ployment descriptors to generate aspects. Although very promising, AO4BPEL is
an imperative language and we do not believe that architects want to deal with
implementation details in the BPEL process. We also think that deployment
descriptors are limited when it comes to expressing mechanisms over multiple
activities of the workflow and, since AO4BPEL approach does not benefit of
SLA works, they do not address QoS constraints specification. Our belief is that
architects would rather use a declarative language to specify constraints and
mechanisms over different scopes of their orchestrations.

In [5] the authors propose a policy assertion language, “WS-CoL” (Web Ser-
vices Constraint Language), based on WS-Policy and specifically designed for
user requirements (constraints) specification on the execution of Web service
compositions. This language is meant to be compliant with the WS-Policy frame-
work, and its process requires a transformation step of the BPEL document to
integrate some monitoring activities. This approach is similar to ours in that
it provides expressivity concerning requirements on BPEL orchestrations. How-
ever, the authors only considered security assertions, using WS-SecurityPolicy.

“Self-Serv” [11] solution includes a platform to compose Web Services, a
declarative language based on state charts and a “community of service” con-
cept (containing alternative services), to add a layer between composition level
and applicative services level. Composition execution is controlled by “coordina-
tors” components that are in charge of initializing, controlling and monitoring
the composition. Although this solution brings interesting elements to QoS man-
agement, the fact that BPEL is not supported is quite limitative.

48 F. Baligand et al.

[8] offers to extend BPEL with QoS attributes in order to manage SLA data
written using the WSLA language. A new tag, named “agreement”, has been
inserted into BPEL schema. Architect should be able to specify some QoS con-
straints while actual QoS properties are evaluated through Computational Qual-
ity Attributes elements. Because this work extends BPEL, it is not compliant
with regular BPEL engines. Moreover, these extensions do not deal with QoS
mechanism and so the architect still has to implement logic of QoS mechanisms.
Also, our approach allows the orchestration logic and QoS logic to be separated,
hence improving flexibility and reusability.

6 Conclusion and Future Works

We first outlined a crucial issue concerning Web Service compositions. Although
solutions exist to compose Web Services and to publish the Quality of Service of
individual services, there is still no solution for QoS requirements specification in
Web Service compositions. For now, system architects have multiple languages
and frameworks to deal with, at deployment time. They also have to check each
SLA to deduce the global outcome, making it a complex task to guarantee QoS
properties of an assembly.

Our solution aims to provide abstractions for system architects, so they can
specify and implement QoS requirements before deployment time. Our first
contribution is a language, called “QoSL4BP” (Quality of Service Language
for Business Process), that allows the architect to specify QoS constraints and
mechanisms in their orchestration. Secondly, a tool, called “ORQOS” (ORches-
tration Quality Of Service), validates these constraints (by analyzing both the
QoSL document as well as the multiple SLA documents) and injects QoS mecha-
nisms (e.g. security mechanisms). QoS mechanisms logic is implemented by some
infrastructural Web Services that can be reached via BPEL invocations. A key
decision for the design of our approach was to not modify any existing language
or standard from the Web Service world.

So far, we have built a first prototype that tackles with three different QoS
concerns (throughput, capacity and security) and that is able to inject load bal-
ancing, message queuing and authentication mechanisms into an orchestration.
Because QoS concerns are likely to be tangled up, we plan to study composition
of policies in a more formal way as we extend our approach to other concerns.

References

1. Web service choreography interface (wsci) 1.0 (2002), http://www.w3.org/
TR/wsci/

2. Business process execution language for web services, version 1.1 (2003),
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

3. Keller, A., Ludwig, H.: The wsla framework: Specifying and monitoring service level
agreements for web services. In: Journal of Network and Systems Management,
March 2003, vol. 11, Plenum Publishing (2003)

http://www.w3.org/TR/wsci/
http://www.w3.org/TR/wsci/
ftp://www6.software.ibm.com/software/ developer/library/ws-bpel.pdf

A Language for Quality of Service Requirements Specification 49

4. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.: Automated sla
monitoring for web services. In: 13th IFIP/IEEE International Workshop on Dis-
tributed Systems: Operations and Management, DSOM, Montreal, Canada, pp.
28–41. Springer, Heidelberg (2002)

5. Baresi, L., Guinea, S., Plebani, P.: Ws-policy for service monitoring. In: Bussler,
C., Shan, M.-C. (eds.) TES 2005. LNCS, vol. 3811, pp. 72–83. Springer, Heidelberg
(2006)

6. Charfi, A., Schmeling, B., Heizenreder, A., Mezini, M.: Reliable, secure, and trans-
acted web service compositions with ao4bpel. In: ECOWS. Proceedings of the 4th
IEEE European Conference on Web Services, Zurich, Switzerland, December 2006,
IEEE Computer Society Press, Los Alamitos (2006)

7. Li Ji Jin., et al.: Analysis of service-level agreement for web services. Technical
Report HPL-2002-180 (2002)

8. Fung, C.K., Hung, P.C.K., Linger, R.C., Walton, G.H.: Extending business pro-
cess execution language for web services with service level agreements expressed
in computational quality attribute. In: HICSS-38. IEEE Thirty-Eighth Hawaii In-
ternational Conference on System Sciences, Big Island, Hawaii, IEEE Computer
Society Press, Los Alamitos (2005)

9. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. csur 37(4), 316–344 (2005)

10. Sethi, R.: Programming languages: concepts and constructs. Addison-Wesley Long-
man Publishing, Boston, MA (1989)

11. Sheng, Q.Z., Benatallah, B., Dumas, M., Mak, E.O.-Y.: Self-serv: A platform for
rapid composition of web services in a peer-to-peer environment. VLDB02 (2002)

12. Tosic, V., Patel, K., Pagurek, B.: Wsol - web service offerings language. In: Bussler,
C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and
WES 2002. LNCS, vol. 2512, pp. 57–67. Springer, London (2002)

	A Language for Quality of Service Requirements Specification in Web Services Orchestrations
	Introduction
	Background
	Quality of Service in Web Service World
	Web Service Composition
	Current Issues

	Quality of Service Requirements Specification
	Motivation
	Design
	Specification
	Interpretation
	ORQOS Process

	Illustrative Scenario
	Urban Trip Planner Scenario
	Specification of QoS Concerns
	Interpretation of QoSL

	Related Works
	Conclusion and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

