
J.C. Rajapakse, B. Schmidt, and G. Volkert (Eds.): PRIB 2007, LNBI 4774, pp. 378–390, 2007.
© Springer-Verlag Berlin Heidelberg 2007

High Performance Classification of Two Imagery Tasks
in the Cue-Based Brain Computer Interface

Omid Dehzangi, Mansoor Zolghadri Jahromi, and Shahram Taheri

School of Computer Engineering,
Nanyang Technological University, Nanyang Avenue, Singapore

Omid0002@ntu.edu.sg,
{Zjahromi,Taheri}@cse.shirazu.ac.ir

Abstract. Translation of human intentions into control signals for a computer,
so called Brain-Computer Interface (BCI), has been a growing research field
during the last years. In this way, classification of mental tasks is under
investigation in the BCI society as a basic research. In this paper, a Weighted
Distance Nearest Neighbor (WDNN) classifier is presented to improve the
classification rate between the left and right imagery tasks in which a weight is
assigned to each stored instance. The specified weight of each instance is then
used for calculating the distance of a test pattern to that instance. We propose an
iterative learning algorithm to specify the weights of training instances such that
the error rate of the classifier on training data is minimized.
ElectroEncephaloGram (EEG) signals are caught from four familiar subjects
with the cue-based BCI. The proposed WDNN classifier is applied to the band
power and fractal dimension features, which are extracted from EEG signals to
classify mental tasks. Results show that our proposed method performs better in
some subjects in comparison with the LDA and SVM, as well-known classifiers
in the BCI field.

Keywords: Nearest Neighbor, Weighted distance, Brain-Computer Interface,
EEG.

1 Introduction

Classification of mental imagery tasks is used to help amyotrophic lateral sclerosis
(ALS) patients to enable them to communicate with their environment [1]. A bright
view to the future of this research is to help ALS patients by enabling them to move
their limbs with their thoughts. Limb movement can be done by Functional Electrical
Stimulation (FES) [2], which is controlled by the BCI system. This interesting
application is in its primary stages mainly due to low classification rate even between
two imagery tasks in some subjects.

The research in the BCI field can be categorized into synchronous [1] and
asynchronous [3] methods. Most articles focus on the synchronous BCI which is so
called cue-based BCI. In this way, Boostani et al. [4] applied Adaboost classifier on
the fractal dimension features (extracted from the EEG signals) and showed that this

 High Performance Classification of Two Imagery Tasks 379

combination has a good prediction ability. In a comprehensive study, Boostani et al.
[5] employed genetic algorithm on different features and used three different
classifiers on the weighted features to show that choosing the band power and fractal
dimension as features (by genetic weighting) can significantly improve the
performance of cue-based BCI system. The Graz-BCI research group has employed
discriminative features based on second order statistics such as band power [1],
adaptive autoregressive coefficients [6], and wavelet coefficients [7] with well-known
classifiers containing Fisher’s Linear Discriminant Analysis (FLDA) [8], Finite
Impulse Response Multi-Layer Perceptrons (FIRMLP) [9], Linear Vector
Quantization (LVQ) [10], Hidden Markov Models (HMM) [1], and Distinction
Sensitive Learning Vector Quantization (DSLVQ) [11] to improve the classification
rate between the various movement in imagery tasks. Deriche et al. [12] selected the
best feature combination among variance, AR coefficients, wavelet coefficients, and
fractal dimension by modified mutual information method. They showed that a
combination of the aforementioned features is more efficient than each of them
individually.

As a simple but efficient supervised learning algorithm, the nearest neighbor
classifier has been used successfully on pattern classification problems [13], [14].
However, this method fails to perform satisfactorily in cases that different classes are
overlapped in some regions of feature space. Another problem is the noisy training
instances that can degrade the performance of this classifier in the generalization
phase.

The basic NN uses all training data in the generalization phase. It also considers all
the stored instances with the same importance for classification, but the instances are
different in being representative of their typical classes.

Recently, many improving techniques have been proposed and added to the nearest
neighbor algorithm such as editing, condensing, learning, and weighting [15] for
overcoming to its drawbacks. Moreover, there has been considerable research interest
in learning mechanisms to locally adapt the distance metrics [16], [17]. Wang et al.
[18], [19] have shown that by including a local weight and introducing a simple
adaptive distance measure the performance of the NN improves significantly. In this
paper a novel learning algorithm is presented which is used to assign a weight to each
stored instance, which is then contributed in distance measure, with the goal of
improvement in generalization ability of the basic NN. Our proposed learning method
is used to adjust the weights of instances in the training set. The basic component of
the learning algorithm is an optimization procedure that finds the best operating point
of a classifier (i.e., resulting in minimal error rate of the classifier on train data). The
proposed scheme achieves two desirable goals at the same time. The classification
rate is improved by adjusting a weight for each instance and considering it while
calculating distance measure. Our experiments show that the proposed WDNN
algorithm can make a robust and accurate classifier system that improves the
performance of the cue-based BCI.

The rest of this paper is organized as follows. In section 2, subjects and the method
of data acquisition are described. In section3, features are illustrated. In section 4, the
proposed WDNN and our proposed method of learning the weights of training
instances are described. In section 5, the experimental results are presented and in
section 6, conclusion is discussed.

380 O. Dehzangi, M.Z. Jahromi, and S. Taheri

2 Subjects and Data Acquisition

Four subjects (L1, O3, O8, and G8), familiar with the Graz-BCI, participated in this
study. Subjects are ranged from 25 to 35 years old. Each subject sat in a armchair
about 1.5 meters in front of the computer screen. Three bipolar EEG-channels were
recorded from 6 Ag/AgCl electrodes placed 2.5 cm anterior and 2.5 cm posterior to
the standardized positions C3, Cz and C4 (international 10-20 system). The EEG was
filtered between 0.5 and 50 Hz and recorded with a sample frequency of 128 Hz.

The training in Graz-BCI paradigm is consisted of a repetitive process of triggered
movement imagery trials. Each trial lasted 8 seconds and started with the presentation
of a blank screen. A short acoustical warning tone was presented at second 2 and a
fixation cross appeared in the middle of the screen. At the same time, the trigger was
set from 0 to 1 for 500 milliseconds. From second 3 to second 7, the subjects
performed left or right hand motor imagery according to an arrow (cue) on the screen.
An arrow pointing either to the left or to the right indicated the imagination of a left
hand or right hand movement. The order of appearance of the arrows was randomized
and at second 7 the screen content was erased. The trial finished with the presentation
of a randomly selected inter-trial period (up to 2 seconds) beginning at second 8.
Figure 1. shows the timing scheme. Three sessions were recorded for each subject on
3 different days. Each session consisted of 3 runs with 40 trials each.

Fig. 1. Training paradigm

3 Feature Extraction

The goal of feature extraction is to find an informative representation of the data that
simplifies the detection of brain patterns. The signal features should encode the
commands sent by the user. Band power and fractal dimension features are used in
this paper. These are briefly described in the following sections.

3.1 Band Power (BP)

The EEG contains different specific frequency bands, that is standard alpha (10-
12Hz) and beta (16-24Hz) bands, which are particularly important in classifying
different brain states, especially for discriminating imagery tasks. For this study, band
power features were calculated by applying a Butterworth filter (order 5), squaring of
the samples and then averaging of subsequent samples (1 s average with 250 ms
overlap).

 High Performance Classification of Two Imagery Tasks 381

3.2 Fractal Dimension (FD)

BP and AAR features are based on the second order statistics of the signal and thus
they describe the spectral information in the data. FD, however, captures nonlinear
dynamics in the signal. Although all features here try to capture the underlying
neurophysiological patterns in the signal, FD has a direct relationship with the entropy
of the signal, which in turn is related to information content of the signal. FD is a
measure of complexity of a signal. More fluctuation in the attractor shape is reflected
by a higher value of FD. There are several methods to calculate the FD [20]. In this
study we employed Higuchi’s method [21], which is described as follows: Consider a
signal containing N samples {x(1) ,x(2),…,x(N)} . Construct k new time series k

mx

(embedded space) as:

(), (), (2),..., (k
m

N m
x x m x m k x m k x m k

k

⎧ − ⎫⎡ ⎤= + + +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
 for m=1, 2,…, k. (1)

where m indicates the initial time value, and k represents the discrete time interval
between points. For each of the k time series xm

k, the length Lm(k) is computed by:

1

() ((1)) (1)
()

N m

k

i
m

x m ik x m i k N
L k

N m
k

k

−⎡ ⎤
⎢ ⎥⎣ ⎦

=

+ − + − −
=

−⎡ ⎤
⎢ ⎥⎣ ⎦

∑
 (2)

where N is the total length of the data sequence x and (N-1)/[(N-m)/k]k, is a
normalization factor. An average lengyth of every sub-sequence is computed as the
mean of the k lengths Lm(k). This procedure is repeated for the different values of k (k
= 1,2, …,kmax), that kmax varies for each k. There is no analytical formula for
determining the value of k, therefore, it has to be found experimentally. An average
length for each k is obtained which may be expressed as proportional to k-D, where D
is the signal's FD. In order to find the best value of k, from the log-log plot of
log(L(k)) versus log(1/k), one obtains the slope of the least-squares linear best fit. The
FD of the signal, D, is then calculated as:

D = [log L(k)] / log(1/k) (3)

4 Weighted Distance Nearest Neighbor (WDNN)

We briefly describe the NN rule to introduce the notation. For an M-class problem,
assume that a set of training examples of the form {(Xi, Ci) | i = 1,..., N} is given.
Where, Xi is a n-dimensional vector of attributes Xi = [xi1, xi2, ...,xin]

T and Ci ∈ [1,2,
…,M] defines the corresponding class label. To identify the NN of a query pattern Q,
a distance function has to be defined to measure the distance between two patterns.
Euclidean distance has conventionally been used to measure the distance (i.e.,
dissimilarity) between two patterns Xi and Xj:

382 O. Dehzangi, M.Z. Jahromi, and S. Taheri

2

1
d(,) (-)i j

n

k
X X ik jkx x

=
= ∑ (4)

Assuming that each attribute of the problem is normalized to the interval [0,1], we can
equivalently work with the following similarity measure (instead of Euclidean
dissimilarity measure), which normalizes the similarity between two instances Xi and
Xj to a real number in the interval [0,1]:

d(,)
(,) = 1 - i j

i j

X X
X X

n
μ (5)

With basic NN rule, the query pattern Q is classified by the class most similar training
pattern Xp in the training set. This can be formally stated as:

{ }
1

p = argmax (,)i
i N

Q Xμ
≤ ≤

 (6)

The NN rule assumes that all classifiers (i.e., stored instances) are equally reliable and
uses equation (6) to find the NN of a query pattern. This paper is based on the idea
that some of the stored instances are more reliable classifiers than others. We
accomplish this by assigning a weight wk to each instance Xk. The weights of the
training instances are used in the test phase to find the NN of a query pattern:

{ }
1

p = argmax (,)j j
j N

w Q Xμ
≤ ≤

× (7)

We refer to this classifier as WDNN. Alternatively, the scheme can be viewed as a
form of adaptive distance measure for NN that allow the distance measure to vary as a
function of instances in the training set. In the next section, we present an algorithm
that finds the best operating point in 2-class problems. This algorithm will be used as
the basic component of the proposed scheme in section 4.2 to learn the weights of
training instances in a WDNN classifier.

4.1 Learning the Best Operating Point in 2-Class Problems

A discrete classifier such as a classification tree only produces a class label for an
input pattern. For a 2-class problem (with positive and negative class labels), given a
test set of P positive and N negative labeled patterns, a classifier of this type generates
a 2×2 confusion matrix (shown in Fig.2) representing the performance of the
classifier. The accuracy of the classifier is defined as:

Accuracy = +
TP TN TP FP N

P N P N P N

+ −=
+ + +

 (8)

Many classifiers, such as Bayesian classifier or neural networks naturally assign a
score S(Xt) to each input pattern Xt (i.e., scoring classifiers). For example, naive Bayes

 High Performance Classification of Two Imagery Tasks 383

classifiers output posterior probability distribution over classes. In this case, the score
of a pattern for our 2-class problem can be defined as:

(,) (,)
()

(,) 1 (,)
t t

t
t t

pr n X pr n X
S X

pr p X pr n X
= =

−
 (9)

Where pr(p,Xt) and pr(n,Xt) denote the estimated probabilities that the pattern Xt is of
positive and negative class, respectively. With the above definition, the score is a
numeric value (in the range 0 to ∞) expressing the degree that Xt is thought to be of
negative class.

A scoring classifier can be converted to a discrete classifier by specifying a
threshold on score. A pattern is classified as negative if its score is greater than the
specified threshold and positive otherwise. In this way, the accuracy corresponding to
each specified threshold can be calculated using (8).

Fig. 2. Confusion matrix for a discrete classifier

Having the relation between a threshold and corresponding accuracy of the
classifier, the best threshold can be easily found by varying the threshold from 0 to ∞.
Actually, it is sufficient to consider those thresholds such that classification of an
instance changes from negative to positive. Based on this idea, an efficient algorithm
for calculating the best threshold is given in [8, 17]. For this purpose, the patterns are
ranked in ascending order of their scores (i.e., S(X1)< S(X2)<….<S(XP+N)).
Considering any threshold between S(XK) and S(XK+1), the first K patterns will be
classified as positive and the remaining P+N-K patterns as negative. In this way, a
maximum of P+N+1 different thresholds should be examined to find the best
threshold. The first threshold classifies everything as negative and the last threshold
classifies everything as positive. The rest of the thresholds are chosen in the middle of
two non-equal successive scores S(XK), S(XK+1) in the list such that S(XK) ≠ S(XK+1).
The best threshold is simply the one that maximizes the accuracy (8) of the classifier.
An algorithm to find the best threshold is given in Table 1. This algorithm receives a
set of patterns and their scores as input and returns the best threshold (i.e. giving
maximum classification rate) as output.

The important point is that the value of the best threshold (i.e., best-th) calculated
using the algorithm of Table 1 can be used as the weight for positive class. That is,
instead of classifying a pattern Xt as positive if S(Xt)<best-th, we can equivalently
classify the pattern as positive if best-th × pr(p,Xt) > pr(n,Xt).

True
Positives

False
Positives

False
Negatives

True
Negatives

p n

P N

p

n

Column
Totals:

Actual Class

Pr
ed

ic
te

d
C

la
ss

384 O. Dehzangi, M.Z. Jahromi, and S. Taheri

Table 1. Algorithm for finding the best threshold

 Inputs: patterns Xt, scores S(Xt)
Output: the value of best threshold (best-th)

current = number of misclassified patterns corresponding to the threshold of th = 0 (i.e.,
classifying everything as class T)
optimum = current
best-th = 0
rank the patterns in ascending order of their scores
{assume that Xk and Xk+1 are two successive patterns in the list}
for each different threshold th = (Score(Xk)+Score(Xk+1))/2

current = number of misclassified patterns corresponding to the specified threshold
(i.e., all patterns Xt having Score(Xt) < th are classified as class T)
if current < optimum then

optimum = current
best-th = th

end if
end for
{assume that last is the score of last pattern in the list and τ is a small positive number}
current = number of misclassified patterns corresponding to th = last + τ (i.e.,
classifying everything as class T)
if current < optimum then

optimum = current
best-th = th

end if
return best-th

4.2 Learning Weights of Training Instances

For an M-class problem, assume that a training set Г consisting of N labeled training
patterns (i.e. Г={Xj, j=1, 2, ..., N}) is available. In this section, we propose an efficient
algorithm that attempts to maximize the classification accuracy of the WDNN
classifier on training data by learning the weights of instances in the training set.

In its basic form, the proposed algorithm is a hill-climbing search method. The
algorithm starts with an initial solution to the problem (i.e., {wk = 1, k =1, 2, …, N}),
and sequentially improves the solution by finding a neighbor solution that is better
than the current one. A neighbor solution is different from the current solution in the
value of just one parameter (i.e., the weight of one instance). Without the algorithm
proposed in this section, many neighbor solutions should be examined (i.e., making
the search process slow) to find a solution that is better than the current solution. This
is due to the complexity of the problem and the fact that the optimization parameters
(instance weights) are continuous.

The algorithm given below can provide neighbor solutions that are at least as good
as the current solution. This algorithm, which is actually an extended version of the
algorithm given in Table 1, finds the optimal weight of an instance assuming that the
weights of all other instances are given and fixed. Note that, by optimizing the weight
of one instance, the algorithm is indeed providing a neighbor solution that is better
than (or at least as good as) the current solution.

 High Performance Classification of Two Imagery Tasks 385

We illustrate this algorithm to find the optimal weight of Xt ε Г assuming that the
weight of all other instances in Г are given and fixed. Further, assume that Xk is a
training instance of class T, where T ε {1, 2, …, M}. The optimal weight of Xk can be
found using the following steps.

1. I = {}

2. Classify all training examples using wk = ∞ (i.e., a very large positive number)

3. Classify all training examples using wk = 0.0

4. Add to I those training examples that are classified correctly only in one of the
previous steps (step 2 or 3).

5. Calculate the score of each training example Xt ∈ I using the following
measure.

{ }
1
max (,)|

()
(,)

j t j j
j N

t
t k

w X X X
S X

X X

μ

μ
≤ ≤

⋅ ∈ Γ
= (10)

6. The algorithm of Table 1 can now be used to find the best threshold (i.e. the
best weight wk of instance Xk). For this purpose, a 2-class situation is formed
by considering class T as positive class and a class by merging all other classes
as negative class.

The purpose of steps 1 to 4 is to identify those training examples (by collecting them
in the set I) that their correct classification depends directly on the value of wk.

Overall, the search for locally optimum solution starts with an initial solution to the
problem and sequentially improving the solution using a hill-climbing approach. The
above 6-step algorithm can be used to find all neighbor solutions (i.e., being different
just in the value of one parameter) that are at least as good as the current solution. The
usual hill-climbing search can be performed by sequentially replacing the current
solution with the best neighbor solution. Finding all neighbor solutions can take a
long time when the number of parameters (i.e., instance weights) is large. To speed up
the search, in our implementation, the value of just one parameter is updated in each
step of the hill-climbing search. That is, the search for locally optimum solution is
conducted by optimizing each instance in turn assuming that the order of the instances
to be optimized is fixed. The search terminates if no neighbor solution could be found
that is better than the current one (or after a certain number of iterations). Obviously,
with this modification, the algorithm is sensitive to the order of instances considered
for optimization. In simulation results reported in section 5, we fix the ordering by
sorting the instances based on their similarity to their nearest enemy instance.

() () (){ }
1

= , | ()enemy k k j j k
j N

X max X X class X class Xμ μ
≤ ≤

≠ (11)

Where, μenemy(Xk) is the similarity of instance Xk with nearest instance of enemy class,
and class(Xk) is used to denote the true class of Xj. The instances in the training set are
ranked in the descending order of measure (11) and optimized in that order.

When finding the best weight of an instance, it can happen that the set I is empty
after step 4 of the above algorithm. This actually indicates that the classification rate
on the training data cannot be improved by setting the weight of this instance. In other

386 O. Dehzangi, M.Z. Jahromi, and S. Taheri

words, the instance can be pruned (i.e. by setting its weight to zero) without affecting
the classification rate. Note that an instance can also be pruned if the value of best-th
returned by the algorithm of Table 1 is zero. One key feature of the proposed scheme
is pruning redundant instances visited during the learning process. The final set of
instances usually contains much fewer instances contributed in the classification
process. This feature is very useful since, the proposed algorithm can be considered as
a serious instance reduction technique for the NN classifier.

5 Experimental Results

In our experiments, in order to compare our proposed method with the well-known
classifiers in the BCI field, Support Vector Machine (SVM) [24] and Linear
Discriminant Analysis (LDA) [25] are employed. The classification results are
produced in the way by which one of the features (i.e. BP or FD) is applied to one of
the classifiers (i.e. FLDA or SVM or WDNN), which referred to as the combinations
of single feature classifier.

At first, EEG signals from four trained subjects (L1, O3, O8, and G8) were
recorded. Out of 360 trials recorded for each subject, 240 trials were used in the train
and the rest in the test phase. FD and BP features were extracted from the signals and
basic NN, WDNN, SVM, and FLDA were used as the classifiers. In the train phase,
significant features were selected using average accuracy on the validation set by ten
times ten folds cross validation (10CV). In this way, a classifier is trained with the
features of all trials in each 250 ms through the paradigm. Our paradigm is 8sec.;
therefore, we have 32 different feature sets for all trials. To choose the best feature
set, we calculate the error rate of the classifier by 10CV on training data. Classifiers,
trained with the best feature set for each subject, were then used to classify test
feature vectors.

Results of test data for th e subjects with all of the classifiers and features
are shown in Table 2. It can be seen that the WDNN has a good compatibility with the
FD feature in comparison with the BP. Results of combination of FD and WDNN, in
three cases out of four, led to the better results in comparison with FLDA, SVM, and
standard NN. Also, in the case O8, combination of WDNN and BP shows a
supremacy compare to the other considered classifiers. Incidentally, in Table 3,
number of stored instances in NN and WDNN are compared which shows a drastic
instance reduction performed while generalization property is increased dramatically.
The reason is that in the NN method all trained samples (240) are considered for
measuring the class label of an unknown pattern but in the WDNN method, a lot of
trained samples have zero weights, therefore, they are removed automatically from
the training set.

In Fig. 3, the average error rates of each method on every four subjects are shown.
For each classification method, minimum and maximum error rates on the whole
cases under investigation is also depicted. In Fig. 3(a), the obtained results are shown
in case of using BP features for classification and Fig. 3(b) displays the same statistics
in case of using FD features.

 High Performance Classification of Two Imagery Tasks 387

Table 2. Test error rates for different subjects using different features and classifiers

9

14

19

24

29

Basic NN SVM FLDA WDNN

Classification Method

A
ve

. E
rr

or
 R

at
e

(%
)

(a)

10

15

20

25

30

Basic NN SVM FLDA WDNN

Classification Method

A
ve

. E
rr

or
 R

at
e

(%
)

(b)

Fig. 3. Average error rates on four subjects obtained by applying compared methods and the
maximum and minimum error rates achieved by them are shown in (a) for BP features and in
(b) for FD

Subject Feature Basic NN SVM FLDA WDNN

FD 32.16 27.38 28.57 24.34
L_1

BP 28.65 23.81 20.24 18.67

FD 23.98 19.8 9.59 17.39
O_3

BP 30.65 26.03 21.92 12.83

FD 22.43 21.90 17.14 16.48
O_8

BP 25.72 21.90 22.86 12.82

FD 23.26 16.43 16.43 22.37
G_8

BP 26.29 21.43 22.86 18.86

388 O. Dehzangi, M.Z. Jahromi, and S. Taheri

Table 3. Number of training instances stored in the test phase for NN and WDNN methods

Subjects Feature Basic NN WDNN

FD 240 29
O_3

BP 240 34

FD 240 30
O_8

BP 240 20

FD 240 28
L_1

BP 240 34

FD 240 17
G_8

BP 240 19

As it can be seen in Fig. 3(a), in case of using BP features, WDNN performs better
than Basic NN and SVM, but FLDA is the best method in this case. Note that WDNN
is still more reliable, since the deviation of error rate is less than FLDA method. In
Fig. 3(b), in case of using FD features, it can be seen that the proposed WDNN
method has the highest classification accuracies among the compared classifiers.
Then, it can predict between the left and right imagery tasks with less error rates. Note
that in this case, maximum error rate resulted by applying WDNN is still less than
minimum error rates occurred by the other methods presented in this article.

6 Conclusion

In this paper, an innovative approach has been proposed in order to improve the
classification rate on the left and right imagery tasks in the cue-based BCI. NN is a
traditional method but it is still a powerful method in various applications. In this
research, a new version of NN is developed. The noisy instances degrade the
performance of the nearest neighbor. NN also considers the importance of all the
stored instances the same, but in fact, their relevancy is not the same. This paper
presents a novel learning algorithm which is used to assign a local weight to each
stored instance, which is then contributed in distance measure, with the goal of
improvement in generalization ability of the basic NN. The learning algorithm
optimizes the instance weights based on the classification accuracy. The presented
scheme achieves two purposes at the same time. The classification rate is improved
by adjusting a weight for each instance and considering it while calculating distance
measure. It is also faster in predicting between the left and the right tasks for a new
subject introduced to it. Since, majority of training instances are removed by
assigning a zero weight to them and will not contributed in classification task. In
order to evaluate our method, it has been applied on the BP and FD features of two
imagery tasks of four subjects (L1, O3, O8, and G8) participated in this study. The
results showed that the proposed method is effective to achieve higher accuracy to
choose between the left and right tasks.

 High Performance Classification of Two Imagery Tasks 389

References

1. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication.
In: Proc. IEEE, pp. 1123–1134. IEEE Computer Society Press, Los Alamitos (2001)

2. Pfurtscheller, G., Lopes, S.: Event related desynchronization: Hand book of electroenceph.
And clininical Neurophisiology. Revised edition, vol. 6. Elsevier, Amsterdam (1999)

3. Bozorgzadeh, Z., Birch, G.E., Mason, S.G.: The LF-ASD brain computer interface: on-
line identification of imagined finger flexions in the spontaneous EEG of able-bodied
subjects. In: IEEE Intern. Conf. Acous. Speech proc., vol. 6, pp. 2385–2388 (2000)

4. Boostani, R., Moradi, M.H.: A new approach in the BCI research based on fractal
dimension as feature and Adaboost as classifier. Journ. Neural Eng. 1, 4 (2004)

5. Boostani, R., Graimann, B., Moradi, M.H., Pfurtscheller, G.: A Comparison Approach
toward Finding the Best Feature and Classifier in Cue-Based BCI. Journ. Medic. Bio. Eng.
Comp. 6 (2007)

6. Schlögl, A., Flotzinger, D., Pfurtscheller, G.: Adaptive Autoregressive Modeling used for
Single-trial EEG Classification. Biomediz. Tech. 42, 162–167 (1997)

7. Graimann, B., Huggins, J.E., Levine, S.P., Pfurtscheller, G.: Toward a direct brain
interface based on human subdural recordings and wavelet-packet analysis. IEEE Trans.
Biomed. Eng. 51, 954–962 (2004)

8. Pfurtscheller, G., Neuper, C., Schlogl, A., Lugger, K.: Separability of EEG signals
recorded during right and left motor imagery using adaptive autoregressive parameters.
IEEE Trans. Rehab. Eng. 6, 316–328 (1998)

9. Haselsteiner, E., Pfurtscheller, G.: Using time-dependent neural networks for EEG
classification. IEEE Trans. on Rehab. Eng. 8, 457–463 (2000)

10. Kalcher, J., Flotzinger, D., Pfurtscheller, G.: A New Approach to a Brain-Computer-
Interface (BCI) based on Learning Vector Quantization (LVQ3). In: Proceed. Ann. Intern.
Conf. IEEE, vol. 4, pp. 1658–1659 (1992)

11. Flotzinger, D., Pregenzer, M., Pfurtscheller, G.: Feature selection with distinction sensitive
learning vector quantisation and genetic algorithms. IEEE Intern. Conf. Comp. Intell. 6,
3448–3451 (1994)

12. Deriche, M., Al-Ani, A.: A new algorithm for EEG feature selection using mutual
information. In: IEEE Intern. Conf. Acous. Speech, Signal Proc. ICASSP, vol. 2, pp.
1057–1060 (2001)

13. Cover, T.M., Hart, P.E.: Nearest Neighbor Pattern Classification. IEEE Trans. on Info.
Theo. 13, 21–27 (1967)

14. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques.
IEEE Computer Society Press, Los Ala. CA (1991)

15. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood component
analysis. Neur. Info. Proc. Sys (NIPS) 17, 513–520 (2004)

16. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest
neighbor classification. In: Weiss, B.S., Platt, J. (eds.) Advances in Neural Information
Processing Systems, p. 18 (2005)

17. Wang, J., Neskovic, P., Cooper, L.N.: Neighbourhood selection in the k-nearest neighbor
rule using statistical confidence. Patt. Recog. 39, 417–423 (2006)

18. Wang, J., Neskovic, P., Cooper, L.N.: Improving nearest neighbor rule with a simple
adaptive distance measure. Pattern Recognition Letters 28, 207–213 (2007)

19. Xiao-Yuan, J., David, Z., Yuan-Yan, T.: An improved LDA Approach. IEEE Trans. Sys.
Man Cyber. 34, 5 (2004)

390 O. Dehzangi, M.Z. Jahromi, and S. Taheri

20. Esteller, R.: Detection of Seizure Onset in Epileptic Patients from Intracranial EEG
Signals. Ph. D. thesis, School of Electrical and Computer Engineering Georgia Institute of
Technology (2000)

21. Higuchi, T.: Approach to an Irregular Time Series on the Basis of Fractal Theory. Physica
D 31, 277–283 (1988)

22. Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Researchers, Technical
Report HPL-2003-4, HP Labs (2003)

23. Lachiche, N., Flach, P.: Improving accuracy and cost of two-class and multi-class
probabilistic classifiers using ROC curves. In: 20th Intern. Conf. Machine Learning
(ICML’03), pp. 416–423 (2003)

24. Vapnic, V.N.: Statistical learning theory. John Wiley and Sons, New York (1998)
25. Fukunaga, K.: Introduction to Statistical Pattern Classification. Academic Press, San

Diego, Calif. (1999)

	High Performance Classification of Two Imagery Tasks in the Cue-Based Brain Computer Interface
	Introduction
	Subjects and Data Acquisition
	Feature Extraction
	Band Power (BP)
	Fractal Dimension (FD)

	Weighted Distance Nearest Neighbor (WDNN)
	Learning the Best Operating Point in 2-Class Problems
	Learning Weights of Training Instances

	Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

