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Abstract. Translation of human intentions into control signals for a computer, 
so called Brain-Computer Interface (BCI), has been a growing research field 
during the last years. In this way, classification of mental tasks is under 
investigation in the BCI society as a basic research. In this paper, a Weighted 
Distance Nearest Neighbor (WDNN) classifier is presented to improve the 
classification rate between the left and right imagery tasks in which a weight is 
assigned to each stored instance. The specified weight of each instance is then 
used for calculating the distance of a test pattern to that instance. We propose an 
iterative learning algorithm to specify the weights of training instances such that 
the error rate of the classifier on training data is minimized. 
ElectroEncephaloGram (EEG) signals are caught from four familiar subjects 
with the cue-based BCI. The proposed WDNN classifier is applied to the band 
power and fractal dimension features, which are extracted from EEG signals to 
classify mental tasks. Results show that our proposed method performs better in 
some subjects in comparison with the LDA and SVM, as well-known classifiers 
in the BCI field. 

Keywords: Nearest Neighbor, Weighted distance, Brain-Computer Interface, 
EEG. 

1   Introduction 

Classification of mental imagery tasks is used to help amyotrophic lateral sclerosis 
(ALS) patients to enable them to communicate with their environment [1]. A bright 
view to the future of this research is to help ALS patients by enabling them to move 
their limbs with their thoughts. Limb movement can be done by Functional Electrical 
Stimulation (FES) [2], which is controlled by the BCI system. This interesting 
application is in its primary stages mainly due to low classification rate even between 
two imagery tasks in some subjects.  

The research in the BCI field can be categorized into synchronous [1] and 
asynchronous [3] methods. Most articles focus on the synchronous BCI which is so 
called cue-based BCI. In this way, Boostani et al. [4] applied Adaboost classifier on 
the fractal dimension features (extracted from the EEG signals) and showed that this 



 High Performance Classification of Two Imagery Tasks 379 

combination has a good prediction ability. In a comprehensive study, Boostani et al. 
[5] employed genetic algorithm on different features and used three different 
classifiers on the weighted features to show that choosing the band power and fractal 
dimension as features (by genetic weighting) can significantly improve the 
performance of cue-based BCI system. The Graz-BCI research group has employed 
discriminative features based on second order statistics such as band power [1], 
adaptive autoregressive coefficients [6], and wavelet coefficients [7] with well-known 
classifiers containing Fisher’s Linear Discriminant Analysis (FLDA) [8], Finite 
Impulse Response Multi-Layer Perceptrons (FIRMLP) [9], Linear Vector 
Quantization (LVQ) [10], Hidden Markov Models (HMM) [1], and Distinction 
Sensitive Learning Vector Quantization (DSLVQ) [11] to improve the classification 
rate between the various movement in imagery tasks. Deriche et al. [12] selected the 
best feature combination among variance, AR coefficients, wavelet coefficients, and 
fractal dimension by modified mutual information method. They showed that a 
combination of the aforementioned features is more efficient than each of them 
individually. 

As a simple but efficient supervised learning algorithm, the nearest neighbor 
classifier has been used successfully on pattern classification problems [13], [14]. 
However, this method fails to perform satisfactorily in cases that different classes are 
overlapped in some regions of feature space. Another problem is the noisy training 
instances that can degrade the performance of this classifier in the generalization 
phase.  

The basic NN uses all training data in the generalization phase. It also considers all 
the stored instances with the same importance for classification, but the instances are 
different in being representative of their typical classes.  

Recently, many improving techniques have been proposed and added to the nearest 
neighbor algorithm such as editing, condensing, learning, and weighting [15] for 
overcoming to its drawbacks. Moreover, there has been considerable research interest 
in learning mechanisms to locally adapt the distance metrics [16], [17]. Wang et al. 
[18], [19] have shown that by including a local weight and introducing a simple 
adaptive distance measure the performance of the NN improves significantly. In this 
paper a novel learning algorithm is presented which is used to assign a weight to each 
stored instance, which is then contributed in distance measure, with the goal of 
improvement in generalization ability of the basic NN. Our proposed learning method 
is used to adjust the weights of instances in the training set. The basic component of 
the learning algorithm is an optimization procedure that finds the best operating point 
of a classifier (i.e., resulting in minimal error rate of the classifier on train data). The 
proposed scheme achieves two desirable goals at the same time. The classification 
rate is improved by adjusting a weight for each instance and considering it while 
calculating distance measure. Our experiments show that the proposed WDNN 
algorithm can make a robust and accurate classifier system that improves the 
performance of the cue-based BCI. 

The rest of this paper is organized as follows. In section 2, subjects and the method 
of data acquisition are described. In section3, features are illustrated. In section 4, the 
proposed WDNN and our proposed method of learning the weights of training 
instances are described. In section 5, the experimental results are presented and in 
section 6, conclusion is discussed. 
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2   Subjects and Data Acquisition 

Four subjects (L1, O3, O8, and G8), familiar with the Graz-BCI, participated in this 
study. Subjects are ranged from 25 to 35 years old. Each subject sat in a armchair 
about 1.5 meters in front of the computer screen. Three bipolar EEG-channels were 
recorded from 6 Ag/AgCl electrodes placed 2.5 cm anterior and 2.5 cm posterior to 
the standardized positions C3, Cz and C4 (international 10-20 system). The EEG was 
filtered between 0.5 and 50 Hz and recorded with a sample frequency of 128 Hz. 

The training in Graz-BCI paradigm is consisted of a repetitive process of triggered 
movement imagery trials. Each trial lasted 8 seconds and started with the presentation 
of a blank screen. A short acoustical warning tone was presented at second 2 and a 
fixation cross appeared in the middle of the screen. At the same time, the trigger was 
set from 0 to 1 for 500 milliseconds. From second 3 to second 7, the subjects 
performed left or right hand motor imagery according to an arrow (cue) on the screen. 
An arrow pointing either to the left or to the right indicated the imagination of a left 
hand or right hand movement. The order of appearance of the arrows was randomized 
and at second 7 the screen content was erased. The trial finished with the presentation 
of a randomly selected inter-trial period (up to 2 seconds) beginning at second 8. 
Figure 1. shows the timing scheme. Three sessions were recorded for each subject on 
3 different days. Each session consisted of 3 runs with 40 trials each. 

 

Fig. 1. Training paradigm 

3   Feature Extraction 

The goal of feature extraction is to find an informative representation of the data that 
simplifies the detection of brain patterns. The signal features should encode the 
commands sent by the user. Band power and fractal dimension features are used in 
this paper. These are briefly described in the following sections. 

3.1    Band Power (BP) 

The EEG contains different specific frequency bands, that is standard alpha (10-
12Hz) and beta (16-24Hz) bands, which are particularly important in classifying 
different brain states, especially for discriminating imagery tasks. For this study, band 
power features were calculated by applying a Butterworth filter (order 5), squaring of 
the samples and then averaging of subsequent samples (1 s average with 250 ms 
overlap).  
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3.2    Fractal Dimension (FD) 

BP and AAR features are based on the second order statistics of the signal and thus 
they describe the spectral information in the data. FD, however, captures nonlinear 
dynamics in the signal. Although all features here try to capture the underlying 
neurophysiological patterns in the signal, FD has a direct relationship with the entropy 
of the signal, which in turn is related to information content of the signal. FD is a 
measure of complexity of a signal. More fluctuation in the attractor shape is reflected 
by a higher value of FD. There are several methods to calculate the FD [20]. In this 
study we employed Higuchi’s method [21], which is described as follows: Consider a 
signal containing N samples {x(1) ,x(2),…,x(N)} . Construct k new time series k
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where N is the total length of the data sequence x and (N-1)/[(N-m)/k]k, is a 
normalization factor. An average lengyth of every sub-sequence is computed as the 
mean of the k lengths Lm(k). This procedure is repeated for the different values of k (k 
= 1,2, …,kmax), that kmax varies for each k. There is no analytical formula for 
determining the value of k, therefore, it has to be found experimentally. An average 
length for each k is obtained which may be expressed as proportional to k-D, where D 
is the signal's FD. In order to find the best value of k, from the log-log plot of 
log(L(k)) versus log(1/k), one obtains the slope of the least-squares linear best fit. The 
FD of the signal, D, is then calculated as: 

D = [log L(k)] / log(1/k) (3) 

4   Weighted Distance Nearest Neighbor (WDNN) 

We briefly describe the NN rule to introduce the notation. For an M-class problem, 
assume that a set of training examples of the form {(Xi, Ci) | i = 1,..., N} is given. 
Where, Xi is a n-dimensional vector of attributes Xi = [xi1, xi2, ...,xin]

T and Ci ∈  [1,2, 
…,M] defines the corresponding class label. To identify the NN of a query pattern Q, 
a distance function has to be defined to measure the distance between two patterns. 
Euclidean distance has conventionally been used to measure the distance (i.e., 
dissimilarity) between two patterns Xi and Xj: 
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Assuming that each attribute of the problem is normalized to the interval [0,1], we can 
equivalently work with the following similarity measure (instead of Euclidean 
dissimilarity measure), which normalizes the similarity between two instances Xi and 
Xj to a real number in the interval [0,1]: 
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X X
X X

n
μ  (5) 

With basic NN rule, the query pattern Q is classified by the class most similar training 
pattern Xp in the training set. This can be formally stated as: 

{ }
1

p = argmax  ( , )i
i N

Q Xμ
≤ ≤

 (6) 

The NN rule assumes that all classifiers (i.e., stored instances) are equally reliable and 
uses equation (6) to find the NN of a query pattern. This paper is based on the idea 
that some of the stored instances are more reliable classifiers than others. We 
accomplish this by assigning a weight wk to each instance Xk. The weights of the 
training instances are used in the test phase to find the NN of a query pattern: 

{ }
1

p = argmax  ( , )j j
j N

w Q Xμ
≤ ≤

×  (7) 

We refer to this classifier as WDNN. Alternatively, the scheme can be viewed as a 
form of adaptive distance measure for NN that allow the distance measure to vary as a 
function of instances in the training set. In the next section, we present an algorithm 
that finds the best operating point in 2-class problems. This algorithm will be used as 
the basic component of the proposed scheme in section 4.2 to learn the weights of 
training instances in a WDNN classifier. 

4.1    Learning the Best Operating Point in 2-Class Problems 

A discrete classifier such as a classification tree only produces a class label for an 
input pattern. For a 2-class problem (with positive and negative class labels), given a 
test set of P positive and N negative labeled patterns, a classifier of this type generates 
a 2×2 confusion matrix (shown in Fig.2) representing the performance of the 
classifier. The accuracy of the classifier is defined as: 

Accuracy = +  
TP TN TP FP N

P N P N P N

+ −=
+ + +

 (8) 

Many classifiers, such as Bayesian classifier or neural networks naturally assign a 
score S(Xt) to each input pattern Xt (i.e., scoring classifiers). For example, naive Bayes 
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classifiers output posterior probability distribution over classes. In this case, the score 
of a pattern for our 2-class problem can be defined as: 

( , ) ( , )
( )

( , ) 1 ( , )
t t

t
t t

pr n X pr n X
S X

pr p X pr n X
= =

−
 (9) 

Where pr(p,Xt) and  pr(n,Xt) denote the estimated probabilities that the pattern Xt is of 
positive and negative class, respectively. With the above definition, the score is a 
numeric value (in the range 0 to ∞) expressing the degree that Xt is thought to be of 
negative class.   

A scoring classifier can be converted to a discrete classifier by specifying a 
threshold on score. A pattern is classified as negative if its score is greater than the 
specified threshold and positive otherwise. In this way, the accuracy corresponding to 
each specified threshold can be calculated using (8). 

 

Fig. 2. Confusion matrix for a discrete classifier 

Having the relation between a threshold and corresponding accuracy of the 
classifier, the best threshold can be easily found by varying the threshold from 0 to ∞. 
Actually, it is sufficient to consider those thresholds such that classification of an 
instance changes from negative to positive. Based on this idea, an efficient algorithm 
for calculating the best threshold is given in [8, 17]. For this purpose, the patterns are 
ranked in ascending order of their scores (i.e., S(X1)< S(X2)<….<S(XP+N)). 
Considering any threshold between S(XK) and S(XK+1), the first K patterns will be 
classified as positive and the remaining P+N-K patterns as negative. In this way, a 
maximum of P+N+1 different thresholds should be examined to find the best 
threshold. The first threshold classifies everything as negative and the last threshold 
classifies everything as positive. The rest of the thresholds are chosen in the middle of 
two non-equal successive scores S(XK), S(XK+1) in the list such that S(XK) ≠ S(XK+1). 
The best threshold is simply the one that maximizes the accuracy (8) of the classifier. 
An algorithm to find the best threshold is given in Table 1. This algorithm receives a 
set of patterns and their scores as input and returns the best threshold (i.e. giving 
maximum classification rate) as output. 

The important point is that the value of the best threshold (i.e., best-th) calculated 
using the algorithm of Table 1 can be used as the weight for positive class. That is, 
instead of classifying a pattern Xt as positive if S(Xt)<best-th, we can equivalently 
classify the pattern as positive if best-th × pr(p,Xt) > pr(n,Xt). 
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Table 1. Algorithm for finding the best threshold 

 Inputs: patterns Xt, scores S(Xt) 
Output: the value of best threshold (best-th)  

current = number of misclassified patterns corresponding to the threshold of th = 0 (i.e., 
classifying everything as class  T ) 
optimum = current 
best-th = 0 
rank the patterns in ascending order of their scores 
{assume that Xk and Xk+1 are two successive patterns in the list} 
for each different threshold th = (Score(Xk)+Score(Xk+1))/2  

current = number of misclassified patterns corresponding to the specified threshold 
(i.e., all patterns Xt having Score(Xt) < th are classified as class T) 
if current < optimum then 

optimum = current 
best-th = th 

end if 
end for 
{assume that last is the score of last pattern in the list and τ is a small positive number} 
current = number of misclassified patterns corresponding to th = last + τ (i.e., 
classifying everything as class T) 
if current < optimum then 

optimum = current 
best-th = th 

end if 
return best-th 

4.2    Learning Weights of Training Instances  

For an M-class problem, assume that a training set Г consisting of N labeled training 
patterns (i.e. Г={Xj, j=1, 2, ..., N}) is available. In this section, we propose an efficient 
algorithm that attempts to maximize the classification accuracy of the WDNN 
classifier on training data by learning the weights of instances in the training set. 

In its basic form, the proposed algorithm is a hill-climbing search method. The 
algorithm starts with an initial solution to the problem (i.e., {wk = 1, k =1, 2, …, N}), 
and sequentially improves the solution by finding a neighbor solution that is better 
than the current one. A neighbor solution is different from the current solution in the 
value of just one parameter (i.e., the weight of one instance). Without the algorithm 
proposed in this section, many neighbor solutions should be examined (i.e., making 
the search process slow) to find a solution that is better than the current solution. This 
is due to the complexity of the problem and the fact that the optimization parameters 
(instance weights) are continuous.  

The algorithm given below can provide neighbor solutions that are at least as good 
as the current solution. This algorithm, which is actually an extended version of the 
algorithm given in Table 1, finds the optimal weight of an instance assuming that the 
weights of all other instances are given and fixed. Note that, by optimizing the weight 
of one instance, the algorithm is indeed providing a neighbor solution that is better 
than (or at least as good as) the current solution. 
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We illustrate this algorithm to find the optimal weight of Xt ε Г assuming that the 
weight of all other instances in Г are given and fixed. Further, assume that Xk is a 
training instance of class T, where T ε {1, 2, …, M}. The optimal weight of  Xk can be 
found using the following steps. 

1. I = {} 

2. Classify all training examples using wk = ∞ (i.e., a very large positive number) 

3. Classify all training examples using wk = 0.0 

4. Add to I those training examples that are classified correctly only in one of the 
previous steps (step 2 or 3). 

5. Calculate the score of each training example Xt ∈ I using the following 
measure.  

{ }
1
max ( , )|

( )
( , )

j t j j
j N

t
t k

w X X X
S X

X X

μ

μ
≤ ≤

⋅ ∈ Γ
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6. The algorithm of Table 1 can now be used to find the best threshold (i.e. the 
best weight wk of instance Xk). For this purpose, a 2-class situation is formed 
by considering class T as positive class and a class by merging all other classes 
as negative class.  

The purpose of steps 1 to 4 is to identify those training examples (by collecting them 
in the set I) that their correct classification depends directly on the value of wk. 

Overall, the search for locally optimum solution starts with an initial solution to the 
problem and sequentially improving the solution using a hill-climbing approach. The 
above 6-step algorithm can be used to find all neighbor solutions (i.e., being different 
just in the value of one parameter) that are at least as good as the current solution. The 
usual hill-climbing search can be performed by sequentially replacing the current 
solution with the best neighbor solution. Finding all neighbor solutions can take a 
long time when the number of parameters (i.e., instance weights) is large. To speed up 
the search, in our implementation, the value of just one parameter is updated in each 
step of the hill-climbing search. That is, the search for locally optimum solution is 
conducted by optimizing each instance in turn assuming that the order of the instances 
to be optimized is fixed. The search terminates if no neighbor solution could be found 
that is better than the current one (or after a certain number of iterations).  Obviously, 
with this modification, the algorithm is sensitive to the order of instances considered 
for optimization. In simulation results reported in section 5, we fix the ordering by 
sorting the instances based on their similarity to their nearest enemy instance. 

( ) ( ) ( ){ }
1

= , | ( )enemy k k j j k
j N

X max X X class X class Xμ μ
≤ ≤

≠  (11) 

Where, μenemy(Xk) is the similarity of instance Xk with nearest instance of enemy class, 
and class(Xk) is used to denote the true class of Xj. The instances in the training set are 
ranked in the descending order of measure (11) and optimized in that order. 

When finding the best weight of an instance, it can happen that the set I is empty 
after step 4 of the above algorithm. This actually indicates that the classification rate 
on the training data cannot be improved by setting the weight of this instance. In other 
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words, the instance can be pruned (i.e. by setting its weight to zero) without affecting 
the classification rate. Note that an instance can also be pruned if the value of best-th 
returned by the algorithm of Table 1 is zero. One key feature of the proposed scheme 
is pruning redundant instances visited during the learning process. The final set of 
instances usually contains much fewer instances contributed in the classification 
process. This feature is very useful since, the proposed algorithm can be considered as 
a serious instance reduction technique for the NN classifier. 

5    Experimental Results 

In our experiments, in order to compare our proposed method with the well-known 
classifiers in the BCI field, Support Vector Machine (SVM) [24] and Linear 
Discriminant Analysis (LDA) [25] are employed. The classification results are 
produced in the way by which one of the features (i.e. BP or FD) is applied to one of 
the classifiers (i.e. FLDA or SVM or WDNN), which referred to as the combinations 
of single feature classifier. 

At first, EEG signals from four trained subjects (L1, O3, O8, and G8) were 
recorded. Out of 360 trials recorded for each subject, 240 trials were used in the train 
and the rest in the test phase. FD and BP features were extracted from the signals and 
basic NN, WDNN, SVM, and FLDA were used as the classifiers. In the train phase, 
significant features were selected using average accuracy on the validation set by ten 
times ten folds cross validation (10CV). In this way, a classifier is trained with the 
features of all trials in each 250 ms through the paradigm. Our paradigm is 8sec.; 
therefore, we have 32 different feature sets for all trials. To choose the best feature 
set, we calculate the error rate of the classifier by 10CV on training data. Classifiers, 
trained with the best feature set for each subject, were then used to classify test 
feature vectors.  

Results of test data for th e subjects with all of the classifiers and features 
are shown in Table 2. It can be seen that the WDNN has a good compatibility with the 
FD feature in comparison with the BP. Results of combination of FD and WDNN, in 
three cases out of four, led to the better results in comparison with FLDA, SVM, and 
standard NN. Also, in the case O8, combination of WDNN and BP shows a 
supremacy compare to the other considered classifiers. Incidentally, in Table 3, 
number of stored instances in NN and WDNN are compared which shows a drastic 
instance reduction performed while generalization property is increased dramatically. 
The reason is that in the NN method all trained samples (240) are considered for 
measuring the class label of an unknown pattern but in the WDNN method, a lot of 
trained samples have zero weights, therefore, they are removed automatically from 
the training set. 

In Fig. 3, the average error rates of each method on every four subjects are shown. 
For each classification method, minimum and maximum error rates on the whole 
cases under investigation is also depicted. In Fig. 3(a), the obtained results are shown 
in case of using BP features for classification and Fig. 3(b) displays the same statistics 
in case of using FD features. 
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Table 2. Test error rates for different subjects using different features and classifiers 
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Fig. 3. Average error rates on four subjects obtained by applying compared methods and the 
maximum and minimum error rates achieved by them are shown in (a) for BP features and in 
(b) for FD 

Subject Feature Basic NN SVM FLDA WDNN 

FD 32.16 27.38 28.57 24.34 
L_1 

BP 28.65 23.81 20.24 18.67 

FD 23.98 19.8 9.59 17.39 
O_3 

BP 30.65 26.03 21.92 12.83 

FD 22.43 21.90 17.14 16.48 
O_8 

BP 25.72 21.90 22.86 12.82 

FD 23.26 16.43 16.43 22.37 
G_8 

BP 26.29 21.43 22.86 18.86 
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Table 3. Number of training instances stored in the test phase for NN and WDNN methods 

Subjects Feature Basic NN WDNN 

FD 240 29 
O_3 

BP 240 34 

FD 240 30 
O_8 

BP 240 20 

FD 240 28 
L_1 

BP 240 34 

FD 240 17 
G_8 

BP 240 19 

As it can be seen in Fig. 3(a), in case of using BP features, WDNN performs better 
than Basic NN and SVM, but FLDA is the best method in this case. Note that WDNN 
is still more reliable, since the deviation of error rate is less than FLDA method. In 
Fig. 3(b), in case of using FD features, it can be seen that the proposed WDNN 
method has the highest classification accuracies among the compared classifiers. 
Then, it can predict between the left and right imagery tasks with less error rates. Note 
that in this case, maximum error rate resulted by applying WDNN is still less than 
minimum error rates occurred by the other methods presented in this article. 

6    Conclusion 

In this paper, an innovative approach has been proposed in order to improve the 
classification rate on the left and right imagery tasks in the cue-based BCI. NN is a 
traditional method but it is still a powerful method in various applications. In this 
research, a new version of NN is developed. The noisy instances degrade the 
performance of the nearest neighbor. NN also considers the importance of all the 
stored instances the same, but in fact, their relevancy is not the same. This paper 
presents a novel learning algorithm which is used to assign a local weight to each 
stored instance, which is then contributed in distance measure, with the goal of 
improvement in generalization ability of the basic NN. The learning algorithm 
optimizes the instance weights based on the classification accuracy. The presented 
scheme achieves two purposes at the same time. The classification rate is improved 
by adjusting a weight for each instance and considering it while calculating distance 
measure. It is also faster in predicting between the left and the right tasks for a new 
subject introduced to it. Since, majority of training instances are removed by 
assigning a zero weight to them and will not contributed in classification task. In 
order to evaluate our method, it has been applied on the BP and FD features of two 
imagery tasks of four subjects (L1, O3, O8, and G8) participated in this study. The 
results showed that the proposed method is effective to achieve higher accuracy to 
choose between the left and right tasks. 
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