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Abstract. The gene-label correlation provides an effective measure of
the relevancy of a gene. However, this measure evaluates genes on an in-
dividual basis, and the gene sets thus obtained may exhibit severe redun-
dancy. In this study, we propose a new correlation heuristic for set-based
gene selection, with the goal of alleviating the redundancy problem. The
new correlation heuristic consists of two components that account for
gene relevancy and redundancy respectively. The relevancy of a gene is
evaluated in terms of its correlation with class label on an individual ba-
sis, while the redundancy of a gene with respect to a given gene subset
is measured by its correlation with a new dimension built upon the gene
subset. The new correlation heuristic retains the simplicity of individual
gene evaluation and the redundancy handling capacity of set-based gene
evaluation. Two different ways of using the relevancy and redundancy
measures are presented in this study. One way is the maximization of
the ratio of relevancy measure to redundancy measure, and another way
is the maximization of the relevancy measure subtracting redundancy
measure. Experimental studies on six gene expression problems show
that both criteria produce excellent results.

1 Introduction

Gene selection has been an active research area since the birth of the gene
microarray technology, and a variety of gene selection algorithms have been pro-
posed. The various gene selection algorithms can be classified into two categories,
namely individual gene selection (see for example [JJA7IT5]) and gene subset se-
lection (see for example [TATTIGITOIT2I2TI20(T]). The two types of gene selection
algorithms often serve different purposes. If gene selection is for efficient pattern
classification or class prediction, subset-based gene selection should be employed.
This is because a gene subset consisting of top individually ranked genes may far
from optimal due to the severe redundancy existed. Whatever category a gene
selection algorithm belongs to, it involves an evaluation criterion to measure the
goodness of an individual gene or a subset of genes. A variety of evaluation crite-
ria have been used in the gene selection algorithms mentioned above, motivated
by different considerations. These include t-test, F-test, Fisher ratio, entropy,
cross validation error, Bayesian error estimation, loss functions of regression,
and support vector machine (SVM) criteria etc.

J.C. Rajapakse, B. Schmidt, and G. Volkert (Eds.): PRIB 2007, LNBI 4774, pp. 230 2007.
© Springer-Verlag Berlin Heidelberg 2007



Correlation-Based Relevancy and Redundancy Measures 231

Correlation measures have also been used for gene evaluation and selection.
To minimize gene redundancy, one available correlation measure is the set-based
correlation heuristic proposed by [13], where the merit of a feature subset is
evaluated using the ratio of the average feature-label correlation to the average
feature-feature correlation. Similar measures were also proposed in [3]. Another
correltaion-based algorithm is the two-phase relevancy-redundancy analysis pro-
posed by [19], where relevant genes are first selected through individual relevancy
analysis, and redundant genes are then removed through Markov blanket-based
redundancy analysis. But our experiment studies show that this algorithm could
over-prune and the number of genes finally obtained might be insufficient.

In this study, we propose a new correlation heuristic for forward, i.e. bottom-
up, gene selection. The new correlation consists of two components accounting
for relevancy and redundancy respectively. The relevancy of a gene is evaluated
individually in terms of its correlation with class label, while the redundancy of
a gene with respect to a given gene subset is measured by its correlation with
the output of the classifier built upon the gene subset. This way of evaluating
redundancy is an outstanding character of the new correlation heuristic. The
rationale lies in the fact that the major discriminative information underlying
the gene subset is captured by the classifier, and thus the correlation between
the candidate gene and the output of the classifier reflects the redundancy of
the candidate gene with respect to the gene subset. Two ways of using relevancy
and redundancy measures are presented. One is the ratio of relevancy measure
to redundancy measure, and another is the relevancy subtracting redundancy.
Through maximizing the two criteria, genes with high relevancy and minor re-
dundancy could be selected.

The new correlation heuristic inherits the simplicity of individual gene evalua-
tion and the redundancy handling capacity of set-based evaluation. Experimental
studies show that both criteria produce excellent results.

2 Correlation-Based Relevancy and Redundancy
Measures for Gene Selection

2.1 Relevancy and Redundancy Measures
Assume there are N training data pairs:
{x(1),y(1)} {x(2),y(2)} -, {x(N), y(N)}

where y(k) denotes the class label of sample k, with value of either +1 or —1.
x(k) is the feature vector of sample k consisting of n genes:

x(k) = [x1(k), x2(k), ..., zn (k)]

The gene-label correlation is defined as the correlation between a gene and the

class label: N
= L 2 zi(k)y(k) (1)

Tyz,
YT
N -1 0,0y
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where 0, and o, denote the standard deviation of gene x; and class label y re-
spectively. The gene-label correlation reflects the predictive power, or relevancy,
of a gene and could be used to identify biologically related genes of certain
biological phenomenon of interest. However, the correlation criterion Eqn (1)
evaluates genes on an individual basis, without considering correlations between
genes. Severe redundancy might exist if it is used to select gene subsets. To
achieve good pattern classification results, an ideal gene subset should possess
the following properties:

(i) having maximum relevancy;
(ii) having minimum redundancy.

To yield gene subsets with maximum relevancy and minimum redundancy,
we can select gene subsets that maximizes the ratio of relevancy measure to
redundancy measure or the difference between the two measures [I33].

In a forward gene selection algorithm, the gene subset is built up step by step,
by adding one gene at one step. Assume m genes have already been selected:
Sm = {x1,22,..., 2y}, the objective is to select the next best gene. To select
the gene with maximum relevancy and minimum redundancy, we can evaluate
and select genes using the following criteria

Ry,
Jy = Rsimi (2)

or
J2 - Ryml - Rsmwi (3)

where R, denotes the relevancy measure of gene z;, and R, ., denotes redun-
dancy measure of gene xz; with respect to gene subset s,,. The gene with the
maximum .J; or .Jo should be selected.

The relevancy of a gene can be easily measured in terms of its correlation
with class label as in Eqn (1) or other measures such as Fisher ratio. The major
issue here is how to evaluate the redundancy of z; with respect to the given
subset s,,. In [13] and [3], the redundancy is measured in terms of the average
correlation between candidate x; and those in the gene subset selected s,,. Next,
we propose a new approach to redundancy evaluation.

2.2 A New Approach to Redundancy Evaluation

The basic idea of the new way of evaluating redundancy of a candidate gene
with respect to gene subset s, is to project data from the m-dimensional space
to a new one-dimensional space using a linear transform, and then measure the
redundancy of a candidate gene based on its correlation with the new dimension.
Assume the linear transform is given by:

(k) = 3wy () (@
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where wj, j = 1,2...,m are the coefficients of the linear transform. Eqn(4) is
such a transform that the major discriminative information underlying the m
dimensions, i.e. m genes in $,,, is compressed onto z,,. The linear transform
that projects data from m-dimensional space to one-dimensional space can be
obtained by the support vector machine (SVM) method because the SVM clas-
sifier captures the major discriminative power underlying s,,.

The redundancy of z; with respect to gene subset s,, is measured using the
correlation between x; and z,,. The rationale of the new way of evaluating redun-
dancy can be explained from the point of view of variable selection in multiple
regression. Assume the regression of class label on the m features in s,, is as
Eqn (4), then the resultant regression error is given by:

e(k) = y(k) = zm (k) (5)

The variable to be selected next should have maximum correlation with the
regression error. Assume

Xi = [xl(l)v xl(Q)a cee 7IZ(N)]T
The correlation between x; and e, denoted by 7.5, is given by:

1 xTe

N — 10,04,
1 XZTy — XZsz ()
TN-1 OOy,

’]“exi =

where 0. denote the standard deviation of error signal e. If genes, class label
and sample projections on the new dimension are normalised to zero mean and
unit standard deviation, Eqn (6) can be written as

Tew; = ! [rye; = Tz (7)
€
where ry;, and 7., ., denotes the correlations between x; and class label and
the output of the classifier respectively. To ensure the minimum regression error
after adding the new feature, selection of the new feature should be based on
maximization of 7,,. A comparison of Eqn (7) with Eqn (3) shows that if the
correlation between x; and class label is used to evaluate the relevancy of x;,
then the redundancy R, ., can be measured using the correlation between gene
x; and the output of the classifier built upon s,,.
The heuristic J; and J3 can be rewritten as:

vyl

I =
! |27 ;|
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Jo = |y"xi| — 2" x| (9)
where |.| denotes the absolute value. This is because the correlations can take
both positive or negative values.

Jo actually can be modified by putting a weighting element on the redundancy

measure:
J3 = |y x| — Az" x| (10)

where A denotes the weighting element.

The main characteristic of the present study is that the redundancy of a gene
with respect to a gene subset selected is measured using the correlation between
the gene and a new dimension built upon the gene subset. An important issue
here is how to create the new dimension. As analysed above, the correlation
measure Eqn (3) is equivalent to regression error based feature evaluation when
the role of the previously selected features is controlled. This suggest that we may
control the effect of the previously selected gene subsets when a new dimension
is created after a new gene is added. This is briefly described below. A new
dimension, named zo, is first created using x1 and x5. Selection of the third gene
is based on the correlation criteria where the redundancy of a candidate gene
is measured using the correlation between the candidate gene and z3. After the
374 gene, say x3 is selected, a new dimension z3 is created using x3 and z;. In
this process, the creation of a new dimension is always done in a 2-dimensional
space. And the creation can be based on different approaches such as support
vector machine (SVM).

Due to small sample size and very high dimensionality in gene expression
data, the training data could be mapped to the class label. Thus, the redundancy
measure would approaches the relevancy measure and a zero value of the criterion
would be obtained. To overcome this problem, the new dimension created at each
step is rotated by an angle. Taking z,,_1, x; and z,, as an example, where z,,
is created by z,,—1 and x;.

Zm (k) = w1 2m—1(k) + wmaz; (k) (11)

Taking the z,,_1 as an reference, the angle of the new dimension is given by:

« = arctan (wm2> (12)

Wm1

After a few genes are selected, the sample projections on z,,_; are very close
to class labels, and play dominant role in creating z,,. Thus, the value of w,,1 has
a much greater amplitude than w,,2, and the angle becomes very small. Hence
we have: w

ax~ ™ (13)
Wm1
To rotate the new axis, we can reduce the value of w1 to wp,1/7v, where

~v > 1. Thus, the new angle is given by:

Wi,
Bry ™ =qa (14)
w

ml
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The new dimension is usually obtained by optimizing certain criterion. The
transform obtained is therefore optimal in the sense of maximum separating
margin in support vector machine, maximum class separability in Fisher’s lin-
ear discriminant analysis, and minimum regression error in least mean square
estimation etc. The rotation introduce with deteriorate the optimality, and is
therefore can be regarded as a regularization.

Criterion J; and J3 consist of two components. One component accounts for
the relevance of the gene, and another component accounts for the redundancy
of the gene with respect to gene subset s,,. The relevance is measured on an
individual basis, while the redundancy is measured on a set basis. The merit
of this way of evaluating a candidate gene is that it retains the simplicity of
individual gene evaluation and the capacity of redundancy handling of set-based
gene evaluation.

2.3 The Correlation Criteria-Based Gene Selection Algorithm

The procedure of forward gene selection based on the correlation J; and J3 is
summarized below:

(i) Normalise data including class label to zero mean and unit standard devia-

tion.
(ii) Evaluate the correlation between class label and each of the n genes in the
candidate gene pool: x1, o, ..., x,. Identify the gene that has the maximum

correlation measure, say x;, add it to the gene subset and remove it from
the candidate gene pool. Let z = x;.

(iii) Evaluate the correlation between z and each of the n — 1 genes in the can-
didate gene pool, and calculate .J; or J5 using Eqn (8) or (10). Identify the
gene having the maximum measure, say xz;, add it to the gene subset and
remove it from the candidate gene pool.

(iv) Train the linear SVM classifier using the genes in the gene subset selected and
denote the decision value of classifier for the training samples as z. Normalise
z to zero mean and unit standard deviation. Evaluate the correlation between
z and each of the n — 2 genes in the candidate gene pool, and calculate J; or
J3 using Eqn (8) or (10). Identify the gene having the maximum measure,
say xx, add it to the gene subset and remove it from the candidate gene
pool.

(v) Step (iv) is repeated until a stopping criterion, say the number of genes
selected, is satisfied.

To identify the m + 1** gene from a candidate gene pool of n — m genes
at step m + 1, the computations involved include training a linear classifier
such as a linear support vector machine (SVM) once and performing n — m
vector product in N-dimensional space, where N is the training sample size.
Apparently, the computational complexity of the proposed method is very
limited.
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3 Experimental Studies

In the experiment, the performance of the proposed correlation heuristic was
studied. For comparison purpose, the two-phase relevancy-redundancy analysis
proposed in [I9] and set-based correlation heuristic proposed in [I3] were also
studied. In addition, the recursive feature elimination (RFE) algorithm [12],
which is often considered as a benchmark algorithm, was also studied.

The performance of these gene selection algorithms was evaluated in terms of
classification error rate. The study in [2] revealed that error estimation based on
cross validation including leave-one-out and repeated k-fold cross validation may
exhibit excessive variability. In this study, .632+ bootstrapping [5] was used. In
the bootstrap testing, 200 replica were generated to estimate the error rate, and
the splits of training and test data in the 200 replica were kept identical during
the testing of the gene selection algorithms.

Six gene expression datasets were used to test the performance of the proposed
algorithm. The eight datasets are summarized in Table 1:

Table 1. Datasets description

Datasets Original sources Genes
Leukaemia [8] 7129
Breast cancer (ER) [I§] 7129
Breast cancer (LN) [I§] 7129
Lung cancer )] 12533
CNS tumour [16] 7129
Breast cancer 7] 24481

Each of these datasets was standardized to zero mean and unit standard
deviation across genes. Since the dimensionality (i.e. the number of genes) of
gene expression data is very high, and most of these genes are irrelevant to
the discriminant task, a pre-selection procedure was employed to reduce the
number of candidate genes to 1000 based on Fisher’s ratio, which is an individual
gene ranking criterion. All the experiments and comparisons in this work were
conducted on the pre-selected data.

The experimental results on the 6 datasets are shown in Figures 1-6 respec-
tively. On each dataset, 4 algorithms were tested, including the recursive feature
elimination (RFE), correlation-based feature selection (CFS), and the two new
correlation heuristics Eqn (8) and Eqn (9), named as CH1 and CH2 respectively.
In the experimental study, the weight A on the redundancy measure in criterion
J3 was set to 2, and the weight on slack variable in RFE was set to a wide range of
values, as small as 0.001 and as great as 100, but the results were almost identical.

Across the 6 problems, the two-phase relevancy-redundancy analysis produced
gene subsets consisting of just a few genes since the Markov blanket principle
removed most of the candidate genes while the other 3 algorithms used the
number of genes selected as the stopping criterion. As shown in Figures 1-6, the
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+0.632 bootstraping error (%)

. i ) |
0 50 100 150 200 250 300 350 400
Number of genes selected

Fig. 1. Comparison of RM and RRM with RFE in Leukaemia problem
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Fig. 2. Comparison of RM and RRM with RFE in Breast Cancer (ER) problem
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Fig. 3. Comparison of RM and RRM with RFE in Breast Cancer (LN) problem
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Fig. 4. Comparison of RM and RRM with RFE in Lung Cancer problem
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Fig. 5. Comparison of RM and RRM with RFE in CNS Tumor problem
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Fig. 6. Comparison of RM and RRM with RFE in Breast Cancer problem

RFE algorithm outperform the CFS algorithm in all the 6 problems. However,
CH1 and CH2 outperform both CFS and RFE substantially. The results of CH2
are a bit inferior to those of CH1, this is probably because the introduction of
the weight element A improves the adaptability and flexibility of the correlation
heuristic.
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4 Conclusions

In this study, we have proposed a new correlation heuristic for efficient gene
selection, where relevancy and redundancy components of a gene are considered
explicitly in merit evaluation. Two formulae have been presented by different
way of combining the two components. The proposed correlation heuristic re-
tains the simplicity of individual gene evaluation and the capacity of redundancy
handling of set-based gene evaluation. Experimental studies have shown that
the correlation heuristic produces gene subsets leading to excellent classification
accuracy.
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