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Abstract. We consider the problem of sequence labeling and propose
a two steps method which combines the scores of local classifiers with a
relaxation labeling technique. This framework can account for sparse dy-
namically changing dependencies, which allows us to efficiently discover
relevant non-local dependencies and exploit them. This is in contrast to
existing models which incorporate only local relationships between neigh-
boring nodes. Experimental results show that the proposed method gives
promising results.

1 Introduction

Sequence labeling aims at assigning a label to each element of a sequence of
observations. The sequence of labels generally presents multiple dependencies
that restrict the possible labels elements can take. For example, for the task of
part of speech tagging, the observations that there is only one verb in a sentence
and that an article is followed either by a noun or an adjective provide valuable
information to the labeling of an element. The aim of Structured Prediction is to
develop models able to detect and exploit these dependencies so as to improve
prediction performance.

Taking dependencies between labels into account entails two main difficulties:
parameter estimation and complexity of inference. For the former, the more depen-
dencieswehave to consider, themoreparameterswehave to estimate,which creates
a sparse data problem. For the latter, inferring jointly rather than independently a
label sequence consistent with the dependencies often proves to be a combinatorial
problem and, in the worst case, inference is known to be NP-hard to solve [1].

Several approaches have been developed for many years for sequence labeling.
In order to solve the inherent difficulties of both the training and the inference
steps, all current methods, like CRFs [2] or SVM’ISO [3], impose a fixed label
dependency structure in which only local interactions between labels are con-
sidered: they generally incorporate only dependencies between a few successive
labels. This Markov assumption limits the number of parameters to be estimated
and maintains a tractable exact inference thanks to the use of dynamic program-
ming techniques. While this assumption is critical in preserving computational
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efficiency, it is a key limitation since taking non-local dependencies into account
is mandatory to achieve good performance for several tasks [4,5,6].

Two main families of approaches have been proposed to take advantage of
non-local dependencies. The first one [7,8] relies on a grammar-based formalism
to model non-local relationships by introducing a hierarchy of hidden variables,
while the second one proposes alternative inference procedures like Gibbs sam-
pling [9] or Integer Linear Programming [10]. In most of these methods, approx-
imate inference algorithms are used to allow tractable inference with long-range
dependencies. All these methods suffer a high complexity for both training and
inference and rely on an expert knowledge to explicitly define all relevant de-
pendencies involved.

In this paper, we propose a new approach for learning and modeling un-
known dependencies among labels. Dependencies are represented using con-
straints which are logical relations among several elements and their value. This
approach has several interesting properties. Firstly, it allows the dependency
structure to vary according to the actual value of elements, while this structure
is fixed in most existing models. Secondly, both local and long-range depen-
dencies can be considered while preserving the computational efficiency of the
training and inference steps. More precisely, following [11], we consider a two-
parts model, in which, a local classifier predicts the values of variables regardless
of their context, while a set of constraints maintains global consistency between
local decisions. These constraints are learned and represent dependencies be-
tween labels. In this work, we use maximum entropy classifiers [12] to make
local decision and relaxation labeling [13] to efficiently build an approximate
solution, that satisfies as many constraints as possible.

The paper is organized as follows. We first formalize the task and explain
the difficulty of incorporating non-local dependencies in representative existing
approaches in Section 2. Our approach is presented in Section 3. Related work
is reviewed in Section 2.3 and experimental results are presented in Section 4.

2 Background

2.1 Formalization of the Task

Sequence labeling consists in assigning a label to every element of a sequence of
observations. Let x = (xi)

n
i=1 be a sequence of n observations and yi be the label

of the ith element of this sequence. The sequence of labels denoted y = (yi)
n
i=1 can

be seen as a macro-label [3] describing a set of labels with possible dependencies
between them. Let Λ be the set of all possible labels (the domain of the yi), and
Y, the domain of the macro-label y. Because of the interdependencies between
the yi, some combinations of labels will not be possible, and Y is only a subset
of Λn. Intuitively, the smaller #{Y}

#{Λn}
1 is, the more regularity in the output there

is and the more dependencies can help to predict the label of a variable.

1 We use # {A} to denote the cardinal of the set A.
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2.2 Existing Methods for Sequence Labeling: Local Output
Dependencies

Many machine learning models have been proposed to take advantage of the
information conveyed by label dependencies. In practice, most of them rely on
local hypothesis on the label dependencies. For the sequence labeling task, a
popular model is Conditional Random Fields [2]. CRFs will be used for compar-
ison in the evaluation in section 4. More recently, the prediction of structured
outputs has motivated a series of new models [3,1,4]. The SVM’ISO family of
models [3], for example, is a generalization of Support Vector Machines designed
for predicting structured outputs. Both CRFs and SVM’ISO consider sequence
labeling as a generalization of multi-class classification: they aim at determining
the macro-label y which is the most compatible with a given specific sequence
of observations x. The compatibility between the observation and the macro-
label is evaluated by a θ-parametrized scoring function F (x,y; θ). The task of
sequence prediction then amounts at finding the most compatible output among
all legal outputs Y:

y∗ = argmax
y∈Y

F (x,y; θ) (1)

The argmax operator denotes the search in the space of all possible outputs
Y that takes place during inference. Several methods have been developed to
estimate the parameters θ that either optimize the conditional likelihood (in the
case of CRFs) or optimize a maximum margin criterion (in the case of SVM’ISO).

In their general formulation, both CRFs and SVM’ISO can describe arbitrary
dependencies. But, in practice, due to the complexity of inference and parameter
estimation, the scoring function F has to be decomposable: a function is said to
be decomposable if it can be expressed as a product of local scoring functions.
The decomposition used in CRFs for sequence labeling is the following:

F (x,y; θ) =
n∏

i=1

f(yi−1, yi,x; θ) (2)

where f is the local scoring function, which, in the case of CRFs, is chosen to
be f(yi−1, yi,x; θ) = exp 〈θ, φ(yi−1, yi,x)〉, where 〈·, ·〉 is the standard dot prod-
uct and φ is the feature vector2. In this decomposition, only the interactions
between contiguous labels are taken into account. This allows the use of the effi-
cient Viterbi algorithm for inference and limits the number of parameters to be
estimated. The SVM’ISO family of algorithms, has been developed for model-
ing general output dependencies. When used for sequence labeling, however the
scoring function is closely related to the one used for CRFs.

While this factorized form is critical in enabling models to work on real data,
it precludes any possibility of taking non-local dependencies into account for two
2 Compared to the usual presentation of CRFs [2], we have: p(y|x; θ) = 1

Z(x) ·F (y,x; θ).
Z(x) is a normalizing function that allows us to give a probabilistic interpretation
to the CRF.
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reasons. Firstly, in the Viterbi algorithm, the output is built by incrementally
extending a partial solution towards a complete solution. As a label is often cho-
sen before the other labels involved in the dependency are known (i.e. before the
dependency can be “evaluated”), non-local dependencies cannot be exploited.
Secondly, in this decomposition, a dependency is modeled by a local scoring
function that has as many parameters as elements involved in the dependency.
For instance, to describe a second-order dependency, we need a local scoring
function with two parameters like f(yi, yi−1). The local scoring function has to
be defined for each possible labeling of these elements. Consequently, to describe
a dependency between n elements that can take m labels, mn parameters have
to be estimated, possibly resulting in sparse data problems.

Exploiting non-local dependencies therefore requires both an alternative in-
ference algorithm and an alternative modeling of the dependencies.

2.3 Existing Methods for Sequence Labeling: Long-Term Output
Dependencies

Different approaches have been proposed for taking advantage of long-range
dependencies.

The N-Best method combined with reranking of the selected solutions [4] is
a general strategy which offers an approximate solution to the structured pre-
diction problem. It allows the use of non-local dependencies by separating the
structure prediction in two independent steps. In a first step considering only
local features, a limited set of potential candidates are generated with a dynamic
programming algorithm. In a second step (reranking), considering arbitrary fea-
tures, the “best” solution is chosen among all these candidates. Note that a
limitation of reranking strategies is that the correct answer is not guaranteed to
be contained in the set of potential candidates.

Several works have proposed alternatives to the Viterbi inference algorithm.
Popular choices among alternative inference procedures include Gibbs sampling
[9] or loopy belief propagation [5]. Another alternative is [10] which replaces the
Viterbi algorithm by Integer Linear Programming to tackle the cases of non-
local dependencies. In [9] and in [5], long-range dependencies are used to include
domain-specific prior-knowledge, namely the so-called label consistency which
ensures that identical observations in the corpus get the same label (e.g. in as
information extraction task, it ensures that Paris is always recognized as a town).
In [10] long-range dependencies are described by hand-crafted Boolean functions
like “at least one element is assigned a label other than O”. In all these works,
the non-local dependencies are hand-crafted.

Another popular idea consists in capturing interaction among labels in a hi-
erarchical approach [7,8]. For instance, in an Information Extraction task, [8]
proposes to use a Context Free Grammar to escape the “linear tyranny” of
chain-models. Within this framework, inference amounts to syntactic parsing.
There are two main drawbacks in this approach: firstly, the grammar describing
the interactions among labels is constructed by an expert; secondly, inference
done by the CKY algorithm (a generalization of the Viterbi algorithm to trees)
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has a complexity in O(n3), where n is the number of elements in the sequence.
A CFG has been used for comparison as a baseline non local method in the
experiments described in section 4.

3 Proposed Approach

Sequence labeling with interdependent labels amounts to identifying the best
assignment to a collection of variables, so that this assignment is consistent
with a set of dependencies or a structure. The dependencies between outputs
can be thought of as constraining the output space. We build on this idea and
propose to model the dependencies with constraints (logical relations among
several elements and their value), rather than by local scoring function as in the
approaches discussed in Section 2.2. Typical examples of such constraints are
“the label of the ith variable has to be λ, if the (i−2)th variable is labeled by μ”
or “there should be at least one variable labeled with ξ”. We will associate to each
constraint a weight to be interpreted as a confidence or a level of preference. More
precisely, we treat sequence labeling as a constrained assignment problem. Let
V = {v1, ..., vn} denote the variables describing the labels of an input sequence
{x1, ..., xn}; each vi may take its value in the set of labels Λ. We aim at assigning
a label to each variable while satisfying a set of constraints, automatically learned
from the training set.

To solve this constrained assignment problem, we propose a two-step process
as advocated by [11] that relies on a well-known constraint satisfaction algorithm,
relaxation labeling [13,14]: firstly, a local classifier affects an initial assignment
to elements regardless of their context (i.e. without considering any dependen-
cies) and, secondly, the relaxation process applies successively the constraints to
propagate information and ensure global consistency.

In the following sections we detail these two steps and describe how constraints
can be automatically learned from the training set. Eventually, we explain how
this approach offers a solution to the problems discussed in Section 2.

3.1 Local Classifier

The local classifier aims at estimating, for each variable, a probability distri-
bution over the set of labels. To produce these estimates, we adopt here the
maximum entropy framework [12]. Note that any classifiers that output a prob-
ability distribution over the set of labels could be used as well.

Maximum entropy classifiers model the joint distribution of labels and input
features. The probability of labeling a variable v with label λ is modeled by an
exponential distribution:

p(λ|v; θ) =
1

Zθ(v)
exp 〈θ, φ(v, λ)〉

where φ(v, λ) is the feature vector describing jointly variable v and label λ, Zθ(v)
is a normalizing factor and θ the parameter vector. To estimate θ, the maximum
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entropy framework advocates to choose, among all the probability distributions
that satisfy the constraints imposed by the training set, the one with the highest
entropy, that is to say the one that is maximally noncommittal with regard to
missing information [12].

3.2 Relaxation Labeling

Relaxation Labeling (RL) [13,14] is an iterative optimization technique that solves
efficiently the problem of assigning labels to a set of variables that satisfy a set of
constraints. It aims at reaching an assignment with maximal consensus among
the set of labels, that is to say, to assign a label to each variable while satisfying
as many constraints as possible. We denote V = {v1, ..., vn} the set of n variables,
Λ will be the set of m possible labels, and λ and μ two elements of Λ.

In the following, we assume that interactions between labels are described by
a compatibility matrix R = {rij(λ, μ)}3. Each coefficient rij(λ, μ) represents a
constraint and measures to which extent we want to label the ith variable with
λ when knowing that the label of the jth variable is μ: the higher rij(λ, μ), the
more we want to label vi with λ when the label of vj is μ. These coefficients are
estimated from the training set as detailed in Section 3.3.

The iterative algorithm of relaxation labeling works as follows: starting from
an initial label assignment computed from the local classifier, the relaxation
process iteratively modifies this assignment so that the labeling globally satisfies
the constraints described by the compatibility matrix as well as possible. All
labels are updated in parallel using the information provided by the compatibility
matrix and the current label assignment.

More precisely, the local classifier defines, for each variable vi ∈ V an initial
probability vector, p̄0

i , with one component for each label of Λ. Let p̄
(t)
i (λ) denote

the component of p̄
(t)
i corresponding to the label λ. Each p

(t)
i (λ) describes the

current confidence in the hypothesis “the label of the ith variable is λ”. The set
p̄ = {p̄1, ..., p̄n} is called a weighted label assignment.

Let us define, for each variable vi and each label λ a support function. This
function describes the compatibility of the hypothesis “the label of vi is λ” and
the current label assignment of other variables. It is generally defined by:

q
(t)
i (λ; p̄) =

n∑

j=1

∑

μ∈Λ

rij(λ, μ)p(t)
j (μ) (3)

Intuitively, the more confident we are in the labelings that support the hypothesis
“the label of vi is λ”, the higher the support of this hypothesis (i.e. the higher
qi(λ; p̄)). Hypothesis we are not confident in (i.e. the ones for which pi(λ) is small)
have only little influence. A natural way to update the weighted assignment is

3 In this presentation, for simplification, we only consider pairwise dependencies. The
extension to dependencies between an arbitrary number of dependencies is straight-
forward.
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therefore to increase pi(λ) when qi(λ) is big, and decrease it otherwise. More
precisely, the update of each pi(λ) is defined by:

p
(t+1)
i (λ) ← p

(t)
i (λ) · q(t)

i (λ, p̄(t))
∑

μ∈Λ p
(t)
i (μ) · q

(t)
i (μ, p̄(t))

(4)

The denominator is just a normalizing factor that ensures p
(t+1)
i (λ) remains a

probability. This process (the calculation of the support and the update of the
mapping) is iterated until convergence (i.e.:until p̄(t+1) = p̄(t)).

It can be proved [13,14] that, under mild assumptions, the relaxation algo-
rithm finds a local maximum of the average local consistency function defined as
the average support received by each variable. The latter measures the compati-
bility between each hypothesis “the label of vi is λ” and all the other assignments:
relaxation labeling can be seen as a method that employs the labelings we are the
most confident in to disambiguate those with low confidence. The complexity of
the relaxation labeling process is linear with respect to the number of variables
to label.

3.3 Learning the Constraints

In some applications, the constraints are provided by hand [10] or can be easily
derived from the problem specification. Here, they will be learned from the train-
ing set. Let us first observe that relevant constraints should reduce the labeling
ambiguity and that choosing these constraints can however quickly become com-
putationally intractable as the number of possible dependencies in a sequence
grows exponentially with the length of the sequence.

To efficiently select the most relevant constraints, we will take advantage of
the following observation: the compatibility coefficients used in the relaxation
labeling process can be interpreted as association rules. For instance, the com-
patibility coefficient rij(λ, μ) can also be interpreted as the rule vj = μ ⇒ vi = λ:
both of them mean that, if the label μ appears at the jth position of a sequence,
we have a good chance of finding the label λ at the ith position. Higher order
dependencies are described by conjunction of label assignments. This connection
between the compatibility coefficient used in relaxation labeling and association
rules is appealing, since, intuitively, knowing which labels frequently co-occur in
the training set, helps reducing the uncertainty of the labeling decisions.

We will draw on this intuition and consider that the compatibility coefficients
are to be defined as the conditional entropy [15] of the corresponding association
rule. The conditional entropy of an association rule is a combination of the usual
support and confidence used to evaluate the importance of a rule. Combinato-
rial algorithms, such as Apriori [16] can be used to extract efficiently all the
association rules the conditional entropy of which is higher than a user-provided
value. This value is a parameter of our algorithm. Note that while Apriori is
a combinatorial method, it is used here during training and inference remains
linear wrt the sequence size.
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For simplicity, relaxation labeling was described using absolute i, j positions.
The algorithm is actually implemented using relative variable positions which
are more general and flexible. An example of a rule expressed with relative
value is vi−3 = α ⇒ vi = β. Relaxation labeling can be easily generalized to
handle arbitrary rules. The only difference relies on the definition of the support
(Equation 3) that has to be generalized to consider all elements that appear
in the rule. For instance, if we consider the previous rule and a sequence of 9
elements in which v1 = α and v5 = α, the hypothesis v4 = β and v8 = β will be
both strengthened. In the same way, association rules are learned with relative
values and are then instantiated in any position that fits elements in a sequence.

3.4 Advantages of Our Approach

Our approach solves several of the restrictions that were pointed out in Sec-
tion 2. First, the most likely labeling is inferred by iteratively reassigning labels
based on the current assignment of all other variables, contrary to chain-models
in which only previous assignments are taken into account. As a result, each
label is chosen according to a global context and dependencies describing the
sequence as a whole or involving non-sequential variables can be considered. Re-
laxation labeling is therefore an interesting alternative to the Viterbi algorithm
for sequence labeling.

Secondly, as they are formed by variable-value pairs (vi, λ), constraints can
account for dynamically changing dependencies, which are conditioned on the
values of variables. Consequently, sparse data problems are avoided: in our frame-
work only the variable values involved in a constraint have to be considered,
while, for the models described in Section 2, the score of all possible assign-
ments to these variables has to be estimated This representation also allows
us to efficiently select the relevant dependencies we want to incorporate in the
model.

4 Empirical Evaluation

4.1 Tasks and Corpora

We have tested our approach on two different sequence labeling tasks: structured
data extraction [17] and chunking [18].

Structured Data Extraction. The first application considered, structured data
extraction [19,20,6], is motivated by the development of the Semantic Web.
Semantic Web aims at providing value-added services by taking advantage of
a semantically-rich structured view of HTML or XML documents instead of
their traditional bag-of-words representation. The semantic technologies need
hard-wiring knowledge of the structure they are using and, therefore, can only
deal with documents that comply strictly with a schema. This schema, generally
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expressed by a DTD or an XML Schema, defines, a priori, allowed structures of
documents. Because of the lack of standardization, the representation of data
varies from source to source, and, consequently, the deployment of the Seman-
tic Web is only possible if we are able to resolve these heterogeneities. One
first step towards this resolution consists in extracting relevant information from
structured documents.

Structured data extraction is closely related to the standard task of informa-
tion extraction, but it is made easier by the presence of a document structure [6].
We consider this task here as a sequence labeling task: structured data extrac-
tion amounts to labeling a sequence of observations defined by the leaves of an
HMTL or XML document, where dependencies between the labels are described
by a target schema.

Our model has been tested on two different corpora. The first one is the col-
lection Courses used in [20] that describes lectures in five different universities.
There are more than 12,000 descriptions which are annotated with 17 different
labels such as lecturer, title, start time or end time; each description con-
tains between 4 and 552 elements to be extracted. The second corpus, MovieDB is
based on the IMDb database [6]. There are 4,483 movie descriptions, annotated
with 16 different labels such as actor, director or title.

Considering non-local dependencies between the labels is mandatory to
achieve good performances in this task. Indeed, in many cases the local classifier
does not have enough information to choose the correct label and dependencies
have to be considered to reduce labeling ambiguities. For instance, the only way
to distinguish a start time from an end time or actor from a director is by
taking into account the context, i.e. the position of the element in the sequence
of labels.

Each collection was randomly split in two equal parts for training and testing.
Experiments were performed on the two corpora using the same features for the
local classifier described in Section 3.1. We used the kind of features generally
used in information extraction tasks: typical examples of these features include
NumberOfWords, NumberOfCapitalLetter or ContainsHTTP.
Chunking. The second application we considered is the “All-phrase chunking”
task of CoNLL 2000 [18]. Text chunking aims at identifying the non-recursive
cores of various phrase type in text. There are 11 different chunks in the corpora
such as “noun phrase”, “adjective phrase” or “subordinated clause”. The chunks
are represented with three kinds of labels: “B-X” stands for “first word of a
chunk of type X”, “I-X” for “non-initial word in an X chunk” and “O” means
“word outside of any chunk”. Using this so-called BIO representation allows to
tackle a sequence segmentation task4 as a sequence labeling task. As pointed
out by [10] and [18], the sequences of labels involved in this task present many
dependencies, and the BIO representation naturally forbids some combinations
of labels. In our experiments we used the features and the train set and test set
provided by [18].

4 when several consecutive elements of the observation sequence are mapped to a single
label.
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4.2 Results

Baseline Models. As baseline models we used a Maximum Entropy classifier
(the local classifier described in Section 3.1), standard linear-chain CRF5 and a
grammar-based extraction approach similar to the ones presented by [8] or [22].
Because of its computational complexity, the SVM’ISO approach we described
in Section 2.2 cannot be used on our corpora. The local classifier does not incor-
porate any information about the dependencies between labels, the CRF only
considers local and sequential dependencies (see Section 2) while the grammar-
based approach can take long-range dependencies into account.

The principle of this latter approach is as follows: a Maximum Entropy Classi-
fier estimates a probability distribution over the set of labels for each observation
and a Probabilistic Context Free Grammar is then used to infer a tree structure.
This tree structure can be seen as a hierarchy of hidden variables that describes
long-range dependencies. The predicted label sequence is defined by the labels of
the leaves of the tree with the highest score. The inference complexity of this ap-
proach is O(n3), where n is the number of elements to be labeled, which should be
contrasted with the complexity O(n) of both CRFs and our method. This model
requires us to define a context-free grammar that describes both local and non-
local dependencies. This can be done in the structured extraction task by convert-
ing the target schema in context-free grammar [22,6], but not in the chunking task,
where no general grammar that describes interactions between chunks is known.

Results. Table 1 presents the results of the different experiments. The scores
presented correspond to the standard F1 measure.

Results show the importance of taking into account the dependencies: in all
the tasks, the score of the local classifier is always the worst. As was explained
in Section 4.1, this is mainly due to the fact that in many cases, an observation
does not contain enough information to choose the correct label so that the
context has to be considered. Exploiting non-local dependencies is also of great
help. On the data extraction task both our approach and the grammar-based
approach clearly outperform CRFs. In the chunking task, CRFs achieve slightly
better performances, likely because the dependencies between labels are less
relevant, but both learning and inference are much faster with our method than
with CRFs. The grammar-based approach and our approach achieve similar
performances, which shows the ability of the proposed method to select relevant
dependencies. Note that inference with our method is also an order of magnitude
faster than with a grammar-based approach.

In the experiments, CRFs were used with default parameters and better re-
sults might be obtained by tuning these parameters for the different tasks. CRFs
results on the Course corpus are particularly low. This is due to regularization
in learning: to avoid estimation problem, parameters are smoothed so that the
weight of each possible transition between two successive nodes is non-zero. All
transitions are thus allowed which does not reflect correctly the structure of the
data (For course data, most transitions should be 0).
5 In our experiments we used FlexCRF [21].
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Table 1. Results of the different experiments. Dashes indicates that the experiments
could not be performed. The reported score corresponds to the standard F1 measure.

MovieDB Course Chunking
Local Classifier 90.6% 47.9% 90.3%
Proposed Model 97.4% 88.1% 93.2%

CRF 96.4% 78.7% 94.6%
Grammar 97.5% 87.4% —

5 Conclusion

We have proposed a general method for efficiently discovering relevant non-local
dependencies and exploiting them in the sequence labeling task. Our approach
relies on the modeling of relationships between labels by constraints. It is a
two steps process: initial label assignment is provided by a local classifier, the
dependencies among variables are considered and propagated using an iterative
relaxation procedure.

This model can account for dynamically changing dependencies. This is in
contrast to most existing approaches that assume that a fixed-sized neighbor-
hood is relevant for predicting each label. The proposed approach has achieved
convincing results on different tasks at a low computational cost. A key element
in developing such approaches is to define measures to assess the strength of
a dependency and the amount of information a dependency provides to reduce
labeling ambiguity.
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