
B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 606–617, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Service Design Process for Reusable Services: Financial
Services Case Study

Abdelkarim Erradi1,3, Naveen Kulkarni2, and Piyush Maheshwari3

1 School of Computer Sc. and Eng. University of New South Wales, Sydney, Australia
2SetLabs Infosys Technologies Ltd, Bangalore, India

3IBM India Research Lab (IRL), New Delhi, India
aerradi@cse.unsw.edu.au, Naveen_Kulkarni@infosys.com,

pimahesh@in.ibm.com

Abstract. Service-oriented Architecture (SOA) is an approach for building
distributed systems that deliver application functionality as a set of business-
aligned services with well-defined and discoverable contracts. This paper
presents typical a service design process along with a set of service design
principles and guidelines for systematically identifying services, designing them
and deciding the service granularity and layering. The advocated principles
stem from our experiences in designing services for a realistic Securities
Trading application. Best practices and lessons learned during this exercise are
also discussed.

1 Introduction

Service Oriented Architecture (SOA) is a promising architectural approach to
integrate heterogeneous and autonomous software systems. It promises effective
business-IT alignment, improved business agility and reduced integration costs
through increased interoperability and reuse of shared business services. SOA
decomposes a system in terms of loosely coupled and replaceable services that
interact via the exchange of messages conforming to well defined contracts [5]. SOA
principles place a strong emphasis on decoupling the service consumers from the
service providers via: (1) strict separation of service interface description,
implementation and binding, thus allowing service changes to occur without impact
on service users (2) declarative constraints and policies to govern the service behavior
and the interactions between collaborating services (3) message-centric and standards-
based interactions between participating services, thus allowing easier interoperability
between systems inside and across enterprise boundaries. The perceived value of
SOA is that it provides a flexible model that allows new applications/services to be
created through the assembly of existing internal/third party services. Additionally,
some of the new business requirements can be realized by re-composition of
component services rather than by changing the services implementation. Therefore,
SOA can help reduce the integration costs via eliminating the redundancy of
overlapping and duplicate functionality as well as the consolidation and reuse of
services across processes, lines of business, or the enterprise.

 Service Design Process for Reusable Services: Financial Services Case Study 607

Technology and standards are important in building service-oriented distributed
applications but they are not sufficient on their own. Moving to service-orientation is
a non trivial one and requires far more than simply wrapping software entities with
Web services interfaces. An effective approach for modeling and designing services is
crucial for achieving the full benefits of SOA. In this paper, we present the set of
design principles and processes for identifying, designing and layering services in a
repeatable and non-arbitrary fashion. These have been derived from an elaborate SOA
example involving the modeling of financial services for Securities Trading domain.
The rationale behind design decisions is captured and the lessons learned are reported.

The rest of the paper is organized as follows. In Section 2 we provide an overview
of the securities domain focusing on the pain points inherent in this area.
Subsequently, in Section 3 we briefly discuss our suggested service-based
decomposition framework. Section 4 details the suggested service design for our case
study. Section 5 presents the lessons learned and the key service design
considerations. The last section concludes the paper and provides some directions for
future work.

2 Background and Problem Area

Despite the wide range of advocated advantages associated with the introduction of
SOA, comprehensive SOA implementation case studies continue to be scarce in the
literature. This paper aims to present a practical service design process along with key
design principles derived from a Stock Trading service enablement case study.

For our case study, the key issues that SOA adoption aims to address are: (i)
Heterogeneous IT portfolio with proprietary and brittle point to point connections that
impact flexibility, (ii) Redundant and overlapping functionality leading to cost
overheads and increased time to market. A specific example may be the use of
individual pricing engines along with individual market data servers for multiple
trading instruments, (iii) Inflexible and costly legacy applications portfolio.

The main business drivers for adopting service-orientation for our case-study are:
(i) accelerate the securities trade processing towards Straight Through Processing
(STP) allowing the final settlement to happen on the day of transaction, (ii) Make the
securities trading accessible from various channels such the Web and mobile devices.

Many researches from academia and industry are suggesting various approaches to
guide the service modeling and design. One of the outstanding efforts is this space is
IBM’s Service-Oriented Modeling and Architecture (SOMA) [1]. SOMA is a
methodology for the identification, modeling and design of services that leverages
existing systems. It consists of three steps: identification, specification and realization
of services. However, SOMA lacks openly available detailed description of the
methodology, which makes it difficult to further analyze its capabilities.

3 Service Oriented Decomposition Process

Service-based decomposition is an iterative process for arriving at an optimal
partitioning of business capabilities into services. The first step is to first establish

608 A. Erradi, N. Kulkarni, and P. Maheshwari

clear and well-defined boundaries between collaborating systems, followed by
reduction of interdependencies and limiting of interactions to well-defined points. The
key tasks in the service oriented decomposition process include identification of
services along with deciding service granularity and appropriate layering of services.

3.1 Service Identification

As shown in Figure 1, for service identification we advocate a hybrid approach
combining top-down domain decomposition along with bottom-up application
portfolio analysis. This yields a list of candidate services that further need to be
rationalized and consolidated. The top-down analysis of a business may be
decomposed into products, channels, business processes, business activities and use
cases. The business activities are often good candidates for business services. For
example, the activity of obtaining a price for a specific security during an equity
trading business process may be a logical candidate service. On the other hand, a
broker could offer equity trading as a product which requires instantiating order
placement and settlement processes, whose activities could be realized by services
harvested from functionalities embedded in existing applications. The harvesting can
be facilitated by reverse-engineering techniques and tools to extract data and control
flow graphs that provide different views of abstraction of operational systems.

Fig. 1. Service identification framework

Our proposed service identification framework is initiated by a top-down capture
and comprehension of key business processes as well as the mapping of the business
processes to the existing application portfolio. This is followed by defining the To-be
business process models (BPM) so that business services can be properly identified.
BPM consists of the decomposition of the business domain into functional areas and
business use cases. The level of functional decomposition of business processes
depends on the level of complexity, for example a business process could be
decomposed into business sub-processes, which in turn are decomposed into high-
level business use cases comprised of a set of activities. For instance, the registration
of a new customer is a business use case in a Trade Order process. The coarse grained
business services are then defined on the basis of logical business activities. It needs
to be noted that the services identified here may be applicable across use cases and
business processes. Once the To-be BPMs are captured, a Process-to-Application
Mapping (PAM) is required to examine existing software assets in order to discover

 Service Design Process for Reusable Services: Financial Services Case Study 609

candidate application functionality (e.g., APIs, sub-systems and modules from legacy,
custom and packaged applications) for realizing identified business services. The
mapping is performed between the business activities and the operational
applications. This provides the basis for identifying applications that support a
particular business process. Also the PAM helps to highlight possible redundancies
and overlaps in the application portfolio, and to identify applications that offer
potential shared services across channels and LOBs. In addition gaps and services that
need new development can be uncovered. The important aspect of this exercise is that
we end up with a conceptual map of the business services and maintain the
association with the systems that may fulfill those services based on the existing IT
portfolio. This is an important artifact that is essential towards matching the required
services with existing services and to plan for new services that need to be built or
acquired.

Apart from top down modeling, our framework also identifies functionality
existing in the current enterprise IT portfolio. This can be accomplished by a
combination of tools as well as interviews with application stakeholders. The outputs
of this activity are typically fine-grained functional modules such as: updating
customer’s personal information, updating a customer’s financial information,
updating accounting entries for a cash payment transaction, etc. Collating all these
functional activities will provide a comprehensive list of all the fine-grained activities
performed by the application portfolio. This list of functionalities must be
consolidated in a meaningful way to come up with reasonably coarse level activities
that may be used to align with the services identified from the top down business
process modeling effort.

The service identification also covers identifying reusable infrastructure services,
currently supporting non-service oriented applications, which may be leveraged to
support business services. For example security services providing authentication,
authorization and secure communication, message delivery services to send messages
and alerts to a variety of devices, such as email, SMS and fax. Another example might
be provisioning services that manage subscriptions, SLAs, provisioning contracts,
monitoring, metering and billing.

Figure 2 shows the meta-model we defined to guide service based decomposition
activities. First the identification of candidate services starts with the services
representing communication points between the parties involved. This is followed by
capturing and describing the externally observable behavior of the identified services.
In the current case study, the meta-model shown in Figure 2, provided the framework
to identify the different types of services and their granularity.

An illustration of service-based decomposition of the Securities Trading
application is depicted in Figure 3. During the service identification the primary view
point should be towards achieving a common business goal through a single service.
The business processes usually are modeled to achieve a single goal and hence would
provide a natural boundary. For example a Trade Settlement service would aggregate
various correlated activities like allocation matching, trade billing (commission, tax,
fees etc) to achieve the goal of trade settlement.

610 A. Erradi, N. Kulkarni, and P. Maheshwari

Fig. 2. Service conceptualization Meta-model

The identified services can be classified and grouped in a variety of ways. The
services can be classified according to their scope into cross-business services, cross
Line of Business (LOBs)/channels services, and LOB/channel specific services. The
classification can also be based on their degree of reuse such as core enterprise
services used by all (like a Customer Information Service), common services, or
services unique to a specific application. The service classification activity is crucial
to guide the non-functional aspects of services design, for example core and common
services need to be designed and deployed with more emphasis on scalability and
high availability.

Fig. 3. High-level view of key Securities Trading services and their choreography

3.2 Service Granularity

The service granularity is considered a key design decision for service enablement.
Services may be offered at different layers with different granularity. Service
granularity refers to the service size and the scope of functionality a service exposes.

 Service Design Process for Reusable Services: Financial Services Case Study 611

The service granularity can be quantified as a combination of the number of
components/services composed through a given operation on a service interface as
well as the number of resources’ state changes like the number of database tables
updated. The service should have the right granularity to accomplish a business unit
of work in a single interaction. If the service is too coarse-grain, the size of exchanged
messages grows and sometimes might carry more data than needed. Also it yields
more complex interfaces and represents more possibilities to be affected by change.
On the other hand if the service is too fine grained multiple round trips to the service
may be required to get all the required data/functionality.

Hence a balance is struck, depending upon the level of abstraction, likelihood of
change, complexity of the service, and the desired level of cohesion and coupling. A
tradeoff needs to be made while taking into account non-functional requirements
particularly performance.

Deciding the appropriate service granularity remains a challenge, but generally
speaking services exposed to other systems should provide operations that correspond
to business functions and they should be sufficiently generic to allow their reuse in
different processes and/or by different users. Fine-grained component services may be
used within a business service, but should not be exposed to other systems.

We have employed a business driven approach guided by the meta-model
presented earlier to arrive to pragmatic granularity. The identified services, such as
Trade Order Service and Trade Settlement Service, are business meaningful services
that offer a single operation to fulfill a complete business task. Notice that we refer to
the services as nouns, not verbs. In the contrary, focusing on the actions (verbs) rather
than the service (nouns), such as Add Trade Order, often yields fine grained services.

There is no theory-founded method for deciding the correct level of granularity.
The following guidelines can help in defining an acceptable level of granularity:

• Reusability: the optimal service design with respect to reusability is to provide a
generalized set of services, compared to the development of a specific service for a
specific consumer application. This enables the users to assemble a wide array of
business applications using these services. Increased reusability stems mainly from
accurate, complete and generalized service contract design capturing all possible
message variants. This allows covering a larger number of usage scenarios through
altering the service behavior simply by supplying varying message instances
conforming to a subset of a super-schema defined by the service contract. For
example designing an Insurance Quote Service based on a comprehensive schema
definition like ACORD [2] allows the service to serve Quotes for individual as well as
corporate users regarding various life insurance products and their variants. In the
current case study, the process services such as Order Placement Service or Trade
Settlement Service were envisioned to be reused across various products.

• Business-alignment: exposed business services need to add tangible business
value and support a business use case. A service could be designed to represent a
single important business concept, like a customer information service, thus forming
clear traceability to the business model.

• Design for assembly: it is important that a service interface is defined in a way
that its encapsulated functionality can be used and composed in different contexts
with minimal effort so as to increase the service reuse potential. Simply exposing

612 A. Erradi, N. Kulkarni, and P. Maheshwari

services directly off existing systems often yields non-optimal services that require
considerable effort by the consumer to aggregate and refine them into useful services.
Also the service interface should not be unnecessarily complicated so that it can be
used and assembled with little complexity.

• Reduce ripple-effects of applications changes: services need to be self-contained
and encapsulated in a way so that changes behind the interface can be done with no or
minimal disruption to the service consumers. This increased isolation helps reduce change
propagation and contain regression testing efforts and in turn reduces maintenance and
evolution costs. In addition existing services may be swapped by new service
implementations from potentially different providers without disturbing the service users.

• Performance and size: Services are often accessed remotely and might incur
significant overhead to making a round trip. Hence the service design should expose
coarse-grained operations covering a greater range of related functionality within a
single service invocation in order to reduce the number of Service requests necessary
to accomplish a task. In other words, a service should expose a significant business
process capability, as opposed to low-level business functions. For example, the
Trade Order Service should offer one operation (e.g., Place Order) to accept a Trade
Order in one call instead of offering multiple operations consisting of "Create Trade
Order Header" followed by a call to "Add Line Item" for each line item. However,
coarse-grained operations might yield large size messages. Hence the size of
messages should be constrained to what the service can process efficiently. So, the
optimal size of exchange messages could guide the required adjustments to the
service granularity.

4 Service Design

This Section briefly presents key service design principles. Then it discusses the main
service design decisions for our Securities Trading case study and their rationale.

4.1 Service Design Principles

The service design should take into account the basic principle of high cohesion and
low coupling among services [4] in order to minimize interdependencies and the
impact of change while facilitating reuse. This ensures that the resulting services are
self-contained, replaceable and reusable. Service Cohesion refers to the strength of
functional/semantic relatedness of activities carried out by a service to realize a
business transaction [4]. High cohesion ensures that a service represents a single
abstraction and exposed interface elements are closely related to one another. Service
Coupling refers to the extent to which a service is inter-related with other services, in
other words it measures the degree of isolation of one service from changes that
happen to another [3]. Low coupling can be achieved by reducing the number of
connections between services, eliminating unnecessary relationships between them,
and by reducing the dependencies between services to few, well-known dependencies
[4]. Additionally, the service interfaces should be defined to be as independent as
possible from the service implementation. This allows services to be independently
deployed, and allows the assembly of applications that make no assumptions about

 Service Design Process for Reusable Services: Financial Services Case Study 613

service implementation beyond the characteristics published in the service contract.
This way the service implementation can change without affecting service users so
long as the service interface is unchanged.

Another key service design principle is that of stateless service design, services
should not require context or state information of other services, nor should maintain
state from one request to another. This implies that the exchanged messages should be
self-contained with sufficient correlation information and metadata (such as links to
persisted data) to allow the destination service to establish the message context [5].
On the contrary, a stateful interface tend to increase coupling between the service
consumer and provider by associating a consumer with a particular provider instance.

Additionally, the service interface should be expressed in terms of meaningful
business operations rather than generic or fine-grained primitive methods such as
CRUD (Create, Read, Update and Delete) interfaces. The operations should
correspond to specific business scenarios such as placing an order. Additionally the
message contracts associated with the service operations should be coarse-grained
encapsulation of business domain entities.

Sound interface design has to anticipate and meet the current and future needs of
varied clients using the service in different contexts and different functional and QoS
expectations. The service interface should capture and describe externally observable
service behavior hiding the implementation details. This ensures that changes to the
implementation are localized and do not necessitate changes in the service consumer.

The Service design should also accommodate multiple invocation patterns to be
able to meet the requirement of various service consumers. A service consumer
should be able to invoke the offered services using a variety of different invocation
patterns such as synchronous invocation using SOAP over HTTP or asynchronous
invocation using SOAP over JMS.

Optimal service granularity is crucial in ensuring maximum reuse in SOA. If the
service is too coarse-grained, the size of the exchanged messages grows and
sometimes might carry more data than needed. On the other hand if the service is too
fine grained, multiple round trips to the service may be required to get the full
functionality. Usually a balance is established, depending upon the level of
abstraction, likelihood of change, complexity of the service, and the desired level of
cohesion and coupling. A tradeoff needs to be made while taking into account non-
functional requirements particularly performance. During service design, reusability
can be maximized by using generalized service schema design, where the variations
of the service behavior can be captured simply by supplying varying message
instances conforming to a subset of a super-schema defined by the service schema.

4.2 Service Design Tasks

SOA is more about assembly of an integrated whole from independent parts. Hence,
sound interface design is the essence of the integration design and it is a key tenet for
reusable services. The challenge is that the service interface design has to anticipate
and meet the current and future needs of varied clients using the service in different
context and with different functional and QoS expectations. The service interface
should capture and describe externally observable service behavior without leaking
the details of the underlying implementation nor the service inner working and
internal object model. Following this principle ensures that changes to the
implementation are localized and minimize required interface changes.

614 A. Erradi, N. Kulkarni, and P. Maheshwari

Designing service-oriented applications involves a variety of tasks that may be
enumerated as below, the aim to produce the design artifacts shown in Figure 4:

• Specifying the information model of the service as well as the structure and the data
types of exchanged messages using a schema definition language such as XML Schema.
The outcome of this task is to produce the Service Contract along with the associated
Operations Contract, Messages Contract, Data and Faults Contract.
• Defining the behavioral model of the service comprising the service operations as well
as the incoming and outgoing messages that are consumed or produced by the service. The
service interface should also specify the supported Message Exchange Patterns (MEPs),
such as one-way/notification and request-response pattern.
• Modeling of supported conversations and the temporal aspects of interacting with
service, such as defining the order in which messages can be sent and received. For
example, in the Order Placement Service, the actions available to a service consumer
include presenting credentials, then placing an order.
• Specifying the service policy to advertise supported protocols, the constraints on the
content of exchanged messages and QoS features, such as security, availability, response
time, and manageability assertions. The key service attributes that need special attention
are the transactional aspects of the service and whether the service is idempotent. These
QoS requirements also dictate the Service Bindings and the Service Hosting options.

Operation Contract

«interface»

Service Contract

Message Contract Fault Contract

Data Contract

Serv ice
Implementation

Serv ice Host

Binding Endpoint

QoS Profile

Policy

uses uses

Implements
hosts

has 1 or many

has 1 or many

has 1 or many

has

has

has

Fig. 4. Service Design Artifacts

4.3 Services for the Securities Case Study

The identified services are layered according to their granularity into four functional
layers. Each layer has a set of roles and provides services to the layers above it. The
top layer describes business processes made up of a sequence of business activities.
The second layer defines business services that automate specific business process
activities. The third level defines software components that allow the business
services to leverage enterprise-level shared resources. The operational resources layer
comprises applications, packages and databases that implement the services. For
example, the Order Placement Service is implemented through wrapping relevant
functionalities from the existing Order Management System (OMS) while the
Allocation Matching Service is provided by the Trade Processing System (TPS).

 Service Design Process for Reusable Services: Financial Services Case Study 615

Fig. 5. Equity trading key services from the Broker viewpoint

Our design considers four types of services:

• Process services represent workflows that the Broker uses to deliver products
offerings, like Equity Trading, through various channels like the Web, telephony or
direct access. Process services, like Order Placement, expose access points that allow
business partners to participate in the process. Process services also automate the
information flow across disparate systems and eliminate duplicate data entry, manual
data transfer and redundant data collection.

• Application services represent business activities that are useful across business
units. For example, services like the Securities Pricing service is required across
multiple business lines such as equity trading, fixed income trading, asset
management, mutual fund trading etc. Application services provide shared and
consolidated functional services to reduce/eliminate redundant/overlapping
implementations.

• Shared data services map multiple schemas from different data sources to a single
schema which is presented to collaborating applications. They provide the ability to
unify and hide differences in the way key business entities are represented within the
organization or between different business partners. Shared data services, like a

616 A. Erradi, N. Kulkarni, and P. Maheshwari

Customer service, can expose aggregated entities from specific data sources to
reconcile inconsistent data representations and minimize the impact of change.

• Infrastructure services provide shared functions for other services, such as
authentication, authorization, encryption, logging, etc. Often infrastructure services
can be acquired, like an LDAP directory service, rather than built in-house.

5 Discussion and Lessons Learned

This Section discussed the key lessons learned from the Securities Trading case study.
Further, key design considerations per service types are briefly presented.

5.1 Key Lessons Learned

While the SOA approach strongly reinforces well-established software design
principles such as encapsulation, modularization, and separation of concerns, it also
adds additional dimensions such as service choreography, scalable service mediation,
and service governance. Our study highlights the following:

• Business process centered top-down identification of shared business services can
lead to business aligned service design.
• An enterprise wide common information model (CIM), also known as Canonical
Schema, is important to support the consistent representation of key business entities
and to reduce syntactic and semantic mapping overheads between services. Standards
like STPML [6] for the securities industry should be leveraged.
• Moving to SOA requires more than just a simple change of programming practices,
rather a paradigm shift and mindset change is required to switch from RPC-based/object-
based architecture to a loosely-coupled, message-focused and service-oriented
architecture. A true SOA is realized when applications are built as self-contained,
autonomous business services that interact by exchanging messages that adhere to
specified contracts
• When service-enabling Mainframe CICS applications, it would be wise to expose
one service per screen flow, and avoid translating all transactions to services. This
involves identifying the required screens navigation to achieve key capabilities of the
application, like CustomerCreation for instance, and then exposing the entire screen
flow as a service.
• To ease service discovery and reuse, there is a need for clear service naming
guidelines and a services metadata management repository to support governance and
easy identification of services based on business function.

5.2 Design Considerations Per Service Type

For process services design the focus should be on the ease of modification and
customization as these services are subject to higher change frequency. Hence, they
should declaratively capture only the routing logic to manage the data and control
flow between activity services. Further, complex business rules should be abstracted
and externalized from processes so that they can be managed by a dedicated rules
engine. Further, robust exception handling/compensation design is required.

 Service Design Process for Reusable Services: Financial Services Case Study 617

Application services can have a verb-focused design by exposing key verbs as
service methods, which unfortunately require RPC like behavior and sometimes might
reveal the internal state of the service. We advocate a message-centric design to allow
message content-driven service behavior and generalized service interface that can be
used and composed in various applications. Command design pattern is used where
the service performs dynamic content-based routing to direct the received messages to
the appropriate implementation. This practice is acceptable when the resulting service
contract is coherent and deals with closely-related business concepts. For example a
generic Securities Price Lookup service could be provided to retrieve the price from
various stock exchanges using content-based routing. Services need to be idempotent
so that requests arriving multiple times are only processed once.

Shared data services uses noun-based design and usually expose CRUD interfaces
representing simple atomic operations on an entity.

Infrastructure services are usually acquired and act on messages depending on the
message context like the channel through which the message has arrived.

6 Conclusion and Future Work

Service-orientation is gaining momentum as a promising approach to deliver
increased reusability, flexibility and responsiveness to change. However, the practical
design of services requires sound engineering principles. The main contribution of
this paper is a service-enablement case study in the securities trading domain to
illustrate the issues and the challenges related to service design. The paper also
emphasized the importance of service design in a Service-Oriented Architecture as
well as the importance of focusing on the services’ business value to guide the service
requirement gathering, service identification and service design. Furthermore, we
discussed the lessons learned with respect to the service design best practices and
guidelines. Future work will focus on empirical studies of how the level of service
granularity affects cohesion and coupling. We are also looking at developing an
integrated toolset and a Domain Specific Language (DSL) supporting our service
design methodology.

References

[1] Arsanjani, A.: Service-oriented modeling and architecture (SOMA) (2004), http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-design1/

[2] Association for Cooperative Operations Research and Development (ACORD) (2007),
http://www.acord.org

[3] Briand, L.C., Daly, J.W., Wüst, J.: A Unified Framework for Coupling Measurement in
Object-Oriented Systems. IEEE Transactions on Software Engineering 25(1), 91–121
(1999)

[4] Papazoglou, M.P., van den Heuvel, W.J.: Service-Oriented Design and Development
Methodology. Int’l Journal of Web Engin. and Technology (IJWET) (2006) (to appear)

[5] Parastatidis, S., Webber, J.: Realising Service Oriented Architectures Using Web Services.
In: Service Oriented Computing, MIT Press, Cambridge (2005)

[6] Straight Through Processing Markup Language (STPML) (2007), http://www.stpml.org

	Service Design Process for Reusable Services: Financial Services Case Study
	Introduction
	Background and Problem Area
	Service Oriented Decomposition Process
	Service Identification
	Service Granularity

	Service Design
	Service Design Principles
	Service Design Tasks
	Services for the Securities Case Study

	Discussion and Lessons Learned
	Key Lessons Learned
	Design Considerations Per Service Type

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

