Policy Based Messaging Framework

Martin Eggenberger' 2, Nupur Prakash?, Koji Matsumoto?,
and Darrell Thurmond?®

! SpinergyGroup, Piedmont, CA, USA
2 Delta Dental of California, San Francisco, CA, USA
3 KoolKode Technologies, LLC, Santa Monica, CA, USA
martin@spinergygroup.com, nprakash@delta.org, kmatsumoto@delta.org,
koolkode@architect-alchemist.com

Abstract. Due to integration complexities to legacy as well as new
systems, a Common Messaging Framework has been developed that is
based on policies to control the behavior of the various enterprise ser-
vices. These policies include both internal and external Quality of Service
Policies as well as constraint based business process policies. This paper
proposes and identifies a policy based messaging framework for both
intranet and extranet services, upon which individual policies can be in-
jected during runtime for individual messages, domains and or processes.
Further more these policies can be customized on a per actor basis and
dynamically changed during runtime by a console user without having
to stop the process.

Keywords: Service Oriented Architecture, QoS, Policy, Dependency In-
jection, Adaptive Services, Ontologies, Queuing.

1 Introduction

Although there has been considerable attention been devoted in both industry
and academia to the design and implementation of new services, little headway
has been made to enable legacy systems to truly take advantage of a Service Ori-
ented Architecture. Specifically, non—functional requirements within the Quality
of Service (QoS) arena need to be further researched. In essence we found three
problems associated with legacy integration using SOA.

First off, most legacy integrations are built using Point to Point integration
solutions. Most large scale organizations use batch processes and batch transfers
to exchange data between various point solutions and the primary communica-
tion channel is file based. Since the individual records in these files do not contain
QoS policies and the rewriting of the code is not feasible, no policy enforcement
is feasible.

Secondly, the error handling of legacy applications and processes are using
different solutions such as log files, databases and simple process return codes.
Since these applications were built over the last 20 years, we are faced with
various problems in the application logging/monitoring and auditing policies.
Specifically, the auditing policies have changed over the years; and therefore, we

B. Kramer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 497-505] 2007.
© Springer-Verlag Berlin Heidelberg 2007

498 M. Eggenberger et al.

require an adaptive policy system to adjust to the changing regulatory require-
ments.

And lastly, the process orchestration used is mostly based on scheduling tech-
nology [12]; and therefore, only temporal properties are used for process orches-
tration. The nature of this orchestration limits the introduction of QoS policies,
hence a new event driven processing mechanism was explored that enable policies
for legacy and new systems.

To address these problems, we have developed a policy based messaging frame-
work that support QoS policies. Our approach is based on a comprehensive mes-
saging model for description, discovery, policy injection and policy enactment
that are suited for a Service Oriented Architecture [3]. The messaging model
defines a semantic model of the messages’ purpose as well as the policy asso-
ciated within the semantic model. To that end, a message consists of a set of
processing instructions related to the domain and process it is used in, as well as
a set of policies that are related to the domain, the process or the message itself.
Further more we described the relationship between the caller’s context (e.g.
security context) and the associated policies. For example, a system user may
define an Auditing Policy based on a specific computing domain such as Claim
Processing. In the above example, the system user requesting such a service
would specify what elements within the message have to be auditable.

Given such a description framework, we also required a message discovery
framework [4J5] that allows us to apply and inject domain and process informa-
tion into the individual message. To that end, we developed and implemented
a domain and process ontology, that is used as the basis for domain and pro-
cess discovery purposes. Having obtained the messages’ domain and process, the
policy set can be injected given the callers credentials.

Since all user and system credentials are stored in an enterprise directory, the
individual policies can also be stored in the same directory as part of the user
profile. Therefore, if a user authenticates him/herself we can cache the policy set
associated with the user and apply case - based reasoning for injecting policies
based on the message, process or domain. In general this injection occurs using
a set of policy rules (e.g. business rules) that specify the injection behavior of
the policies.

Once, all policies have been injected we need to worry about the enactment
[5] of the specified policies as well as the monitoring of these policies.

2 Messaging Framework

The messaging framework is a conceptual model that describes messages within
the enterprise. It not only allows us to model message payloads, but also message
related processing information such as domain, process and policy information.
This relationship between the individual messages’ domain and process has an
advantage over other frameworks [67I8] insofar that it allows policy granularity
not only on the message, but also on the domain and process level. For example,
when dealing with healthcare information during Claims Processing, all data

Policy Based Messaging Framework 499

access has to be auditable; and therefore an Audit Policy on the domain will
be sufficient to control the auditing behavior. To that end any message received
during processing that is correlated to the Claims domain will have the policy
propagated to each message. The relationship between a message, process, do-
main and policy is shown in Fig.1. A message must belong to a domain and a
process at all times. Further more a process must belong to at least one domain
and vice versa. All three primary objects may depend on one or more policies
that can be message, domain or process centric.

olass Message Framewark

Message Palicy

DomainFolicy ProcessPolicy | | MassagePolicy

Do main
wpriman 1 Process —

+sub-domain +sub
0.7 process
0.7

Fig. 1. Simplified Message Framework Model

2.1 Policy Definition Model

The policy definition model can be defined as a set of individual policies that
define non-functional processing aspects related to the message itself. Before
delving further into the definition model it is necessary to clearly define the
difference between a policy and a rule. From our perspective a policy is an atomic
enforceable constraint on a system [9] whereas a rule is a conceptualization of
a business need. This distinction is necessary to both understand and use this
framework. To that end, rules [IOJTI] maybe used to implement and enforce
policies similar to assertions being used in application programming. Fig. 2 shows
a simplified Domain and Process Ontology and the relationship between the three
different kinds of policies. The domain may subscribe to a domain policy and
subsequently all messages related to that domain will use policy propagation
from the domain. Similarly, a process may subscribe to a specific process policy,
and finally a message itself can subscribe to specific message policy. Below are
two examples of defining policies; the first one defines an Auditing policy on the
claims domain that specifies to audit every interaction, the second one defines
a logging policy on the Adjudicate Claim Process that specifies that a log must
be written on every message participating in the process.

500 M. Eggenberger et al.

<S0A.Policy.Audit.Domain Audit.Event="Al1l">
<S0A.Common.Domain
Common.Domain.ID="1"
Common.Domain.Type="Claim"/>
</S0A.Policy.Audit.Domain>
<S0A.Policy.Logging.Process Logging.Level="Debug">
<SOA.Common.Process
Common.Process.ID="1"
Common.Process.Type="AdjudicateClaim"/>
</S0A.Policy.Logging.Process>

object Domain Objects
Erterprise :Domain
Claims :Domain Eligibility :Domain CheckEligibility : PrococesClaim : Claim :Message
Process i Process pooo- =
wsubscribexs wsubscribes wsubscribes gsubscribes «subscribes
LoggingPalicy : AuditPolicy : ExceptionPalicy :
DomainPolicy ProcessPolicy MessagePolicy

Fig. 2. Domain, Process Ontology with Policy Relationships

2.2 Policy Injection Model

Having defined the overall message model and their relationship with individual
policies we now need understand how policies are injected. To that end we devel-
oped several policy injection scenarios: Static Injection and Dynamic Injection.
Static Injection allows the provider of the message to programmatically specify
the policies on the message itself. This approach requires a set of services to
access the policy store for domain, process and policies. Dynamic injection on
the other hand is based on the domain and process ontology that allows case-
based reasoning on the message content and its relationship with the domain or
process.

2.3 Policy Processing Model

The policy processing model is based on the translation of the policy definition
language into a policy execution language as well as the execution of each policy.
The policy execution language essentially invokes a service either synchronously

Policy Based Messaging Framework 501

or asynchronously to validate or enrich the message itself. For example, a logging
policy may specify that a message is logged whenever it is being passed between
business processes; and therefore, it will be executed asynchronously. A data
field encryption policy on the other hand, will enrich the message by encrypting
a data filed upon sending and decrypting upon receiving.

3 Message Model Formalization

In order to define and process policies we require a more formalized approach.
In this section, we provide a brief introduction to the formalisms used in this re-
search. This framework consists of a mathematical description to specify policies,
domains, processes and messages. Further more we describe the mathematical
relationship between the individual sets and provide a mathematical induction
proof to validate the model.

Definition 1. (Ezecution Definition). A message is used within a service S to
perform an atomic operation. To that end we define a function f:M’M that takes
as input an element of the Message Set M and returns a different element of the
Message Set M.

Definition 2. (Message Definition). A single message is defined as a four- tuple
that contains a payload subset P’, a domain subset D’, a process subset X’ and
a constraint subset C’. Therefore a single message is defined as follows.

mi:{Plleleuc/} i>0;iEN/CN (]‘)

Given this definition we can define the space of all messages M that are permu-
tations of all individual instances of the above definition. Since the number of
permutations does not span a proper vector space we will prove that there exists
a subset M’ M that represent a valid vector space.

Definition 3. (Payload Definition). The payload is defined as the data element
to be processed within the message. We define the payload as follows:

P CPUD (2)

Definition 4. (Domain Definition). The domain is defined as the processing
domain the payload is associated. We define the domain as follows:

D' CDU (3)

Definition 5. (Process Definition). The process is defined as the process (ac-
tivity) the payload is associated. We define the process as follows:

X' C XUl (4)

Definition 6. (Policy Definition). The policy is defined as the policy (con-
straint) associated with the payload.

c'cCoul (5)

502 M. Eggenberger et al.

Proposition 1. (Policy Injection Rule). All policies are derived/defined from a
domain, process, or the payload itself; and therefore we can define a function G,
that maps a message M to a policy C.

G:M—C (6)

We need to remember that the domain, process and payload are part of each
message; and therefore, for each domain d; there exists at least one constraint c;
(Vd; € D — { 3 ¢; C C'}). Similarly for each process x; there exist a constraint
(policy) ¢; (Vx; € X — {3c; € C’}). And finally for all messages m; there exist
a constraint (policy) ¢; (Vm; € M — {3c; C C’}).

Proposition 2. (Policy Execution Rule). Since all policies are based on a mes-
sage, we can define a function that H that maps the policy C back to a Message
M. This is essentially an inverse function of G.

H:C—-M (7)

Theorem 1. (Completeness of Execution). Let m; be a message hat defines
policies from n=0 .. m, we can proof by induction that the reverse function will
exist on the subset M’ of all messages.

If no policies have been defined within a message m; (n=0), the message will
remain unchanged after injecting and executing the policy.

m; = H(G(m;)) (®)

If a single policy n=1 is injected into the message m;, the outcome of injection
and executing the rule results in a message m; that is part of the message set
M’ that will have no policies defined (n=0).

mj = H(G(m;)) (9)

Since we defined the policy to be executable and computable on the message, we
have proven by induction that the reverse function exists for all messages that
have a computable policy set.

4 Architecture

The overall architecture we have chosen is based on highly scalable enterprise
service bus (ESB) that acts as the intermediary for messaging [I2I13]. The service
bus provides asynchronous processing queues for primary business processes and
domain activities that are implemented using BPEL [I(]. In addition to these
orchestrated services a set of utility services for data retrieval and cross-cutting
concerns are registered on the bus. Using an enrichment pattern on the message
bus, allows the individual messages to be extended and the policy and domain
information to be added, and subsequently transformed into BPEL for the poli-
cies to be executed. Fig. 3 depicts the conceptual architecture of the solution.

Policy Based Messaging Framework 503

The core of the system is the Message Bus and the Policy control framework re-
sponsible for policy injection, policy definition and policy execution. The Policy
Control framework uses a policy store to retrieve policies given the context of
the message (domain and process). Additionally, the diagram also shows the pri-
mary business process, Claim Processing, and the individual domain activities,
Data Receiving, Data Pre — Processing, Data Validation and Data Adjudication.

omp Comporerts
«BPELx
Claim Frocess
#prooesss «#prosesss pracesss aprosesse
Data Receiue Data Pre-Process Data Validation Claim Adjudication
[
olamrmeummkg
CioimProse caservice)
o— Message Bus

| - 7<£

Palicy Cantral

unpsecer
FolioyStore

Folicylnjection

| TR R FoligyDefintion

FalicyTranslation

vnnerce B

FalicyEnastment [

Fig. 3. Conceptual Architecture used by the messaging framework

Since each individual activity is a collaboration of data services that are based
on our message model we can use a pipeline execution model to inject, transform
and execute the policies using an interrupt pattern on the activity process flow.

4.1 Message Processing

Given that we use an enterprise service bus, the policy control framework will
inspect the message while executing the business process orchestration. To that
end the policy control framework will subscribe to the policy service queue that
is invoked by the BPEL process. At that point the message is inspected, the
domain, process and policy information injected. Once the message is complete

504 M. Eggenberger et al.

the policies will be transformed into executable code and subsequently called
based on the context. Once the policy enactment stage is complete, control is
returned to the calling context. In other words, the pipeline execution model is
guided by the policy control model. The typical flow of a message, once it is put
onto a process or domain queue involves the following steps:

— The Message is published onto the primary/main flow queue.

The Message is inspected synchronously by the policy control framework.
— The Policy Control Framework executes the policy set on the message.
The Main Process Flow is resumed upon execution/scheduling of all policies.

As can be seen by the scenario above, the policy control will interrupt the
main process flow until all policies have been evaluated or processed; and there-
fore, special care has to be taken on the execution times of the aspects that
are being injected. To that end, there are two distinct ways to execute these
policies: asynchronously and synchronously. Logging, Auditing and other high
volume aspects, are all asynchronous requests to perform a certain action on
the message, where the return result is not necessary for the main process to
continue. Synchronous policies on the other hand, such as Check Policies and
Encryption policies will have to execute synchronously and publish the result
message back onto the main process queue.

5 Related Work

A lot of work has been devoted in both industry and academia to policy enforce-
ment, little industrial progress has been made to allow the business stakeholders
to define such constraints. The SCA initiative [I14] defined a policy framework [§]
which allows developers to use doclets and annotations to define policies during
development which does not allow a quick adoption to changing policies. Other
approaches such as [9], use a constraint based methodology for web services, but
leave little room for change.

6 Conclusion and Future Work

Policy definition and policy enactment is an important issue in any successful
implementation of a Service Oriented Architecture. In this paper we described
an approach that allows various stakeholders in the ecosystem to define policies
that will be executed during the execution of a business process or activity.
Further more, we showed that policies can be defined coarse grained for optimal
usability. Because our approach is unique insofar as the definition and execution
of policies is concerned we provide adaptability to changing requirements and let
the business and operational stakeholders constrain the business processes. In
doing so we reduce the total cost of ownership as no further development effort
is necessary, unless new processes have to be built. Our model could easily be
extended to include the governance of any processes as it represents a way to

Policy Based Messaging Framework 505

constrain processes with policies, although our focus was based on an adaptable
messaging model.

This work is at an early stage, and much more has to be done. The policy

definition language, as well as the policy translation and execution language must
be refined and evaluated. The performance of the policy control framework has
to be considered and tuned as there are many times the injection and enactment
algorithm has to be executed.

References

10.

11.
12.

13.

14.

. Brucker, P.: Scheduling algorithms. Springer, Berlin (2001)
. Zhao, J.L., Stohr, E.A.: Temporal workflow management in a claim handling sys-

tem. In: ACM SIGSOFT Software Engineering Notes, Proceedings of the interna-
tional joint conference on Work activities coordination and collaboration WACC ’99
(March 1999)

. Fremantle, P., Weerawarana, S., Khalaf, R.: Enterprise Services, Examining the

emerging field of Web Services and how it is integrated into existing enterprise
infrastructures. Communication of the ACM 45(2) (October 2002)

. Hoschek, W.: The Web Service Discovery Architecture. In: Proceedings of the 2002

ACM/IEEE conference on Supercomputing, Baltimore, Maryland, November 16,
2002, pp. 1-15 (2002)

. Kozlenkov, A., Fasoulas, V., Sanchez, F., Spanoudakis, G., Zisman, A.: Service

discovery and binding: A framework for architecture-driven service discovery. In:
SOSE ’06. Proceedings of the 2006 international workshop on Service-oriented
software engineering

. Anderson, A.: An Introduction to the Web Services Policy Language. In: POL-

ICY’04. Fifth IEEE International Workshop on Policies for Distributed Systems
and Networks, IEEE Computer Society Press, Los Alamitos (2004)

. Web Services Policy Framework (ws-policy). Technical Report, IBM, BEA Systems,

Microsoft, SAP AG, Sonic Software, VeriSign (March 2006)

. Beisiegel, M., Kavantzas, N., Malhorta, A., Pavlik, G., Sharp, C.: SCA Policy

Association Framework. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 613-623. Springer, Heidelberg (2006)

. Aggarwl, R., Verma, K., Miller, J., Milnorm, W.: Constraint driven web service

composition in METEOR-S. In: SCC’04. IEEE Conference on Service Computing,
Shangahi China, pp. 23-30. IEEE Computer Society Press, Los Alamitos (2004)
Andrews, T., Cubera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F.,
Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, 1., Weerawarana, S.: Busi-
ness process execution language for web services version 1.1. Technical report,
OASIS, http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-bpel/ws-bpel.pdf

ILog JRules, http://www.ilog.com/products/jrules

Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Pro-
fessional, Reading (2002)

Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Reading (2003)
Service Component Architecture (SCA) Specifications, http://www.osoa.org/
display/Main/Service+Component+Architecture+Specifications

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://www.ilog.com/products/jrules
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

	Policy Based Messaging Framework
	Introduction
	Messaging Framework
	Policy Definition Model
	Policy Injection Model
	Policy Processing Model

	Message Model Formalization
	Architecture
	Message Processing

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

