
A Development Process for
Self-adapting Service Oriented Applications

M. Autili, L. Berardinelli, V. Cortellessa, A. Di Marco, D. Di Ruscio,
P. Inverardi, and M. Tivoli

Dipartimento di Informatica
Università degli Studi di L’Aquila,

67100 L’Aquila, Italy
{autili,berardinelli,cortelle,dimarco,diruscio,inverard,

tivoli}@di.univaq.it

Abstract. Software services in the near ubiquitous future will need to
cope with variability, as they are deployed on an increasingly large diver-
sity of computing platforms, operate in different execution environments,
and communicate through Beyond 3G (B3G) networks. Heterogeneity
of the underlying communication and computing infrastructure, physi-
cal mobility of platform devices, and continuously evolving requirements
claim for services to be adaptable according to the context changes with-
out degrading their quality. Supporting the development and execution
of software services in this setting raises numerous challenges that in-
volve languages, methods and tools. However these challenges taken in
isolation are not new in the service domain. Integrated solutions to these
challenges are the main targets of the IST PLASTIC project.

In this paper we introduce the PLASTIC development process model
for self-adapting context-aware services, in which we propose model-
based solutions to address the main issues of this domain in a comprehen-
sive way. We instantiate the process model by providing methodologies
to generate Quality of Service models and adaptable code from UML
service models. All these methodologies are supported by an integrated
framework which is based on an UML profile that we have defined for
the PLASTIC domain.

1 Introduction

Nowadays, software services need to cope with variability, as services get de-
ployed on an increasingly large diversity of computing platforms and operates in
different execution environments. Heterogeneity of the underlying communica-
tion and computing infrastructure, mobility inducing changes to the execution
environments (and therefore changes to the availability of resources) and con-
tinuously evolving requirements require services to be self-adaptive according to
the context changes. At the same time, a service should be dependable in the
sense that it should meet the user’s Quality of Service (QoS) requirements and
needs. Moreover, satisfying user expectations is made more complex given the
highly dynamic nature of service provision.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 442–448, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Development Process for Self-adapting Service Oriented Applications 443

Supporting the development and execution of such adaptable services raises
numerous challenges that involve models, methods and tools. However these
challenges, taken in isolation, are not new in the service domain. Integrated
solutions to these challenges are the main targets of the IST PLASTIC project,
whose main goal is the rapid and easy development/deployment of self-adapting
services for B3G networks [20].

Broadly speaking, a “standard” development process focuses on activities that
are traditionally divided into development-, deployment- and run-time activities.
Each activity works on suitable system artifacts, which can be coupled with
models suitable for development purposes. The evolutionary nature of services
in the near ubiquitous future makes unfeasible a standard development process
since dealing with self-adaptiveness would require to predict the functional and
non-functional system behavior before the system is in execution. Whenever a
change occurs, if service evolution has to be supported by means of adaptation,
all the artifacts/models might be exploited also by the deployment and run-time
activities, hence leading to a “non-standard” development process view. Thus,
the main challenges in this direction are related to the support that can be offered
to service developers to satisfy the user expectations in a such heterogeneous and
dynamic environment.

In this paper we introduce the PLASTIC development process that relies on
model-based solutions to build self-adapting context-aware services. The intro-
duced process encompasses methodologies to generate QoS models and adaptable
code from UML-based specifications. All these methodologies are supported by
an integrated framework which is based on an UML profile of the PLASTIC
domain.

The work described in this paper relates to multiple research areas of the
existing literature, that are: (i) web-service development technologies, (ii) model-
driven development, (iii) performance and reliability analysis techniques, and
(iv) (self-)adapting software. For sake of space, we obviously cannot address all
the recent related work in the above areas, thus in the following we shortly
discuss and provide major references for each area.

Current (web-)service development technologies, e.g. [7,8,19,22,23] (just to
cite some), address only the functional design of complex services, that is they do
not take into account the extra-functional aspects (e.g., QoS requirements) and
the context-awareness. Our process borrows concepts from these well assessed
technologies and builds on them to make QoS issues clearly emerging in the
service development, as well as to take into account context-awareness of services
for self-adaptiveness purposes.

The PLASTIC development process adheres to the Model Driven Develop-
ment (MDD) approach which claims to shift the focus of software development
from coding to modeling [21]. In this respect, problems can be precisely de-
scribed using specific terms and concepts more familiar to experts working in
the considered domain and technological details which are unnecessary for the
service description can be neglected. Model transformations are devised in our
process in two directions: (i) to glue the different levels of abstractions and, by

444 M. Autili et al.

encoding the knowledge about the technological assets, to permit the automated
generation of the service code, (ii) to generate QoS models, at the same level of
abstraction of the service models, that allow to validate extra-functional issues
during the service development.

With regard to the latter point, up today performance and reliability models
have been integrated in the PLASTIC process to support QoS validation. In this
domain interesting progresses have been made in the last ten years due to the
introduction of automated techniques and tools that allow to generate extra func-
tional models from annotated software models (see, for example, [3] for perfor-
mance and [6] for reliability). We have embedded some of these techniques in our
service development process. Obviously some effort has been necessary to adapt
the techniques to the specific domain of context-aware self-adapting services.

This work exploits also notions and concepts in the area of (self-)adaptation
of software entities and self-healing system development, spanning adaptation of
communication/interaction [15], performance [11], real-time behaviours [5], and
synthesis of coordination/composition behaviour among semantic services [13].

The remainder of the paper is structured as follows: Sect. 2 describes the
proposed development process and outlines the adopted technologies supporting
it. Sect. 3 draws some conclusions and perspective works.

2 PLASTIC Development Process

In this section we introduce the PLASTIC development process for self-adapting
context-aware services. By recalling Section 1, the main issues that this process
addresses are: (a) service self-adaptiveness and context-awareness, and (b) ser-
vice satisfaction of QoS requirements.

To address the former, at design time the possible contexts in which the
service will run are specified. Models for context description are introduced to
support this activity. At development time, the context specification is exploited
to automatically derive, through model-to-code transformation, “generic” code
that embodies a certain variability degree. Hereafter, we refer to it as adaptable
code. Obviously, only the skeleton is automatically derived, i.e., its logic has
to be coded by hand. At deployment time the adaptable code is processed to
automatically extract, through adaptable code instantiation, the code that better
fits a certain context.

The latter is addressed in two steps: (i) by allowing the designer to annotate
the service model with QoS related information (i.e. QoS parameters and require-
ments), and (ii) by elaborating the annotated information at both design- and
run-time through analysis tools whose aim is to predict and solve QoS models
within the possible different contexts. The adopted QoS analysis tools use a large
variety of models, from behavioral to stochastic, that can represent the system at
very different levels of abstraction from requirements specification to code.

As already anticipated in Section 1, the ever growing complexity of software
has exacerbated the dichotomy development/static/compile time versus execu-
tion/dynamic/interpret time thus concentrating as many analysis and validation

A Development Process for Self-adapting Service Oriented Applications 445

Fig. 1. The PLASTIC process for service development

activities as possible at development time. As opposite, if QoS has to be preserved
through adaptation whatever the change mechanism is, at the time the change
occurs, a validation mechanism must be devised at run-time. This means that
models used at development time to support design decisions must be available
at run-time for additional validation activities.

In Fig. 1 we illustrate the PLASTIC development process, where square boxes
represent software artifacts/models and ellipses represent activities. Lifecycle
time goes from the top to the bottom of the figure. All the process activities orig-
inate from a Conceptual Model where entities and relationships of the context-
aware service domain are defined [2,16]. Based on these entities, a Service Model
can be specified in terms of its Functional Specification and its Service Level
Specification (SLS). The former describes behavioral aspects of the modelled
service, whereas the latter its QoS characteristics.

The Service Model is specified by means of a UML2 [14] profile whose aim is to
extend UML2 to cope with adaptable, context aware and component based soft-
ware services both from structural and behavioral viewpoints along the entire soft-
ware lifecycle, from requirements specification to deployment. This profile is an
implementation of the Conceptual Model, and it is supported by the customiza-
tion of an UML 2 tool environment (i.e. Magic Draw) that we have developed and
described in [17]. For the sake of space, we do not describe here the profile.

Two main streams of activities originate from a Service Model, each addressing
one of the issues introduced above.

446 M. Autili et al.

In one stream of activities, Model-to-Model transformations are devised in
order to derive models for performance and reliability analysis. In particular,
Bayesian Reliability Models, Queueing Networks, Timed Automata, and Sym-
bolic State Machines are considered in the current implementation of the pro-
cess. Some of the Model-to-Model transformations are performed by means of
the ATLAS Transformation Language (ATL) [10] that has been developed in
the context of the MODELWARE European project [12].

In Fig. 1 we have reported some of the model transformation and analysis
techniques that we have integrated within the PLASTIC process. As an exam-
ple, SAP•one/XPRIT starts from annotated UML diagrams and generates a
performance model that may be either a Queueing Network (QN) that repre-
sents a Software Architecture, if no information about the executing platform
is available, or an Execution Graph (representing the software workload) and a
Queueing Network (representing the executing platform) in the other case. The
model solution provides performance indices that are parametric in the first case
and numerical in the second one. A QN solver, like SHARPE, can provide val-
ues of performance indices. As another example, COBRA is a tool that, starting
from annotated UML diagrams, generates a reliability model for component-
based or service-based systems that takes into account the error propagation
factor. COBRA embeds a solver that performs reliability analysis on the basis
of the generated model.

Bayesian Reliability Models and Queueing Networks can also be analyzed
at development time to refine/validate the Service Model characteristics that
the analysis addresses. Timed Automata, Symbolic State Machines (SSM), and
possibly the previous models will be made available at deployment- and run-time
to allow the adaptation of the service to the execution context and for service
validation. In particular, we are able to perform two kinds of validations, i.e., on-
line and off-line validation (see [18] for details). Off-line validation is performed
to generate test cases, before the service execution, by taking into account both
the service model (in particular its SSM) and the service code. On-line validation
is performed whilst the service is running and uses the generated test cases.

In the other stream of activities, Model-To-Code transformations are used to
build both the core and the adaptable code of a service. The core code is the
frozen unchanging portion of the service. The adaptable code portion can evolve
in the sense that, basing on contextual information and possible changes of the
user needs, the variability can be solved with a set of alternatives. A particular
alternative might be suitable for a particular execution context and specified
user needs. Each alternative can be selected by exploiting the analysis models
available at run-time and the service capabilities performing the Run time Anal-
ysis/SLA Monitoring and the Evolution Policies Selection (see Fig. 1). When a
service is invoked, the run-time analysis is performed (on the available models)
and, basing on the analysis results, a new set of alternatives is synthesized and
a new alternative is selected. The development of the adaptable service code is
based on CHAMELEON [9], that is a resource-aware framework for adaptable
Java applications.

A Development Process for Self-adapting Service Oriented Applications 447

Model-To-Code transformations are performed by means of a code genera-
tor based on the Eclipse Java Emitter Template framework (part of the EMF
framework [4]). JSP-like templates explicitly define the code structure and get
the data they need from the UML model of the specified service exported into
EMF. With this generation engine, the generated code can be customized and
then re-generated without losing already defined customizations.

We like to remark that one of the main novelties of this process is to consider
SLS as part of a Service Model, as opposite to existing approaches where SLS con-
sists, in best cases, in additional annotations reported on a (service) functional
model. This peculiar characteristic of our process brings several advantages: (i)
SLS embedded within a Service Model better supports the model-to-model trans-
formations towards analysis models (in particular, the target model parametriza-
tion) and, on the way back, better supports the feedback of the analysis (i.e.,
reporting the analysis results on the Service Model); (ii) in the path to code gen-
eration, the SLS can drive the adaptation strategies.

3 Conclusions and Future Work

This paper proposed a development process defined in the context of the IST
EU PLASTIC project [20] which aims at offering a comprehensive provision-
ing platform for context-aware and adaptable software services deployed over
B3G networks. In particular, this work describes the instantiation of the process
within an UML world. Models and techniques for developing, in UML, adaptable
code of context-aware services which have to show optimal QoS within differ-
ent contexts have been integrated. The approach is supported by languages and
tools conceived to increase the automation in all the process steps. Service mod-
eling is based on a PLASTIC UML profile that we have defined and whose main
concepts have been inherited from other existing UML profiles and meta-models
(e.g. see [1]).

Due to space limitation, in this paper, we have given an overall description of
the thorough approach that supports the whole service lifecycle. The approach
has been applied to a real-life example concerning the service-oriented develop-
ment of an e-Health system. The treatment of this example is described in [17].

The instantiation of our process within UML can be improved by integrating
a wider number of analysis techniques that may address other dimensions of
QoS, such as availability and security. Besides, from a functional viewpoint, we
intend to study how to tackle dynamic composition of context-aware services. We
are also investigating the usage of non-UML methodologies and tools within the
process, such as formal (functional and non-functional) specification of services.
This would allow us to introduce in the process formal refinement and analysis
techniques, such as model checking.

The application of the approach other real world case studies would obviously
allow us to refine and validate the whole framework.

Acknowledgments. This work has been partially supported by the IST EU
project PLASTIC (www.ist-plastic.org).

448 M. Autili et al.

References

1. SeCSE Project, http://secse.eng.it
2. Autili, M., Cortellessa, V., Di Marco, A., Inverardi, P.: A Conceptual Model for

Adaptable Context-aware Services. In: WS-MATE (2006)
3. Bernardi, S., Donatelli, S., Merseguer, J.: From uml sequence diagrams and stat-

echarts to analysable petri net models. In: 3rd ACM Workshop on Software and
Performance, ACM Press, New York (2002)

4. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. Addison-Wesley, Reading (2003)

5. Cortadella, J., Kondratyev, A., Lavagno, L., Passerone, C., Watanabe, Y.: Quasi-
static scheduling of independent tasks for reactive systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 24(10) (2005)

6. Cortellessa, V., Singh, H., Cukic, B., Gunel, E., Bharadwaj, V.: Early reliability
assessment of uml based software models. In: 3rd ACM Workshop on Software and
Performance, ACM Press, New York (2002)

7. Eclipse.org. Eclipse Web Standard Tools, http://www.eclipse.org/webtools
8. IBM. BPEL4WS, Business Process Execution Language for Web Services, version

1.1 (2003)
9. Inverardi, P., Mancinelli, F., Nesi, M.: A Declarative Framework for adaptable

applications in heterogeneous environments. In: ACM SAC, ACM Press, New York
(2004)

10. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, Springer, Heidelberg (2006)

11. Menascé, D.A., Ruan, H., Gomaa, H.: A framework for QoS-aware software com-
ponents. In: WOSP ’04, ACM Press, New York (2004)

12. ModelWare: IST European project 511731, http://www.modelwareist.org
13. Nezhad, H.R.M., Benatallha, B., Martens, A., Curbera, F., Casati, F.: Semi-

automated adaptation of service interactions. In: WWW 2007 Web Services Track
(2007)

14. OMG: UML 2 Superstructure. formal/2007-02-03 (February 2007)
15. Passerone, R., de Alfaro, L., Heinzinger, T., Sangiovanni-Vincentelli, A.L.: Con-

vertibility verification and converter synthesis: Two faces of the same coin. In:
Proc. of ICCAD 2002 (2002)

16. PLASTIC IST STREP Project: Deliverable D2.1: SLA language and
analysis techniques for adaptable and resource-aware components, http://
www-c.inria.fr/plastic/deliverables/plastic-d2 1-finalpdf.pdf/download

17. PLASTIC IST STREP Project: Deliverable D2.2: Graphical design lan-
guage and tools for resource-aware adaptable components and services, http://
www-c.inria.fr/plastic/deliverables/plastic-d2 2-finalpdf.pdf/download

18. PLASTIC IST STREP Project: Deliverable D4.1: Test Framework Spec-
ification and Architecture, http://www-c.inria.fr/plastic/deliverables/
plastic d4 1final.pdf/download

19. A-MUSE Project: Methodological Framework for Freeband Services Development
(2004), https://doc.telin.nl/dscgi/ds.py/Get/File-47390/

20. PLASTIC Project: Description of Work (2005), http://www.ist-plastic.org
21. Selic, B.: The Pragmatics of Model-driven Development. IEEE Software 20(5),

19–25 (2003)
22. W3C: Web Service Definition Language, http://www.w3.org/tr/wsdl
23. Yun, H., Kim, Y., Kim, E., Park, J.: Web Services Development Process. In: PDCS

(2005)

 http://secse.eng.it
http://www.eclipse.org/webtools
http://www.modelwareist.org
http://www-c.inria.fr/plastic/deliverables/plastic-d2_1-finalpdf.pdf/download
http://www-c.inria.fr/plastic/deliverables/plastic-d2_1-finalpdf.pdf/download
http://www-c.inria.fr/plastic/deliverables/plastic-d2_2-finalpdf.pdf/download
http://www-c.inria.fr/plastic/deliverables/plastic-d2_2-finalpdf.pdf/download
http://www-c.inria.fr/plastic/deliverables/plastic_d4_1final.pdf/download
http://www-c.inria.fr/plastic/deliverables/plastic_d4_1final.pdf/download
https://doc.telin.nl/dscgi/ds.py/Get/File-47390/
http://www.ist-plastic.org
http://www.w3.org/tr/wsdl

	A Development Process for Self-adapting Service Oriented Applications
	Introduction
	PLASTIC Development Process
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

