
B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 27–42, 2007.
© Springer-Verlag Berlin Heidelberg 2007

BPEL4Job: A Fault-Handling Design for Job Flow
Management

Wei Tan1,*, Liana Fong2, and Norman Bobroff2

1 Department of Automation, Tsinghua University, Beijing 100084, China
2 IBM T. J. Watson Research Center, Hawthorne, NY 10532, USA

tanwei@mails.tsinghua.edu.cn, llfong@us.ibm.com,
bobroff@us.ibm.com

Abstract. Workflow technology is an emerging paradigm for systematic
modeling and orchestration of job flow for enterprise and scientific
applications. This paper introduces BPEL4Job, a BPEL-based design for fault
handling of job flow in a distributed computing environment. The features of
the proposed design include: a two-stage approach for job flow modeling that
separates base flow structure from fault-handling policy, a generic job proxy
that isolates the interaction complexity between the flow engine and the job
scheduler, and a method for migrating flow instances between different flow
engines for fault handling in a distributed system. An implementation of the
design based on a set of industrial products from IBM is presented and
validated using a Montage application.

1 Introduction

Originating from the people-oriented business process area, the applicability of
workflow technology today is increasingly broad, extending to inter and intra
organizational business-to-business interactions, automatic transactional flow, etc [1].
With the advent of web services as a new application-building paradigm in a loosely-
coupled, platform-independent and standardized manner, the use of workflow to
orchestrate the invocation of web services is gaining importance. The Web Service
Business Process Execution Language [2] (WS-BPEL or BPEL for short), proposed by
OASIS as a standard for workflow orchestration, will enhance the inter-operability of
workflow in distributed and heterogeneous systems. Although many custom workflow
systems have been developed by the scientific application community [3-5], the inter-
operability of BPEL workflow systems has attracted many researchers [1, 6-10] to
experiment with BPEL for applications in distributed environments such as grid.

BPEL-based workflow is particularly relevant in orchestrating batch jobs for enterprise
applications, as job flow is an integral part of the business operation. There are obvious
advantages in standardizing on a common flow language, such as BPEL, for both
business process and batch jobs. Although some workflow systems are used for
enterprise applications [11, 12], these workflow systems use proprietary flow languages.

* The work was done while the author was on an internship at IBM T.J. Watson Research

Center, NY, USA.

28 W. Tan, L. Fong, and N. Bobroff

The use of BPEL for job flow is not without technical challenges, as BPEL was not
designed with job flow requirements. These challenges include defining a job1 entity
within BPEL, expressing data dependency (usually implicitly expressed in the job
definition), and passing of large data between jobs. Another key challenge is to
manage the predominately asynchronous interaction between the BPEL engine and
the job scheduling partners. Finally, support for fault tolerance and recovery strategy
is important due to the long-running nature of jobs, as well as the interaction of grid
services with dynamic resources [13]. This paper addresses the latter issues of
asynchronous interactions and fault handling in job flow by proposing a design called
BPEL4Job.

BPEL4Job includes three unique features. First, a two-stage approach for job flow
modeling is presented. In stage one the flow structure and fault-handling policies are
modeled separately. Stage two combines and transforms the flow model and policy
into an expanded flow that is then orchestrated by a BPEL-compliant engine. The
advantage of this approach is that it separates the concerns of application flow
modeling from fault handling. Second, a generic job proxy is inserted between the
BPEL engine and the job scheduler to facilitate job submission and isolate the flow
engine from the asynchronous nature of status notification, including fault events.
Finally, we propose several schemes for flow-level fault handling, including a novel
method for instance migration between flow engines. Instance migration is important
for scalable failure recovery in a distributed environment. For example, a flow that
fails due to resource unavailability may be migrated to another resource domain.

The design and implementation work in this paper is based on the IBM BPEL-
compliant workflow modeler and execution engine, as well as the service oriented job
scheduler.

The following section introduces BPEL4Job, the overall design approach to
incorporating fault handing features into the BPEL design and execution process.
Section 3 discusses integrating fault policies at the flow’s design stage. Section 4
presents the fault handling scheme and especially, the technique for flow instance
migration and flow re-submission. Section 5 introduces our prototype system, and
demonstrates our fault handling method using the Montage application [14]. Section
6 surveys related work and Section 7 concludes the paper and suggests future
directions.

2 BPEL4Job: A Fault-Handling Design for Job Flow Management

In this section, we introduce our overall design, BPEL4Job, which facilitates the
advanced fault handing in BPEL both the flow modeling tools and execution
environments. More specifically, BPEL4Job has the following unique features:

• Adding a flexible fault handling approach based on policies. These policies can
express a range of actions from simple job retry, to how and at what point in the
flow to restart for a particular type of execution failure. The policies allow options
to clean or retain the state of the jobs flow in the flow engine database.

1 The terms “job” and “job step”, and “job flow” and “flow” are used interchangeably in this

paper. A job flow consists of one or more jobs.

 BPEL4Job: A Fault-Handling Design for Job Flow Management 29

• Introducing a functional element called a ‘job proxy’ that connects and integrates
the high level BPEL engine with the lower level job scheduler that accepts and
executes jobs. The proxy captures the job status notifications from the scheduler
and relays them to the BPEL engine. The proxy serves as an arbiter and filter of
asynchronous events between the BPEL engine and the job scheduler.

• Supporting migration of the persisted state of a BPEL job flow to another engine.
This capability provides fault tolerance by allowing a flow that has failed, for
example, because of resource exhaustion in one environment to continue execution
in another environment.

The design of BPEL4Job consists of three layers: the flow modeling layer, the flow
execution layer and the job scheduling layer, as shown in Fig. 1. First, we describe the
flow modeling layer. The flow modeling in BPEL4Job takes a two-stage approach in
modeling job flow. In the first stage, the base flow, the job definitions, and the fault-
handling policies are defined. The base flow is a BPEL expression of the control flow
of jobs for a process or an application. Each job definition describes a unit of work
(e.g. an executable file together with parameters and resource requirements) to be
submitted to scheduler and is expressed by a markup language such as Job
Submission Description Language (JSDL) [15]. The fault-handling policies define
the actions to be taken in case of job failures and can be described using the web
service policy language WS-Policy [16]. In the second stage, the base flow, job
definitions, and fault-handling policies are transformed into an expanded flow that is
an executable BPEL process. This two-stage modeling approach has many
advantages. First, the flow designer defines the job flow structure and fault-handling

. . .

fault
handler

fault
handlers

c ompens ation
handler

termination
handler

event
handlers

. . .

. . .

. . .

. . .

correlation
s ets

partner
link s

s c ope

variables

Fig. 1. BPEL4Job: fault-handling design for job flow management

30 W. Tan, L. Fong, and N. Bobroff

policies separately, and needs not be concerned on how to implement these policies in
BPEL. Second, the base flow and policies can be reused and combined if necessary.
More details and examples are provided in Section 3.

The flow execution layer consists of three major components: the flow engine, the
job proxy, and the fault-handling service. The flow engine executes the expanded
BPEL originating in the flow modeling layer. For each job step in the expanded flow,
the job proxy is invoked by the flow engine. The job proxy submits the job definition
to the scheduler, listens for job status notification, and reports job success or failure to
the flow engine. In the case of job failure, the flow engine invokes the fault-handling
service if necessary. Otherwise, if successful, the flow engine proceeds to the next job
step. The fault-handling service is discussed in Section 4.

The job-scheduling layer accepts jobs, returns a unique end-point reference (EPR)
for each job, and sends notification on job status changes. We assume that the
schedulers are responsible for resources matching and job execution management.
Some schedulers also implement failure recovery techniques such as re-try. In
BPEL4Job, we supplement this capability with a set of fault-handling techniques at
the flow execution layer including re-try from another job step, as well as flow
instance migration to other engines.

3 Integrating Fault-Handling Policies with Job Flow Modeling

Yu et al. [5] and Hwang et al. [17] classified the fault-handling methods of grid
workflow into two levels: task level and flow level. From their work, we observe that,
re-try and re-submit are the most elementary methods in these two levels respectively.
Second, while several approaches [5, 18] have been proposed to deal with the task
level re-try, the issue of flow level re-submit is still challenging. In this section, we
provide a set of schemes to address fault-handling at both task and flow levels and to
put emphasis on flow level.

BPEL4Job design considers three kinds of policies: cleanup policy, re-try policy
and re-submit policy. These policies leverage the persistent flow states storage in
most of the BPEL engines. Cleanup policy refers to generate fault report and delete
the instance data in flow engine. Re-try technique refers to execute the same task
again in case of failure. Re-submit technique refers to, in case of failure, the state of
flow instance being exported from the flow engine, and restored to the same or a
different engine, such that the flow can resume from the failed step without re-
execution of completed steps. Other fault-handling policies such as using alternative
resources, or rollback, can be built from these three fundamental ones.

As described in Section 2, our design of BPEL4Job has a two-stage approach for
job flow modeling. The first stage models the flow structure and fault-handling
policy separately. The second stage combines and transforms the flow model and
policy into an expanded flow that is then orchestrated by an existing BPEL engine in
the flow execution layer.

We now explain how the fault-handling policies are defined and integrated with the
base flow to produce the expanded BPEL flow. Fig. 2 shows two exemplary fault-
handling policies and a BPEL skeleton of a base flow. The first policy, named retry-
policy, specifies that when job failure occurs, the flow will re-try from the current job
step (by setting the value of element RetryEntry to itself), and after an interval of 300

 BPEL4Job: A Fault-Handling Design for Job Flow Management 31

seconds (by setting the value of element RetryTimes to Unlimited, and RetryInterval
to 300s). The second policy, named resubmit-policy, specifies that when job failure
occurs, the flow will resume at another flow engine if desired. When it resumes, it
restarts from the previous step of the failed job (by setting the value of element
RescueEntry to previous-step. The base flow consists of two sequential job steps,
SubmitJob1 and SubmitJob2. In the base flow, the retry-policy is linked to
SubmitJob1 (<bpws:invoke name="SubmitJob1" faultHandling:policy="retry-policy"
/>), and resubmit-policy linked to SubmitJob2 (<bpws:invoke name="SubmitJob2"
faultHandling:policy= "resubmit-policy" />).

The re-try policy of SubmitJob1 is realized by transforming the base flow to the
expanded flow as shown in Fig. 3, and described as follows:

 Add a variable RETRY to indicate whether the job should be retried and
set its value to TRUE before the job.

 Add an assign activity after the job to set variable RETRY to FALSE.
 Add a scope enclosing the job and succeeding assign activity.
 Add a While loop on top of the newly-added scope, and set the condition

for the While loop to (RETRY == TRUE).
 Add a fault handler for the newly added scope to catch the fault.

Advanced re-try schemes, including re-try for a given times, re-try after a
given time of period, and re-try from a previous job, could all be
implemented in this fault-handler block.

In case of job failure, the control flow goes to the fault handler (the Catch All block
in Fig. 3), and when the fault-handling block completes, the control flow proceeds to
the beginning of the While loop. Because the newly added scope does not complete
when failure occurs, the value of variable RETRY is still TRUE, so the flow will
continue at the beginning of the While loop (Submit Job1 in Fig. 2), by this means the
re-try policy is realized. It is important to note that expanded flow contains all the
necessary fault-handling blocks, unlike other approaches in supporting runtime fault-
handling selection [18].

<?xml version="1.0" encoding="UTF-8" ?>
<bpws:process xmlns:bpws="..." xmlns:faultHandling="...">

<bpws:partnerLinks>...</bpws:partnerLinks>
<bpws:variables>...</bpws:variables>
<bpws:sequence name="HiddenSequence">
<bpws:receive createInstance="yes" name="ReceiveJobRequest" />
<bpws:invoke name="SubmitJob1" faultHandling:policy="retry-policy" />
<bpws:invoke name="SubmitJob2" faultHandling:policy="resubmit-policy" />
<bpws:reply name="Reply" />

</bpws:sequence>
</bpws:process>

<?xml version="1.0" encoding="UTF-8" ?>
<wsp:Policy xmlns:wsp="..." xmlns:jobFlow="..."

name="resubmit-policy">
<jobFlow:Rescue wsp:Usage="wsp:Required">
<jobFlow:RescueEntry>previous-step?

 </jobFlow:RescueEntry>
</jobFlow:Rescue>
</wsp:Policy>

<?xml version="1.0" encoding="UTF-8" ?>
<wsp:Policy xmlns:wsp="..." xmlns:jobFlow="..."

name="retry-policy">
<jobFlow:Retry wsp:Usage="wsp:Required">
<jobFlow:RetryEntry>self</jobFlow:RetryEntry>
<jobFlow:RetryTimes>Unlimited</jobFlow:RetryTimes>
<jobFlow:RetryInterval>300s</jobFlow:RetryInterval>
</jobFlow:Retry>
</wsp:Policy>

Fig. 2. The re-try and re-submit policy, and the base flow embedded with these policies

32 W. Tan, L. Fong, and N. Bobroff

Base flow

transformation

Expanded

flow

Base flow

transformation

Expanded

flow

Fig. 3. The transformation to implement the re-try policy of Job1

4 Fault-Handling at the Flow Execution Layer in BPEL4Job

Job execution may fail due to a variety of reasons, such as resource and data
unavailability, application failure, scheduler or human input error, etc. The fault
handling at flow execution layer needs two mechanisms: the capability to recognize
various job failures and the capability to handle the failures according to the policies
defined at flow modeling layer.

In BPEL, faults can be raised by an invoked service and be caught by the invoking
service. BPEL also provides a Java-style support for fault handling, using constructs
like Catch, Catch All, Throw, Rethrow, etc. A BPEL fault handler catches faults and
can handle them by, for example, calling a suitable fault-handling service. In
addition, most of BPEL engines store persistent states of the flow and the use of states
can support resumption of flow execution from a failed task. The design of fault
handling in BPEL4Job would leverage the BPEL basic fault-handling features and
enhance specific capabilities to recognize job failures and to handle faults according
to defined policies. The following section addresses both aspects by introducing: i)
the generic job proxy for job submission and job status notification (especially for
fault recognition), and ii) the fault-handling schemes for various policies at the task
level and flow level.

4.1 The Generic Job Proxy

The generic job proxy connects and integrates the higher-level BPEL workflow
engine with the lower-level job scheduler. For each job submission invocation, the
proxy submits jobs, captures the job status notifications from the scheduler, and
returns the job failure/success result in a synchronous manner. It serves as an arbiter
and filter of asynchronous notification events of jobs. When a job fails, the job proxy

 BPEL4Job: A Fault-Handling Design for Job Flow Management 33

raises a fault to the workflow engine. Then, the workflow engine would invoke fault-
handling service after catching the fault.

Fig. 4 shows the control flow of a generic job proxy. The explanation is as
follows:

1. Receive a job submission request.
2. Forward the job request to a scheduler, and start to listen for the job state

notification from it. The state notifications from different schedulers may
vary, but usually they include Submitted, Waiting_For_Resources,
Resource_Allocation_Received, Resource_Allocation_Failed, Executing,
Failed_Execution, Succeeded_Execution, etc.

3. When state notifications come, filter the states. For states indicating the
success/failure of job comes, forward this information to flow engine and
returns, otherwise continue listening for the notification.

The job proxy provides a compact job-submission interface to the flow engine, so
that for each job the flow engine does not need to use two separate activities to submit
job and query job status respectively. The function of job proxy is not limit to fault
handling, and it is actually a single entrance for job schedulers and can handle the
complexity stemmed from the heterogeneity of different schedulers.

Receive job request

Submit job to scheduler

Receive job state notification

Return success

Return failure

[other]

[succeeded]

[failed]

Fig. 4. Control flow of the generic job proxy

4.2 Fault-Handling Schemes in BPEL4Job

The fault-handling logical schemes of BPEL4Job are illustrated in Fig. 5, though the
design is not limit to these policy schemes. When a job step is in state Ready, the flow
engine submits it (Submit Job) and listens for the notification from the job proxy
(submitted). If the job succeeds, flow engine navigates to next job and the flow
proceeds. If the job fails, flow engine reacts according to the fault-handling policy for
that job. If the policy is cleanup, the fault report is generated and flow instance is
deleted in flow engine database. If the policy is re-try, the engine find the re-try entry

34 W. Tan, L. Fong, and N. Bobroff

(the re-try entry is the point to re-try a single job step, it can be at current failed job
step, or at some previous step which has already completed) and submit the job to the
scheduler. If the policy is re-submit, flow engine suspends the current flow instance,
export the instance data to a permanent storage (for example, to a XML or other
portable formats), and delete the instance data in current flow engine database. The
exported flow instance can be re-submitted to the original engine when the source of
the fault has been fixed, or be re-submitted to another flow engine to resume. After
the flow instance is imported to the flow engine (either the original one or a new one),
the flow instance is resumed at the re-submit entry (similar to the re-try entry, the re-
submit entry is the point to re-start a job flow, it can be at the failed job step, or at
some previous step which has already completed).

Which

implemented

policy

Instance

suspended

[re-submit]

[re-try]

Export instance

data & delete it

Instance

deleted

Re-submit

Find retry

entry

Suspend

instance

Instance

resumed

Find

re-submit

entry

Generate report

& delete

instance

Instance

deleted

[cleanup]

Submit Job

What

completion

status

Ready

submitted

success failure

Navigate to

next job

[failure][success]

Fig. 5. Fault-handling scheme in BPEL4Job

4.2.1 Cleanup
Cleanup policy is used when the flow execution does not have any side effect resulted
from failure, the user may just want to get the failure report and terminate the flow.
Therefore, after the failure report is generated, the flow instance can be deleted
(cleanup) from the flow engine database.

4.2.2 Task Level Re-try
We have shown the realization of a re-try policy as an example in section 3 where we
explain how to integrate policy with job flow. The re-try policy is accomplished by
adding a scope, a While loop and other additional constructs. Re-try policy can be
extended to more advanced schemes, for example, to alter input parameters for the re-
try job such as instructing the job proxy to use alternative schedulers or resources.

4.2.3 Flow Re-submission and Instance Migration
Now we investigate BPEL’s capability to continue un-executed job steps without re-
execution of successful job steps of a flow in the event of a fault. Many other job flow

 BPEL4Job: A Fault-Handling Design for Job Flow Management 35

systems support restarting a flow regardless whether or not they persist job state
during execution. Here are two of the exemplary systems:

1. DAGMan [3] is the flow manager of Condor [19] jobs. While executing,
DAGMan keeps in memory a list of job steps of the flow, their parent-child
relationships, and their current states. When a flow fails, it produces a
Rescue DAG file for re-submission with a list of the job steps along their
states and reasons of failures. The Rescue DAG can then be submitted later
to continue execution.

2. Platform LSF [20] supports job dependency and flow restarting with the
“requeue” feature. In LSF, job steps are executed sequentially unless they
have a conditional statement on the success of failure or preceding steps. If
“requeue” is specified for a job flow, for example
“REQUEUE_EXIT_VALUES = 99 100”, the flow will be requeued if the
return code of a step matches the requeue_exit criteria and the requeued job
flow will restart from this particular step.

BPEL4Job supports re-submit and facilitates instance migration if desire. The
motivation to do job flow re-submission and instance migration is two-fold. The first
reason is the performance issue. For long-running job flows, flow instance data is
stored in the flow engine’s database. This instance data include instance state
information, the navigated activities, the value of messages/variables, etc. Depending
on the flow definition and the run-time data used in the instance, a relatively large
amount of data can be created with each instance. Unlike business processes,
scientists may submit job flows in very large numbers and may not return to handle
the flows immediately. A strategy for removing the failed flow instance out of the
database is desirable to lessen the burden on the data storage or database.

The second reason is for job flow re-submission to a different engine. When a job
flow instance f fails during the execution, the flow user or administrator may find that
resource needed for f to proceed is unavailable in current resource domain. Thus, an
alternative is to export and delete f in current flow engine, choose another resource
domain in grid environments, re-submit f to the flow engine in that domain and
resume it. (See Fig. 6 for an example.)

In order to realize flow re-submission, we introduce the concept of instance
migration. Instance migration refers to the technique to export job flow instance data
in one flow engine, and import it into anther one so that the flow instance can resume
in it. When we do instance migration, the challenge is to collect sufficient data from
the source flow engine, so that the target engine could re-build the status of the on-
going job flow. The job flow instance database schemas vary with the different
implementation, and in Fig. 7 we give a conceptual and high-level flow instance data
model. Next section presents our implementation based on IBM Webshpere Process
Server [21].

In Fig. 7, a process instance (or flow instance) has an attribute named
ProcessInstanceID, and an attribute ProcessTemplateID to refer to the process
template it belongs. A process instance can consist of multiple activity instances, task
instances, correlation set instances, scope instances, partnerlink instances, variable
instances, etc. Each of these instances has an attribute ProcessInstanceID to refer to
the process instance it belongs.

36 W. Tan, L. Fong, and N. Bobroff

Flow engine 1

DB 1

Flow engine 2

DB 2

1. Job2 fails due
to resource
unavailability

3. Instance data
exported to XML, and
instance deleted in
DB1

4. Instance data
imported to DB2

5.Instance
resumed in
engine 2

2. Suspend
instance in
engine 1

3 4

Fig. 6. An illustration of instance migration and flow re-submission

-ProcessInstanceID : string(idl)

-ProcessTemplateID : string(idl)

-Name : string(idl)
-State : string(idl)

ProcessInstance
-ScopeInstanceID : string(idl)
-ProcessInstanceID : string(idl)

-ScopeTemplateID : string(idl)

ScopeInstance

1
*

-ActivityInstanceID : string(idl)
-ProcessInstanceID : string(idl)

-ActivityTemplateID : string(idl)

ActivityInstance

1

*

-VariableInstanceID : string(idl)

-ProcessInstanceID : string(idl)

-VariableTemplateID : string(idl)
-Data : object(idl)

VariableInstance

1

*

1..*

*

0..1

0..*

-PartnerLinkInstanceID : string(idl)

-ProcessInstanceID : string(idl)

-PartnerLinkTemplateID : string(idl)
-Name : object(idl)

PartnerLinkInstance
1*

-CorrelationSetInstanceID : string(idl)

-ProcessInstanceID : string(idl)

-CorrelationSetTemplateID : object(idl)

-CorrelateSetData : object(idl)

CorrelationSetInstance

1

*

-TaskInstanceID : string(idl)

-ProcessInstanceID : string(idl)

-TaskTemplateID : string(idl)

-Name : object(idl)

TaskInstance

1

*

0..1 0..1

-ProcessTemplateID : string(idl)

-Name : string(idl)

ProcessTemplate

1

0..*

Fig. 7. Class diagram of flow instance data model

5 System Implementation and Case Study

A system is developed to validate the design of BPEL4Job. In our implementation,
IBM Websphere Integration Developer (WID) [22] is used as BPEL modeling tool,
IBM Websphere Process Server (WPS) [21] as BPEL engine, and IBM Tivoli
Dynamic Workload Broker (ITDWB) [23] as job scheduler. In flow modeling layer, a

 BPEL4Job: A Fault-Handling Design for Job Flow Management 37

WID plug-in is developed to facilitate the use of JSDL for job step definition and the
use of WS-Policy for policy definition. In flow execution layer, a generic job proxy is
devised, and a fault-handling service is developed to implement the fault-handling
schemes proposed in Section 4. For the job scheduling layer, we use ITDWB which
provide job management web service API including job submission and job status
notification.

We take an example from Montage astronomy mosaic generation application [14],
named m101 Mosaic, to demonstrate the implementation of BPEL4Job. This example
application takes several raw images (we use four images in our exemplary job flow),
reprojects them and then combines them into a mosaic. We model the procedure of
this application into a BPEL-based job flow (Fig. 8(a)). The first job, mImgtbl,
generates an image metadata table describing the content of all the four raw images.
Followed are four parallel jobs (mProject1, mProject2, mProject3, and mProject4),
each of which reprojects one image. After all the images have been reprojected, a new
metadata table is generated by job mImgtbl1, then job mAdd1 generates a mosaic from
the reprojected images, and finally job mJPEG transforms the mosaic into jpeg
format.

Then we define fault-handling policies for job mProject2 and mAdd1, respectively.
The policy for job mProject2 is to re-try after 10 seconds in case of failure; for job
mAdd1, the policy is to re-submit the flow to another engine and re-start from its
preceding job mImgtbl1. It is more logical to apply the re-submit policy on the flow
scope such that re-submit will be triggered in any failed job step. But, we believe
these two scenarios here are illustrative enough to demonstrate our different fault
handling policies.

In Fig, 8, we show that the base flow plus the two policies are transformed into an
expanded flow with JSDL and fault handling capability (Fig. 8 (b)). For space limit
consideration, here we only give the JSDL definition of job mAdd1 (Fig. 8(c)).

We will demonstrate the effects in migrating instance between two WPS servers,
i.e., from server saba10 to server weitan. The Montage job flow is instantiated at
saba10, and when mAdd1 fails, the flow instance is migrated to weitan. We use
Business Process Choreographer (BPC) explorer [24] to monitor the orchestration of
the Montage flow. The Montage flow is initiated with the name Montage_saga10.
When job mProject2 fails, the flow will automatically re-try it after 10 seconds (as
discussed in Section 3). When job mAdd1 fails, the fault-handling service suspends
the flow instance at saba10 (Fig. 9 (a)), and the flow instance data is exported into a
XML file named rescue.xml (the size is about 560KB). When the user decides that
Montage_saga10 should be re-submit to server weitan, the fault-handling service
imports rescue.xml to weitan (see Fig. 9 (b) for the BPC explorer at weitan, please be
noted that the flow instance is restored from saba10 to weitan). Then
Montage_saga10 will resume in weitan following the policy, that is, to restart from
job mImgtbl1 (Fig. 9 (c)). If we compare Fig. 9 (a) and (c), we could find jobs
mImgtbl1 and mAdd1 are activated (submitted) at different time on two servers (for
example, job mImgtbl1 is activated on saba10 at 5/8/07 4:26:28 PM and on weitan at
5/8/07 10:36:40 PM), this shows that when Montage_saga10 is resumed at weitan,
jobs mAdd1 and mImgtbl1 are executed for a second time (and the BPC explorer only
show the latest execution time of them). That is to say, when Montage_saga10 is
resumed on weitan, the flow is re-started from the preceding job of mAdd1, i.e.,
mImgtbl1.

38 W. Tan, L. Fong, and N. Bobroff

 (a) (b)

(c)

<?xml version="1.0" encoding="UTF-8" ?>
- <jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"

xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" name="mAdd1">
- <jsdl:application name="executable">
- <jsdle:executable path="/opt/Montage_v3.0/bin/mAdd">
- <jsdle:arguments>

<jsdle:value>-p</jsdle:value>
<jsdle:value>/opt/m101/projdir</jsdle:value>
<jsdle:value>/opt/m101/images.tbl</jsdle:value>
<jsdle:value>/opt/m101/template.hdr</jsdle:value>
<jsdle:value>/opt/m101/final/m101.fits</jsdle:value>
</jsdle:arguments>
</jsdle:executable>

</jsdl:application>
</jsdl:jobDefinition>

Fig. 8. Sample Montage application: (a) base flow (b) expanded flow (c) JSDL description of
job mAdd1

 BPEL4Job: A Fault-Handling Design for Job Flow Management 39

(a) Montage_saba10 initiated at saba10

(b) Montage_saba10 re-submitted to weitan

(c) Montage_saba10 re-started and completed at weitan

Fig. 9. The BPC explorer to illustrate flow instance migration between saba10 and weitan

6 Related Works

Most works on using BPEL for job flow can be classified into two categories. The
first approach [8] extends BPEL model elements, which make the flow model
intuitive and simple. However, the workflow engine needs to be modified to deal with
the model extension for jobs. The second approach [7, 25, 26] uses standard BPEL
activity, so that the models are less intuitive and sometimes verbose to meet the needs
of job flow. However, these models adhere to the standard BPEL and thus portable
among BPEL-compliant flow engines. Our work falls into the second category of
approach. However, the two-stage modeling approach gracefully hides the complexity
to deal with jobs submission and fault-handling, while keep the advantage of using
existing BPEL engine.

Sedna [10] is a BPEL-based environment for visual scientific workflow modeling.
Domain specific abstraction layers are added in Sedna to increase the expressiveness
of BPEL for scientific workflows. This method is similar to our two-stage approach.
However, fault-handling issue is not addressed in that work.

40 W. Tan, L. Fong, and N. Bobroff

TRAP/BPEL [18] is a framework that supports runtime selection of equivalent
services for monitored services. An exemplary usage of this framework is for
selection of recovery services when monitored services fail. By introducing a proxy as
the generic fault handler, the logic in the proxy can dynamically select various
recovery services according to some configurable recovery polices during runtime.
Unlike the runtime dynamic support in TRAP/BPEL, the fault-handling services and
policies for job flow are specified during modeling time in BPEL4Job. We require
process and application flow modelers to provide directives on the scope (e.g. task or
flow level) and types (e.g. re-try, re-submit) of fault recovery.

GridSam [27] provided a set of generic web services for job submission and
monitoring. Our generic job proxy takes inspiration from this work. However, in our
job proxy, job submission and job status query are combined into a single
synchronous scheduling service invocation, with which the job failure/success status
is returned. This approach provides a more compact job-submission interface to the
flow engine, so that for each job submission the flow engine does not need to use two
separate activities to submit job and query job status respectively.

DAGMan used in Condor is popular in many grid job management systems to
manage job flow. The fault handling mechanism in DAGMan is re-try and rescue
workflow (a kind of re-submit). Our idea of flow re-submission is similar to rescue
DAG. Unlike DAGMan, our approach is policy-based and needs to consider the
persistent states of job flows in BPEL-compliant engines.

7 Conclusion and Future Work

In this paper, we address two challenging issues in using WS-BPEL for job flow
orchestration: the predominantly asynchronous interactions with job execution on
dynamic resources, and the fault handling in job flow. We propose a design, called
BPEL4Job, to illustrate our approach. BPEL4Job has three unique features: a two-stage
approach for job flow modeling with integration with fault-handling policies, a generic
job proxy to facilitate the asynchronous nature of job submission and job status
notification, and a rich set of fault handling schemes including a novel method for
instance migration between different flow engines in distributed system environment.

One direction of future work includes support for the definition and enforcement of
more complicated fault-handling policies other than the proposed clean-up, re-try and
re-submit. Our solution to instance migration can be extended to other related
scenarios such as load balance between flow engines and versioning support for long-
running processes. For the versioning support for long-running BPEL processes, if a
template of a long-running BPEL process changes during the execution of many
instances, the process instances that conform to the old template may need to be
migrated to conform to the new one.

References

1. Leymann, F.: Choreography for the Grid: towards fitting BPEL to the resource framework.
Concurrency and Computation-Practice & Experience 18(10), 1201–1217 (2006)

2. Jordan, D., et al.: Web Services Business Process Execution Language Version 2.0 (2007),
Available from: http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

 BPEL4Job: A Fault-Handling Design for Job Flow Management 41

3. Couvares, P., et al.: Workflow Management in Condor. In: Taylor, I.J., et al. (eds.)
Workflows for e-Science, Springer, Heidelberg (2007)

4. Oinn, T., et al.: Taverna/myGrid: Aligning a Workflow System with the Life Sciences
Community. In: Taylor, I.J., et al. (eds.) Workflows for e-Science, pp. 300–319. Springer,
Heidelberg (2007)

5. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. Journal
of Grid Computing 34(3), 44–49 (2006)

6. Slominski, A.: Adapting BPEL to Scientific Workflows. In: Taylor, I.J., et al. (eds.)
Workflows for e-Science, pp. 212–230. Springer, Heidelberg (2007)

7. Amnuaykanjanasin, P., Nupairoj, N.: The BPEL orchestrating framework for secured grid
services. In: ITCC 2005. International Conference on Information Technology: Coding
and Computing (2005)

8. Dörnemann, T., et al.: Grid Workflow Modelling Using Grid-Specific BPEL Extensions.
In: German e-Science Conference 2007, Baden-Baden (2007)

9. Emmerich, W., et al.: Grid Service Orchestration using the Business Process Execution
Language (BPEL). In: UCL-CS Research Note RN/05/07, University College London, UK
(2005)

10. Wassermann, B., et al.: Sedna: A BPEL-Based Environment for Visual Scientific
Workflow Modeling. In: Taylor, I.J., et al. (eds.) Workflows for e-Science, pp. 428–449.
Springer, Heidelberg (2007)

11. Gucer, V., Lowry, M.A., Knudsen, F.B.: End-to-End Scheduling with IBM Tivoli
Workload Scheduler Version 8.2., pp. 33–34. IBM Press (2004)

12. BMCSoftware: Meet Your Business Needs Successfully With CONTROL-M For z/OS.
Available from:
www.bmc.com/USA/Promotions/attachments/controlm_for_os390_and_zOS.pdf

13. Slomiski, A.: On using BPEL extensibility to implement OGSI and WSRF Grid
workflows. Concurrency and Computation: Practice & Experience 18(10), 1229–1241
(2006)

14. Montage Tutorial: m101 Mosaic (2007), Available from: http://montage.ipac.caltech.edu/
docs/ m101tutorial.html

15. Anjomshoaa, A., et al.: Job Submission Description Language (JSDL) Specification v1.0.
Proposed Recommendation from the JSDL Working Group (2005), Available from
http://www.gridforum.org/documents/GFD.56.pdf

16. W3C: Web Services Policy 1.2 - Framework (WS-Policy) (2006), Available from
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

17. Soonwook, H., Kesselman, C.: Grid workflow: a flexible failure handling framework for
the grid. In: HPDC’03. 12th IEEE International Symposium on High Performance
Distributed Computing, Seattle, WA USA (2003)

18. Ezenwoye, O., Sadjadi, S.M.: TRAP/BPEL: A Framework for Dynamic Adaptation of
Composite Services. In: WEBIST-2007. International Conference on Web Information
Systems and Technologies, Barcelona, Spain (2007)

19. Condor. Available from: http://www.cs.wisc.edu/condor/
20. Platform LSF. Available from: http://www-cecpv.u-strasbg.fr/Documentations/lsf/html/

lsf6.1_admin/E_jobrequeue.html
21. IBM Websphere Process Server. Available from: http://www-306.ibm.com/software/

integration/wps/
22. IBM Websphere Integration Developer. Available from: http://www-306.ibm.com/

software/ integration/ wid/

42 W. Tan, L. Fong, and N. Bobroff

23. IBM Tivoli Dynamic Workload Broker. Available from: http://www-
306.ibm.com/software/tivoli/products/dynamic-workload-broker/index.html

24. Starting to use the Business Process Choreographer Explorer (2007), Available from:
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.ws
ps.ins.doc/doc/bpc/t7stwcl.html

25. Kuo-Ming, C., et al.: Analysis of grid service composition with BPEL4WS. In: 18th
International Conference on Advanced Information Networking and Applications (2004)

26. Tan, K.L.L., Turner, K.J.: Orchestrating Grid Services using BPEL and Globus Toolkit 4.
In: 7th PGNet Symposium (2006)

27. GridSAM - Grid Job Submission and Monitoring Web Service (2007), Available from:
http://gridsam.sourceforge.net/2.0.1/index.html

	BPEL4Job: A Fault-Handling Design for Job Flow Management
	Introduction
	BPEL4Job: A Fault-Handling Design for Job Flow Management
	Integrating Fault-Handling Policies with Job Flow Modeling
	Fault-Handling at the Flow Execution Layer in BPEL4Job
	The Generic Job Proxy
	Fault-Handling Schemes in BPEL4Job

	System Implementation and Case Study
	Related Works
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

