
High Performance Approach for Multi-QoS
Constrained Web Services Selection

Lei Li1,2, Jun Wei1, and Tao Huang1,2

1Institute of Software, Chinese Academy of Sciences, Beijing, China
2University of Science and Technology of China, Anhui Hefei, China

{lilei,wj,tao}@otcaix.iscas.ac.cn

Abstract. In general, multi-QoS constrained Web Services composition,
with or without optimization, is a NP-complete problem on computa-
tional complexity that cannot be exactly solved in polynomial time. A lot
of heuristics and approximation algorithms with polynomial- and pseudo-
polynomial-time complexities have been designed to deal with this prob-
lem. However, they suffer from excessive computational complexities that
cannot be used for service composition in runtime. In this paper, we
propose a high performance approach for multi-QoS constrained Web
Services selection. Firstly, a correlation model of candidate services are
established in order to reduce the search space efficiently. Based on the
correlation model, a heuristic algorithm is then proposed to find a feasi-
ble solution for multi-QoS constrained Web Services selection with high
performance and high precision. The experimental results show that the
proposed approach can achieve the expecting goal.

1 Introduction

With the integration of Web services as a business solution in many enterprise
applications, the QoS presented by Web services is becoming the main concern of
both service providers and consumers. Providers need to specify and guarantee
the QoS in their Web services to remain competitive and achieve the highest
possible revenue from their business. On the other hand, consumers expect to
have a good service performance. A service composition system that can leverage,
aggregate and make use of individual component’s QoS information to derive the
optimal QoS of the composite service is still an ongoing research problem.

Since many available Web Services provider overlapping or identical function-
ality, albeit with different QoS, a choice needs to be made to determine which
services are to participate in a given composite service. In general, multi-QoS
constrained Web Services selection, with or without optimization, is an NP-
complete problem that cannot be exactly solved in polynomial time [1], [2].
Heuristics and approximation algorithms with polynomial- and pseudo-
polynomial-time complexities are often used to deal with this problem. However,
existing solutions suffer from excessive computational complexities, and cannot
be used for dynamic service selection at runtime. The complexity of multi-QoS
constrained Web Services selection problem is reflected by the following factors:

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 283–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

284 L. Li, J. Wei, and T. Huang

(i) the huge number of the atomic candidate services that may be available to
use; (ii) the large number of QoS constrained required by user; (iii) the differ-
ent possibilities of composing an individual service into a service set which can
satisfy the user’s demand. The above difficulties make the problem very hard to
solve.

In this paper, we propose a high performance approach for multi-QoS con-
strained Web Services composition. The correlations of all the candidate services
are collected to construct a constrained model, which can reduce the search space
efficiently. By using the constrained model, we propose a heuristic algorithm to
find the feasible solution with high performance and high precision. We per-
formed experiments to evaluate the validity and efficiency of the model in the
final of the paper.

The remainder of the paper is organized as follows: Section 2 provides an
overview of the related works. A service correlation model is then presented in
Section 3. Section 4 proposes our algorithm and experimental results are shown
in Section 5. Section 6 concludes the paper and introduces our future work.

2 Related Works

QoS support for Web services is among the hot topics attracting researchers
from both academia and industry. Until recently, considerable efforts have been
conducted to work on QoS for Web services. Multi-QoS constrained selection is
a typical problem in many other research areas.

2.1 QoS Routing

QoS routing is very similar to multi-QoS constrained Web Services selection
problem. In the last ten years, large numbers of studies have been proposed
to address this issue. [3], [4], [5], [6] all present their approaches to solve this
problem. In essential, the QoS routing problem is to create a feasible path from
a given node to the destination so that the QoS requirements of the path are
satisfied and the cost of the path is minimized. [5] proposes several optimal and
heuristic algorithms for QoS partitioning, which assume that all nodes in the
network have full topology and cost information, and then apply approximation
algorithms to realize QoS partitioning. Though QoS routing is similar to multi-
QoS constrained Web Services selection problem, there still remains tremendous
distinction between the two. Compare to QoS routing multi-QoS constrained
Web Services selection problem is based on the workflow model and the topology
is immutable, consequently we only need to select a candidate service from each
task node to keep user-defined constraints satisfied and make the QoS of the
selected services optimal.

2.2 Multi-QoS Constrained Web Services Selection

QoS support in Web Services plays a great role for the success of this emerg-
ing technology. Essentially, the Multi-QoS Constrained Web Services Selection

High Performance Approach 285

is an NP-complete problem that cannot be exactly solved in polynomial time.
If the QoS attributes are all multiplicative or minimal attributes, the multi-QoS
constrained services selection can be solved in polynomial time [8]. Hence, in
order to simplify the problem, we only discuss the additive QoS attributes in
this paper. Before analyzing,let’s give a formal description of the problem.

Multi-QoS Constrained Web Services Selection(MCWS). For a com-

posite service CS, its structure is specified as CS
�
= (N, E), where N is the set

of task nodes and E is the set of edges. Each task node ni ∈ N has |ni| candidate
services and each candidate services sj has K additive attributes which value is
denoted as wj

k, k∈[1,K]. Given K constraints {ck, k∈[1,K]}, the problem is to
select one service from each task node and aggregate all the selected services to
form a specific service set S, c(S) is a cost function about S, S should satisfy the
following two constraints:
(i) wS

k ≤ ck, wS
k =

∑
si∈S wi

k, k ∈ [1,K]
(ii) ∀ S

′
, c(S) ≤ c(S

′
), S

′
is also a selected service set

The above problem is known with NP-complete computational complexity.
In [7], [8], the authors propose a quality driven approach to select component
services during execution of a composite service. They consider multiple QoS
attributes such as price, duration, reliability, take into account of global con-
straints, and use the integer linear programming method to solve the service
selection problem, which is too complex for run time decisions. [1] defines the
problem as a multi-dimension multi-choice 0-1 knapsack problem or the multi-
constraint optimal path problem. [2] describes an approach for QoS-aware service
composition, based on composition of the QoS attributes of the component ser-
vices and on genetic algorithms. Similar to [2], [9] uses genetic algorithms to
determine a set of concrete services to be bound to abstract services contained
in a orchestration to meet a set of constraints and to optimize a fitness crite-
rion on QoS attributes. Compared with linear Integer Programming, GA can
deal with QoS attributes with non-linear aggregation functions. [10] proposes an
approach to trigger and perform composite service replanning during execution.

These studies can solve the Multi-QoS Constrained Web Services Selection
problem; however, they suffer from excessive computational complexities, which
make these solutions infeasible in many scenarios. Moreover, most of these stud-
ies assume that the same service interface definition is used by all atomic service
candidates for a specific service component, i.e. these studies are not concerned
about the compatibility issue among services. However, whether services are
compatible is a major issue in the automatic composition of Web Services.

3 Service Correlation Model

A variety of approaches have been proposed to solve multi-QoS constrained ser-
vice selection problem. As we mentioned, whether services are compatible is a
major issue in the automatic composition of Web Services. Because incompat-
ibility can lead to some collaboration mistakes, if the selected services are not

286 L. Li, J. Wei, and T. Huang

compatible to each other, the service set can not be a feasible solution even
though its overall QoS value is optimal. Moreover, the correlation of services is
very useful in the search space reduction. Therefore, the correlation of services is
very useful to improve the precision and performance of the selected services. In
this section, we will describe our service correlation model and illuminate how
to use it to reduce the search space.

3.1 Analysis of Correlations

There are lots of researches focusing on analysis of compatibility of Web Services
interface [11], [12], seldom considering the multifaceted service correlation, which
may lead to mistake in some situations. For example, si is a service to book a
ticket. sn and sm are Visa and Master credit card payment services respectively.
Service si can only be paid by Master, i.e. si is mutually exclusive to sn. Our
approach is to specify not only the interface compatibility but also more relations
between services, and utilize these relations to reduce the search space.

Borrowing from some temporal operators defined in [13], we define that oper-
ator X(s) outputs the service set next to s, operator F (s) outputs the service set
following s in the future. The operator comp(x, y) means x and y are interface
compatible.

Definition 1 (Sequence Relation). If sj ∈ X(si), then si and sj have the
sequence relation, seq(si, sj).
Definition 2 (Fork Relation). If (sj /∈ F (si))∨(si /∈ F (sj)), then si and sj

have the fork relation, Fork(si, sj).
Definition 3 (Adjoined Compatibility Relation). If seq(si, sj) ∧ comp
(si, sj), then si and sj have the adjoined compatibility relation, adj comp(si, sj).
Definition 4 (Mutually Exclusion Relation). If si has been executed, sj

should never be executed and vice verse, then si and sj have the mutually ex-
clusion relation, MuExcl(si, sj).

The above correlation between services must be analyzed before selecting the
composite services, because these analyses can help program to avoid choosing
some incompatible services. Moreover, these analyses can help program to ac-
celerate the selection. There are also many other correlations, however in this
paper we do not enumerate them all.

3.2 Service Correlation Model

Definition 5 (Incompatible Service set, ISS). Each service si has an in-
compatible service set S∅

i , which means if the service si has been selected, then
any service in S∅

i should not be selected at the same time. How to construct the
incompatible service set will be described below.

R1: If sj ∈ X(si) ∧ ¬adj comp(si, sj) then S∅

i ← S∅

i ∪ {sj}

High Performance Approach 287

Rule 1 means if sj is the next service executed after si and si is incompatible
with sj , then sj will be included in S∅

i .
R2: If sj ∈ F (si) ∧ MuExcl(si, sj) then S∅

i ← S∅

i ∪ {sj}
Rule 2 means if sj will be executed after si and sj is mutually exclusive to

si, then sj will be included in S∅

i .
R3: If Fork(si, sj) then S∅

i ← S∅

i ∪ {sj}
Rule 3 means if si and sj have fork relation, then sj will be included in S∅

i .

Rules 1-3 are backward compatible, which guarantee the service sj executed
after si should be compatible to si. Using rules 1-3, we can construct an incom-
patible service set of si.

Assuming algorithm is considering selecting a candidate service from the task
node nj. Let S∅ be the incompatible services found in selecting round, i.e.
S∅ =

⋃
1≤i<j S∅

i . Obviously if |S∅| = 0, then every service is available to
be selected. We can create the overall incompatible service set by the following
rules. Assuming Sni is the service set bound to task node ni.

R4: ∀s ∈ Sni , If s ∈ S∅, then set sj as the unavailable service.
Rule 4 means that a service is unavailable service when it is in the incompatible

service set.
R5: If ((∀s ∈ Sni)→ (s ∈ S∅)), then no available service can be selected.

Rule 5 means if all the services belong to task node ni are in S∅, then the
selecting program will terminate the searching of current round and begin a new
round searching.

The incompatible service set S∅can be created within O(
∑

1≤i<j |ni|) time .
S∅ can help algorithm to reduce the search space efficiently and in the next sub-
section, we will analyze the efficiency of the correlation model. The efficiency of
this model is determined by the size of incompatible service set, i.e. the bigger the
size of incompatible service set, the more space reduction we can get.

4 The Proposed Algorithm

In this section, we present our proposed algorithm H MCWS, which attempts to
find a feasible service set subject to K additive user’s constraints and minimize
the cost of that service set.

4.1 Theoretical Foundation

First, we design a nonlinear cost function to evaluate the QoS value of the
selected service set. The same nonlinear cost function was also used in [3] and
[14] to develop algorithm for the Multiple Constrained Path problem. Assuming
S is the selected service set. Consider the following cost function for S.

gλ(S) = (
wS

1

c1
)λ + (

wS
2

c2
)λ + ... + (

wS
K

cK
)λ, where λ ≥ 1 (1).

288 L. Li, J. Wei, and T. Huang

From the cost function, we can get the following theorems. (Other character-
istics of the nonlinear function can be found in [3])

Theorem 1: If λ=1, the minimal g1S can be found in polynomial time.

Proof: When λ=1, then the cost function is g1(s) = (wS
1

c1
) + (wS

2
c2

) + ... + (
wS
K

cK
).

Hence, we only need to select a service with the minimal cost from each node.
Therefore, the complexity is

∑
ni∈N |ni|, i.e. O(|S|). �

Theorem 2: When λ is close to ∞, it is guaranteed to find a feasible service
set if one exists.

Proof: Let S be a service set that minimizes the cost function gλ→∞. Assuming
there is a feasible service set S∗. Therefore, gλ→∞(S) ≤ gλ→∞(S∗). If S is not
a feasible service set, then ∃k ∈ [1,K], wS

k > ck. When λ → ∞, gλ→∞(S) is
dominated by the largest term. Hence, gλ→∞(S) → ∞ and gλ→∞(S∗) → 0, i.e.
gλ→∞(S) >gλ→∞(S∗). Since this contradicts, we must have wS

k ≤ ck for each k.
Therefore, S is a feasible service set. �

When we set λ=1, the algorithm can find the minimal cost in polynomial time.
But unfortunately, the selected service set may not be the feasible service set.
Theorem 2 can guarantee to find a feasible service set when λ → ∞. But un-
fortunately, when λ ≥ 2, it is impossible to provide an exact polynomial time
algorithm. So, a heuristic algorithm must be proposed to solve this problem.

4.2 Proposed Algorithm

In this section, we present our algorithm H MCWS, which attempts to find a
feasible service set which satisfies all the users’ constraints and simultaneously
minimize the cost of that service set. H MCWS is similar to the H MCOP [3].
The differences of them are that H MCWS is used to select the composite ser-
vices and faster than H MCOP. First, H MCWS traverses all the services to
eliminate the service which does not satisfy the multiplicative attributes and
minimal attributes and create incompatible service set for each candidate ser-
vice. This traversing process will be completed with O(|S |) complexity. Second,
the algorithm first finds the best service set with g1. If the service set satisfies all
the constraints, it is exactly the result and will be returned to user. Otherwise,
H MCWS finds the best temporary service set from each task node nu to nt. It
then starts from task node ns and discovers each task node nu based on the min-
imization of gλ(S), where the service set S is from task node ns to nt and passing
through task node nu. S is determined at task node nu by concatenating the
already traveled segment from task node ns to nu and the estimated remaining
segment from task node nu to nt. A pseudo code of H MCWS is shown below. ns

represents the start task node, nt represents the end task node and nu represents
the middle task node.

High Performance Approach 289

H MCWS Algorithm
1. Deal non additive Attributes(N)
2. Create ISS Set(N)
3. Reverse Relax(N,nt)
4. if ∀si ∈ Sns , t[si] >K, then return error
5. Look Ahead(N)
6. if ∃si ∈ Snt , Gk[si] ≤ ck, k ∈ [1, K], then return this services set
7. return error

The algorithm uses the following notations. t [nu]/t [si] represent the minimal
cost of the selected services from task node nu/service si to nu. Notation Rk[nu],
k∈[1,K] represents the individually accumulated link weights along the above
selected services. Notation g[nu] represents the cost of a foreseen complete ser-
vice set that goes from task node ns to nt. Notation Gk[nu], k∈[1,K] represents
the individually accumulated cost of services weights from task node ns to nu.
c[nu] represents the cost along the already selected segment of this service set
from task node ns to nu. Deal non additive Attributes(N algorithm is used to
handle the non-additive QoS attributes and Create ISS Set(N) algorithm is used
to create the incompatible service set for each candidate services. There are two
directions in H MCWS: backward to estimate the cost of the remaining segment
using λ=1 and forward to find the most promising service set in terms of feasibil-
ity and optimality using λ >1. The backward algorithm and forward algorithm
are shown in Reverse Relax algorithm and Look Ahead algorithm respectively.

Reverse Relax(nu, nv) Algorithm

1. t[nu]=t[nv]+min1≤i≤|nu|{
∑

1≤k≤K
wi

k

ck
}

2. t[si]=t[nv]+c[si] (for i=1 to | nu |, si ∈ nu)
3. Rk[nu]=Rk[nv]+min1≤i≤|nu|{wi

k} (for k=1 to K)
4. Rk[si]=Rk[nv]+wi

k (for k=1 to K)

Look Ahead(nu) Algorithm
1. for each service si ∈ nu begin
2. ifsi ∈ S∅ then continue
3. ifλ < ∞ then g[si] = max{Gk[πp[nu]]+wi

k+πs[nu]
ck

, k ∈ [1,K]}
4. Gk[si] = Gk[πp[nu]] + wi

k (for k=1 to K)
5. Rk[si]=Rk[πs[nu]]+wi

k (for k=1 to K)
6. sb = Choosing Best Service(nu)
7. c[nu] = c[πp[nu]] + c[sb]
8. end

In the backward direction, the Reverse Relax algorithm finds the optimal ser-
vice set from every task node nu to nt using λ. The complexity of the backward
direction is O(| S |). πp[nu] and πs[nu] represent the predecessor and successor

290 L. Li, J. Wei, and T. Huang

of task node nu respectively. Look Ahead algorithm is executed in the forward
direction. This procedure uses the information provided by the Reverse Relax
algorithm. Look Ahead algorithm explores the whole workflow by choosing the
next services in specific task nodes based on the rule below.

Choosing Best Service(nu) Algorithm
1. Let sv be a virtual service in nu

2. c[sv]=∞, Gk[sv] = ∞, Rk[sv] = ∞
3. for each service si ∈ nu begin
4. if (c[si] < c[sv])&(∀k(Gk[si] + Rk[si]) ≤ ck), then
5. sv = si, c[sv] > c[si], Gk[sv] = Gk[si], Rk[sv] = Rk[si]
6. else if (c[si] > c[sv])&(∀k(Gk[sv] + Rk[sv]) ≤ ck), then continue
7. else if g[si] < g[sv] then
8. sv = si, c[sv] = c[si], Gk[sv] = Gk[si], Rk[sv] = Rk[si]
9. end
10.return sv

The above preference rule can choose the best service from the specific task
node nu. In the end, H MCWS returns a service set using λ > 1. As λ increases,
the likelihood of finding a feasible service set also increases. When λ is close to
∞, H MCWS can guarantee to find a feasible service set if one exists.
Lemma 1: If there are one additive QoS attributes, we can find k -minimal cost
services set with the complexity O(k | S |).

Proof: If there are only one additive QoS attributes, we can get the best can-
didate services from each node by | ni | comparisons. So, we can find the best
services set within

∑
1≤i≤|N| | ni | comparisons, i.e. O(|S |). Let w(s) represent

the additive QoS value of service s. Assuming si is the selected service from task
node ni, si ∈ S and s

′

i represent the service with the second minimal QoS value,
i.e. if (∀s∗i , s

∗
i
= si), then w(s∗i) ≥ w(s

′

i). Assuming s
′

j satisfies the following rule:
if ∀si, s

′

i ∈ ni, then (w(s
′

i) − w(si))≥(w(s
′

j) − w(sj)). Let S
′
= S − {sj} ∪ {s′

j},
then S

′
is the second minimal cost services set. Finding the specific service s

′

j

needs O(|S |) times comparisons at the worst case. Hence, we can find 2 minimal
cost services set with the complexity O(2|S |). According to the same procedure,
we can find k -minimal cost services set with the complexity O(k | S |). �
Theorem 3: The MCWS problem can be solved by H MCWS algorithm in time
O((k+1)|S|).

Proof: The algorithm can be executed within . Similar to H MCOP, the for-
ward direction of H MCWS can also be used with the k -shortest algorithm (in
MCWS problem, the algorithm is k -minimal cost service set algorithm). As we
proved in lemma 1, it needs time to find k -minimal cost service set. Hence, the
overall complexity of H MCWS algorithm is O((k+1)| S |). �

High Performance Approach 291

Although H MCWS is similar to H MCOP, it is more efficient to solve the MCWS
problem. Theorem 3 did not consider the influence of the correlation of services.
In real practice, H MCWS can get more performance improvement.

5 Experiments and Evaluation

In this section, we investigate the performance of H MCWS algorithm and com-
pare it to the most promising algorithms selected from the ones surveyed in
section 2. The simulations environments are: Pentium IV 2.8G CPU, 1024M
RAM, and the operation system is Windows XP SP2. In our study, two im-
portant aspects are considered, one is computation time and the other is the
excellence in approximating the optimal solution.

5.1 Comparison of H MCWS with H MCOP

To study the performance of H MCWS, we randomly create a composite services
structure with 20 task nodes and each node has several candidate services. We
analyze the impact of i) varying the number of constraints; (ii) varying the num-
ber of candidate services. In these test groups, we did not consider the influence
of the correlation of services.

(i) Analysis the impact of the number of constraints

In this test case, we generate 30 candidate services for each task node, and
we set the number of additive constraints from 2 to 10 and use λ = 20.

(a) computation time (b) approximation ratio

Fig. 1. Impact of the Number of Constraints

From Figure 1(a) we can find that H MCWS performs much better than
H MCOP. Figure 1(b) demonstrates the probabilities of finding optimal ser-
vice set for the two algorithms with the different number of constraints. This
experiment results show H MCWS achieves higher performance while keeping
approximately the same precision comparing to H MCOP.

292 L. Li, J. Wei, and T. Huang

(a) computation time (b) approximation ratio

Fig. 2. Impact of the number of candidate services

(ii) Analysis of the impact of the number of candidate services

In this test case, we generate [10, 100] candidate services for each task node.
The number of the additive constraints is 5 and use λ = 20.

Figure 2 depicts that with the increase of the number of candidate services,
the precision and performance of the algorithm drop slightly. For H MCOP algo-
rithm, the complexity is O(n log(n)+km log(kn)+(k2+1)m), where n represents
the number of task nodes and m is the number of links. In MCWS problem, the
m =

∏
1≤i≤|N | | ni |, which is a very huge number. For example, if there are 20

task nodes and each node has 20 candidate services, then m=2020. Therefore,
H MCOP is not suitable to solve this problem directly.

5.2 Analysis of Impact of Service Correlation

To study the impact of service correlation model, we randomly create a composite
services structure with 20 task nodes and each node has 30 candidate services.
Each candidate service has an ISS set and we set the size of this set from 10 to
100. The number of the additive constraints is 5 and use λ = 20.

Figure 3 shows the performance and precision of the algorithm increase dra-
matically with the increasing of the size of ISS. This illuminates the service
correlation model proposed in this paper is effective. The above experiments
demonstrate the service correlation model and H MCWS algorithm proposed in
this paper is feasible.

5.3 Evaluation and Comparison

In this subsection, we analyze and compare four different algorithms: Integer
Programming in [7], WS HEU in [15], Genetic Algorithm in [9] and our approach
H MCWS. Figure 4 presents the comparison results.

From Figure 4, we can see that four different algorithm have the different
properties and are suitable to the different scenarios. Integer programming is one

High Performance Approach 293

(a) computation time (b) approximation ratio

Fig. 3. Impact of the service correlation

Fig. 4. Comparison of Algorithms

of the most adopted tools to solve a QoS-aware composition problem. Integer
programming can find the optimal solution, but unfortunately the running time
is very slow which makes it only can be used in very small size problem. Genetic
algorithm can represent a more scalable choice and are more suitable to handle
generic QoS attributes. However, the genome size of GA is bound to the number
of services, which makes GA slow when the number of candidate services is large.
WS HEU and H MCWS have no limitations and can be used in every situation.
H MCWS consider the correlation of service and use it to reduce the search
space. Hence, although it is near-optimal, it performs very well in practice.

6 Conclusions and Future Work

Web Services selection subject to multi-QoS constraints is an NP-complete prob-
lem. Previously proposed algorithms suffer from excessive computational com-
plexities and are not concerned about the compatibility issue among services,
which makes that these approaches can not be used in many applications. In this
paper, we proposed an efficient approach for Web Services selection with multi-
QoS constraints. The complexity of the algorithm is lower and the simulation
results show the algorithm can find the feasible solution with high performance
and high precision. We believe the proposed models and algorithms provide a
useful engineering solution to multi-constrained Web Services selection problem.

294 L. Li, J. Wei, and T. Huang

User preference is an important factor in the service selection. It can help
algorithm to find a more satisfying composite services for user. Moreover, user
preference can help algorithm to reduce the search space. In the future, we will
introduce the user preference into the selecting algorithm to further reduce the
search space and gain more precision improvement.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their invaluable feedback. This Work is supported by the National Natural
Science Foundation of China under Grant No. 60673112, the National Grand
Fundamental Research 973 Program of China under Grant No.2002CB312005
and the High-Tech Research and Development Program of China under Grand
No. 2006AA01Z19B.

References

1. Yu, T., Lin, K.-J.: Service Selection Algorithms for Composing Complex Services
with Multiple QoS Constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

2. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A lightweight approach for
QoS-aware service composition. In: ICSOC (2004)

3. Korkmaz, T., Krunz, M.: Multi-Constrained Optimal Path Selection. In: INFO-
COM 2001. Proceeding of 20th Joint Conf. IEEE Computer and Communications,
pp. 834–843 (2001)

4. Wang, B., Hou, J.: Multicast routing and its QoS extension: Problems, algorithms,
and Protocols. IEEE Network 14(1), 22–36 (2000)

5. Vogel, R., et al.: QoS-based routing of multimedia streams in computer networks.
IEEE Journal on Selected Areas in Communications 14(7), 1235–1244 (1996)

6. Lorenz, D.H., Orda, A., Raz, D., Shavitt, Y.: Efficient QoS partition and routing
of unicast and multicast. In: Proc. IEEE/IFIP IWQoS, pp. 75–83 (2000)

7. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: WWW. Proc. 12th Int’l Conf. World Wide Web (2003)

8. Liang-Zhao, Z., Boualem, B., et al.: QoS-aware middleware for web services com-
position. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)

9. Canfora, G., Di Penta, M., Esposito, R., et al.: An Approach for QoS-aware Service
Composition based on Genetic Algorithms. In: GECCO’05 (2005)

10. Liu, Y., Ngu, A.H., Zeng, L.: QoS computation and policing in dynamic web service
selection. In: WWW. Proceedings of the 13th International Conference on World
Wide Web, pp. 66–73. ACM Press, New York (2004)

11. Megjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing Web Services on
the semantic Web. The VLDB Journal (2003)

12. Lamparter, S., Ankolekar, A., Grimm, S.: Preference-based Selection of Highly
Configurable Web Services. In: WWW. Proceedings of International Conference
on World Wide Web (2007)

13. Huth, M., Ryan, M.: Logic in Computer Science: Modeling and Reasoning about
Systems, 2nd edn. Cambridge University Press, Cambridge (2004)

14. DeNeve,H.,VanMieghem,P.:AmultiplequalityofserviceroutingalgorithmforPNNI.
In:Proceedings of theATMWorkshop, pp. 324–328. IEEEPress, LosAlamitos (1998)

15. Yu, T., Zhang, Y., Lin, K.-J.: Efficient Algorithms for Web Services Selection with
End-to-End QoS Constraints. ACM Transaction on Web (May 2007)

	High Performance Approach for Multi-QoS Constrained Web Services Selection
	Introduction
	Related Works
	QoS Routing
	Multi-QoS Constrained Web Services Selection

	Service Correlation Model
	Analysis of Correlations
	Service Correlation Model

	The Proposed Algorithm
	Theoretical Foundation
	Proposed Algorithm

	Experiments and Evaluation
	Comparison of H_MCWS with H_MCOP
	Analysis of Impact of Service Correlation
	Evaluation and Comparison

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

