Business Process Regression Testing

Hehui Liu, Zhongjie Li, Jun Zhu, and Huafang Tan

IBM China Research Laboratory, Beijing 100094, China
{hehuiliu, lizhongj, zhujun, tanhuaf}@cn.ibm.com

Abstract. Business Process Execution Language(BPEL) has been
recognized as a standard for the service orchestration in Service Ori-
ented Architecture(SOA). Due to the pivotal role played by BPEL in
service composition, the reliability of a business process becomes critical
for a SOA system, especially during its evolution.

Regression testing is well known as an effective technology to ensure
the quality of modified programs. To reduce the cost of regression test-
ing, a subset of test cases is selected to (re)run, known as regression
test selection. Previous work addressing this problem will fail in the
presence of concurrent control flow, which is an important and widely
used feature of BPEL in describing service orchestration. In this paper,
a regression testing approach for BPEL business processes is presented.
In this approach, an impact analysis rule is proposed to identify the
test paths affected by the change of BPEL concurrent control struc-
tures. Based on the impact analysis result and process changes identi-
fication, the impacted test paths are classified into reusable, modified,
obsolete and new-structural paths. Experiments show that our approach
is feasible.

1 Introduction

Service Oriented Architecture (SOA) is continually gaining more application in
software industry for the automation of business processes and the integration of
IT systems. In SOA, the service orchestration that combines several web services
into a more complex one is a crucial building block [2]. Business Process Execu-
tion Language(BPEL) is a standard for describing such service orchestration. For
the pivotal role played by BPEL in service composition, the reliability of busi-
ness processes becomes especially critical for a SOA system. More importantly,
the dynamic and adaptive nature of SOA also requires the business processes
evolve more quickly and meanwhile puts forward more rigorous demand on the
quality of the processes during the maintenance of a SOA system.

Regression testing is well known as an effective technology for verifying the
behavior of modified programs [5]. After a program has been changed, obviously,
the simplest way is to rerun all test cases, which is called as retest-all strategy
[5] in regression testing. However, this strategy is expensive for executing unnec-
essary tests. Another strategy called as selective strategy [5] is applied to select
only a subset of test cases to (re)run. Two problems have to be addressed in this

B. Kramer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 157-{I68] 2007.
© Springer-Verlag Berlin Heidelberg 2007

158 H. Liu et al.

strategy: (1) the problem of selecting impacted tests from the test suite of origi-
nal program and (2) the problem of determining where additional test cases may
be required and generating them. A lot of work has been done around the first
problem [7, [T, [9, [3], which is known as regression test selection problem. An
earlier work proposed a test path comparison approach to select the impacted
test cases [I]. In this approach, the test paths of the original and the new pro-
grams are compared one by one, test paths not included in the new paths are
selected out as impacted paths, and all test cases attached with the impacted
paths should be rerun. This path comparison approach could only be used when
white box test paths exist. Whereas, in real projects, test cases may be black
box and are no associated white box test paths, and the test paths are not al-
ways generated. So more generally and widely used approaches are based on the
comparison of control flow graphs or source codes [, 4, @]. These approaches
are based on the assumption that when a node/edge on the control flow or a
statement of the source code is changed, only the test cases that could cover this
node/edge or statement will be impacted. This assumption is true for programs
without concurrent control flow. However, in the presence of concurrent control
flow, even a minor change to the synchronization condition may affect many
concurrent execution paths that don’t contain the changed condition. Further-
more, the impact is not only related with the changed synchronization condition,
but also with other synchronization conditions. So, in the presence of concurrent
control flow, the traditional work [7], 4[] will fail and cannot be applied directly.
While in BPEL, the concurrent control flow is used as an important feature and
is widely used in business processes.

In previous work [6l [§], the authors have implemented a test path generation
tool for a BPEL business process under the path coverage criteria. This tool
can generate test paths automatically, and the generated test paths need to be
further refined manually into runnable test cases by adding complete test data
and so on. The application of this tool in real cases leads to the requirement on
the regression testing of a business process under the path coverage criteria. To
meet such requirement, in this paper we propose a regression testing approach
to select the (re)run test cases for a modified business process. Suppose that we
have two sets of test paths, one for the old process, one for the new process, and
an old test case set. Our goal is to work out a new test case set and select a test
case subset to (re)run. All test paths can be classified into four categories with
regression test selection technique:

- reusable paths: not impacted by the process changes, representing common
test paths of the old and new processes;

- modified paths: impacted, in the sense that conditional branches on the test
paths are the same but activity attributes or non-conditional activities are some-
how changed, representing old and new test paths that have minor differences;
- obsolete paths: only valid for the old process, representing old test paths
that will not exist for the new process;

- new-structural paths: only valid for the new process, representing new test
paths having no correspondence in the old process.

Business Process Regression Testing 159

Once we have this classification performed on the old and the new test paths,
we can take actions to get the new test cases. Old test cases of the reusable
paths are added to the new test case set; old test cases of the modified paths
are updated into new test cases; and new-structural test cases are derived from
the new-structural paths. Then all modified and new-structural test cases are
selected to (re)run. In order to do the test path classification, in this paper, the
differences between the old and the new processes are firstly identified. An im-
pact analysis rule is proposed to analyze the affected test paths by the changes
of concurrent control structures. Based on the process change information and
impact analysis result, a test path selection algorithm is used to select the test
paths, (re)run test cases. Different with previous work [I], we select the im-
pacted test paths based on the business processes comparison instead of path
comparison. Therefore, even if the test paths of the business processes are not
generated, our approach could still be applied to select the impacted test cases
via the linkage of source codes with test cases. The rest of this paper is orga-
nized as follows: section 2 gives some background of BPEL. Section 3 introduces
our regression testing approach for business processes. Section 4 presents related
work and section 5 closes this paper with conclusion and future work prediction.

2 Business Process Execution Language

A BPEL process is composed of BPEL activities, which can be either atomic
or structured. Atomic activities define constructs for web service interactions
and data handling, such as receive (wait to receive an event), reply (return an
response to its caller), assign (assign a value to a variable). Like other program-
ming languages, BPEL has typical control structures including sequence, switch,
while, etc. In addition, BPEL uses the flow construct to provide concurrency and
synchronization. These are called structured activities, which will be the con-
tainer for atomic activities. A BPEL activity could have some attributes like
name, invoked service and variable name.

Inside a flow construct, synchronization between concurrent activities is pro-
vided by means of links. Each link has a source activity and a target activity.
Furthermore, a transition condition (a boolean expression) is associated with
each link and is evaluated when the source activity terminates. Only after the
source activity has terminated, the transition condition is evaluated. And only
if the transition condition is true, the target activity could be executed. In this
paper, activities that allow control logic divergence (e.g. switch, link with a
transition condition) are called decision points. As the link activity has special
meaning for regression analysis, we’ll take it as a special kind of activity, and
call all the other activities ”general activities”.

Figure [1 gives an example loan process. This process begins by receiving a
loan request. The InvokeAssessor and InvokeApprover are two invoke activi-
ties to invoke risk assessment and loan approval services respectively. All the
activities of this process are contained within a flow, and their (potentially con-
current) behavior is staged according to the dependencies expressed by links. The

160 H. Liu et al.

loanApprovalProcess

getWariableDatal 'request’,

getWariableDatal 'request’, ‘amuuqt') <1000

‘amount)>=1000
@] Receive

link2
..tk R

& Trvokehssessor

,_o_l_o_| Tink4

(? Invnkeﬂpp’rnvar ', = Rszign

\;—V ‘\
Jgink & Reply Bkt

getVariableData('riskAss

getVanableData(rigkdss esstment’ sk =ow'

ezsment', 'risk"y=Tow'

Fig. 1. The Loan Process

transition conditions on the links determine which links get activated. Finally
the process responds with either a ”loan approved” or a ”loan rejected” message.

3 BPEL Regression Testing

The objective of regression test selection of a business process is to identify the
impact of business process changes to test cases, and then take proper test case
update actions accordingly and determine the subset of test cases to (re)run.

In this paper, we classify the test paths for the original process and the new
process into four categories: reusable, obsolete, modified and new-structural, as
is shown in figure[2l The exact meaning of this classification has been explained
in the introduction section. Take the processes in figure 2] as an example, for
the three test paths in the old process, path 1 is reusable as it is not impacted
by the process changes, path 2 is obsolete, path 3 is modified into a new test
path by adding a new activity 10 and modifying the activity 6. The new process
introduces two new test paths: path 4 and path 5.

hfied
The test paths e

Tlle test paths

of origmal
of new process
process
reusable
(Mo impact
original process New process
ohsolete new-structural

Fig. 2. The test paths classification and process change scenario

Business Process Regression Testing 161

3.1 Regression Test Selection Problems Introduced by Concurrent
Control Flow

Based on the path classification, the mission of path selection is to identify the
reusable, obsolete, new-structural and modified test paths after a business pro-
cess has been changed. For different types of activities, the change impact to
test paths is different. For a general activity change, only test paths contain-
ing this activity will be impacted. According to the activity type and change
information, the category(modified, obsolete, and new-structural) of impacted
test paths could be determined. For example, if a while activity is deleted, all
test paths containing this activity in the original path set will become obsolete.
However, for a link activity, the problem becomes complex and this simple rule
is not true any more. Once a link activity is changed, the impacted test paths
will not be limited to those containing the changed link. For example, if the tran-
sition condition of link2 in the process of figure [I] is modified to the condition
showed in the process of figureB|(1), the path with request.amount >= 1000 not
containing link2 in figure [l will be modified(the condition of this path becomes
request.amount >= 2000). At the same time, two new-structural test paths are
introduced into the new process(the path with 1000 <= request.amount < 2000
and riskAssessment.risk != ’low’” and the path with 1000 <= request.amount <
2000 and riskAssessment.risk = ’low’). Whereas, if the transition condition of
link2 is changed to request.amount >= 1000, as showed in the process in figure
Bl2), all the test paths in the original process will become obsolete, and two
new-structural paths will be generated in the new process.

loanapprovalProcess getVariahleDatal 'request’, | loanApprovalProcess

aetVariableData(request’, ‘arnount)==1000 I ,
‘amount’y>=1000 _getVaniableData('request!, -+, z:;wﬁnt')ﬁlﬂﬂﬂ =t
"\ | Receive]jnk2‘;" ‘amount’)=2000 . | Receiwe 7 T
1. “la . —0—L|
o, linkl o U3 Yoo, linkl g
S & TovolceAszessor T & Invokehss essor
Iy} 0. i —0—— L O linkd4
ki3 B Jaak A fink3 b >
(? Invokehpphover Y = Assign (? Invokeﬂp.pi’wer '.‘ = Assign
. kS o lnks
E lindes &) Reply]3131(6 ',' 2| Reply N
aetVariableDatal vl getVariableDatal riskéss celVariabieData{ risich get¥ariableDataf tiskAss
essrnent!, 'risl’) =low’ essment’,'risk)="low' essment’, 'risk") 1=1ow' essment’, 'risk)="low
1) @

Fig. 3. The modified processes of loan process

Actually, the problems here are caused by the concurrent characteristic of the
flow activity. Potentially, all the elements contained in a flow could execute con-
currently. Just for the existence of link activities, some activities are prohibited
to run, consequently not included in some test paths. For the test path with
request.amount >= 1000 in figure [[l as the condition of link 2 is false, both

162 H. Liu et al.

InvokeAssessor and Assign activity are prohibited to be executed, not including
in this test path. Further more, the activation of link 2 is related with link 1,
consequently the change of link 1 could affect both the test paths covering link
1 and those covering link 2. So, in order to select the modified, obsolete and
new-structural paths impacted by a link activity change, we have to solve two
problems: 1, analysis the impact of the link activity changes to test paths; 2,
select the relevant test paths(modified, obsolete, new-structural paths) from the
impacted test paths.

3.2 BPEL Diff

In order to select the impacted test paths, we need firstly identify the changes of
a business process upon modification, and by the inclusion relationship between
activities and test paths, the impacted test paths could be selected and classified.
A change table is used to record all the changed activities here, as is shown in
table [l Therein, each row represents a change item. IsDecisionPoint indicates
whether the changed activity is a decision point. ChangeType indicates the type
of the change action: M, D, and A. M is modification action, D is deletion action,
A is addition action. Activities in old process refers to the changed activity in
the original process, and Activities in new process refers to the changed activity
in the new process. For the deletion action, because the deleted activity does
not exist in the new process, the previous activity of the deleted activity is put
in Activities in new process column. Similarly, for the addition action, Activities
in old process will point to the previous activity of the added activity. Such as
for the process in figure 2l we could get the change table showed as table [I1

Table 1. The structure of change table

Activities in old IsDecisionPoint Change Activities in new
process Type process

4 false D 3

6 false M 6’

3 true A 7

As a BPEL process is represented in XML format, we could use an XML parser
to get a model that contains all the activities and their structure information
of this process. In the model of original process and that of new process, in
order to identify the same activity, the activity name is used as the unique
identifier in this paper. In the BPEL process model coming from two processes,
by comparing the activities in the original and the new process, we could get
all the change information, and fill them into the change table. Link activity is
special as it connects source and target activities. We use the following rules for
the comparison of link activities. Only when the source activity name, the target
activity name and the transition condition of two links are all the same, the link
activities are considered as same. If either the source or the target activities are

Business Process Regression Testing 163

different, the link activities are considered as different entities (this case will be
broken down into a link delete action and a link addition action); if the transition
condition is modified, this link is considered as modified.

3.3 Path Selection

For the new business process, based on our previous work [§], its test paths
can also be generated automatically. So, in this paper, our test path selection
algorithm is applied on these two test path sets to classify the reusable, modified,
obsolete and new-structural paths. In order to record the relationship between
test paths and activities, a test path table is used, as is shown in table[2l Therein,
the value in column j and row i represents whether activity j is on test path i.
When this value is 1, the activity j is on the test path i; when the value is 0, the
activity j is not on the test path i. We call this value as indicator in this paper.
Table Pl is the test path table of the loan process in figure [Il

Table 2. The test path table of the loan process

Test ReceiveLinkl Link2 Invoke Link3 Link4 Invoke Assign Link5 Link6 Reply

Path Assessor Approver

path 1 1 1 0 0 0 0 1 0 1 0 1
path 2 1 0 1 1 1 0 1 0 1 0 1
path 3 1 0 1 1 0 1 0 1 0 1 1

Impact Analysis for Concurrent Control Structure Change. From the
change table, we could get all the change information of a business process, and
for the different types of activities, the impact to test paths is definitely different.
For a decision point, its deletion will cause all test paths passing this activity
in original test path set become obsolete, and at the same time introduces new
test paths that could cover the previous activity of this decision point into new
path set. The addition of a decision point will generate new paths covering this
activity in the new path set, and at the same time could make all test paths
containing its previous activity in the original test path set become obsolete
paths. For a branch activity of a decision point, its deletion could also make the
test paths passing it in the original path set become obsolete, and its addition
could generate new-structural paths passing it in the new path set. For a non-
decision-point activity, its addition, deletion and modification could only make
all test paths passing it become modified paths.

For the change of a link activity, the test paths covering the changed link ac-
tivity are only a subset of the impacted test paths. Just as explained in section
Bl its impact to the test paths is far beyond this. In fact, based on the char-
acteristic of the target activity of a changed link activity, there are two types
of impact results. One is that the target activity of a changed link activity is a
start activity of a flow activity in the opposite process (we say the original and
new process as opposite process), we call this change as first type of link change;

164 H. Liu et al.

the other type is that the target activity is not a start activity, and we call this
change as second type of link change.

First type of link change: in this type, because in current process, the target
activity of the changed link activity is a start activity of a flow in the opposite
process, all test paths passing this flow activity will include the activity. While in
current process, for the existence of the link activity, only some test paths contain
the target activity and it can not be a start activity in the flow activity. So all
test paths passing this flow in the original and the new process will be impacted
by the change. See the example in figure Fl which is another changed process
of the loan process. In this process, link 4 is deleted from the original process,
and Assign activity becomes the start activity of the flow activity (although
in semantics, this cannot happen for this process, here we just use it as an
example). It could be seen that all the test paths passing the flow activity in
the new process have the Assign activity as a start activity of this flow. While
in the original process, no matter for which path, Assign activity is not a start
activity. That is to say, no matter in the original or the new process, all the
paths passing the flow activity are impacted.

getVariableDatal request’, . . ,
'amounlt.')>=1 i} loandpprovalProcess _ %a?n\;alfnl?gf?ﬂ%%(request’,

Recei
@ ecelve ik
—
-, linkl =
e

<? InwokeAssessor

00—
Y link3 -
(? Invoké Appr aver = hzzign
2 | 1
-0 linksS \'/ lirket Flow
’ & Reply

getVariableData('risl—;Ass-essmmt',
'risk"y="ow'

Fig. 4. Another changed process of the loan Process

Second type of link change: in this type, suppose in the original process, the
links using the source activity of the changed link as source activity are link,
links, ... , link,, and the corresponding transition conditions are Cy, Co, ... ,
C, the intersections they generate could be expressed as C1[Ca[)...(\Cn, it is
obviously that each branch of this source activity is a region of this expression.
For a condition C;, if it has no intersection with the other conditions C;(i!=j),
its deletion or addition will not impact other regions of this expression, but only
reduce or increase one region. See the process showed in figure [l the transition
conditions of link3 and link4 have no intersection, so the deletion of link3 could
only reduce the branches of activity InvokeAssessor by one. In this case, only
the test paths containing the changed link activity are impacted. At the other
extremity, if C; has intersection with all the other conditions C; (i!=j), its deletion
or addition definitely can impact all other intersections, such as C; == true. In

Business Process Regression Testing 165

this case, all the test paths passing the source activity will be impacted. In
general cases, when the link transition condition is changed, the impacted test
paths will have a scope between the above two extremity cases. In this paper,
for this change type, we consider all the test paths covering the source activity
as impacted paths.

So, for the changes of link activities, an impact analysis rule could be applied
to select out all the impacted test paths. This rule can be described as follows.
Firstly, based on the information of a changed link activity, judge which change
type it belongs. Secondly, following the conclusion of relevant impact analysis,
select out the impacted test paths caused by the change of this link activity. By
this rule, we could solve the first problem introduced by concurrent control flow.

Path Selection Based on Test Path Table. Based on the impact analysis,
we could get the regression test selection process as follows. Firstly, based on
the change table, the non-impacted test paths could be selected as reusable
paths. Secondly, the obsolete and new-structural paths caused by general activity
changes could be selected out from the original and the new path set. Thirdly, the
impacted test paths caused by link activity changes could be selected respectively
from the original and the new path set. Finally, the remaining paths is modified
paths. In this paper, we call the test paths impacted by link activity changes
special path sets.

In the special path sets, for two test paths p and p/ that come from the
original path set and the new path set respectively, if p/ is modified from p, they
must execute the same link activities. If in the original path set, there is no
test path that could execute the same link activities with p', p' must belongs to
new-structural path set. Oppositely, if there is no test path that could execute
the same link activities with p in the new path set, p must belong to obsolete
path set. So, for a test path p/ in the special path set coming from new path
set, following the rule that whether there is a path p in the original path set has
the same link activities with it, we could decide pl as a modified path or new-
structural path. If p’ is a modified path, p should also be a modified path. Finally,
all the remaining paths in the special path set coming from the original path set
are obsolete paths. Consequently, the test paths impacted by the changes of link
activities could be classified into modified, obsolete, and new-structural paths,
solving the second problem introduced by concurrent control flow.

In summary, the path selection algorithm is shown as below. In this algorithm,
each path is labeled with a symbol from (R, M, O, N, R). In the symbol for path
pi, R represents p; is reusable, M represents p; is modified, O represents p; is
obsolete, N represents p; is new-structural, and S represents p; belongs special
path sets.

PathSelection(Change Table: C, Test Path Table of Original
Process: T, Test Path Table of new Process: T')

1 Label all paths in original and new path set as R

2 for each modified activity a in C' do

3 get impacted test paths I and I’ from T and T

166 H. Liu et al.

4 if a is a decision point or a branch activity of a decision point

5 label the paths in I as O and the paths I” as N

6 else if a is not a link activity

7 for the paths in I and I’ are labeled with R, label them as M
8 else

9 if the change type of a is addition or deletion

10 label all paths containing a in I as O and those in I’ as N
11 end if

12 label other impacted test paths being labeled with R or M in [and I’
as S

13 end if

14 end if

15 end for

16 classify the test paths are labeled with S into modified, obsolete and new-
structural paths.

Table 3. The test path table of modified loan process

Test ReceiveLinkl Link2 Invoke Link3 Link4 Invoke Assign Link5 Link6 Reply

Path Assessor Approver
path 1 1 1 1 1 1 0 1 0 1 0 1
path 2 1 1 1 1 0 1 1 1 0 1 1

In the identification of the special test path sets, because the paths executing
the added or deleted link activities have been selected out(shown in the 9 and
10 lines of PathSelection algorithm), in the special test path sets, all the link
activities contained in the paths are modified or non-changed, which exist in
original and new process at the same time. We represent this link activities set
as Spink- In the original path table, for a test path in the special test path set,
from top to down, all the indicator values of link activities contained in Sy;,k
could form a 0 and 1 string, which in deed indicates the link activities that a
test path contains. In the new path table, from top to down, by tuning the order
of link activities contained in Sy, to keep the same order with that of original
path table, for a test path in the special test path set of new path set, all the
indicator values of link activities contained in S, also could form a 0 and 1
string. By judging whether this string is contained in the 0 and 1 string set of
original path set, we could select this path into relevant path set. Finally, all the
remaining paths in the special path set in the original path set are obsolete paths.
Such as for the original process in figure [Il and the new process in figure [3(2),
table B] shows the test paths of the process in figure Bl(2). By impact analysis,
we could learn that all test paths in test path table [2 and [B] are special paths.
Firstly, we could get the 0 and 1 strings for the special path set of original path
set as {path 1: 100010, path 2: 011010, path 3: 010101} (from left to right, the
link activities are: link1, link2, link3, link4, link5, link6). The 0 and 1 strings for
the special path set of this new process are: {path 1:111010, path 2: 110101}.

Business Process Regression Testing 167

Because 111010 and 110101 are neither contained in {100010, 011010, 010101},
the test paths of table Bl are new-structural paths, and the remaining paths in
table 2l are obsolete.

After the test paths are selected, the regression testing actions are taken as
follows: the test cases of reusable paths are added to new test case set, those
of modified paths are updated, and new test cases are generated for the new-
structural paths. Then the updated and new test cases are selected to (re)run.

The tool of this paper is built as an Eclipse plugin tool, making it could
easily integrated with other SOA develop or testing tool, such as WebSphere
Integration Developer or Rational Architectural Develop.

4 Related Work

Regression testing has been recognized as an effective technology to ensure the
quality of software after a system has been changed. Lots of previous work has
been done around the regression test selection problem, and the test selection
based on control flow is widely applied [7, 4 [9]. In these approaches, after a
program has been changed, the control flow graphs of the original and the new
program are obtained by analyzing the source codes of original and new pro-
gram. Based on the control flow graphs, a graph comparison algorithm is used
to identify the changed nodes or edges. Consequently, the test cases covering the
changed nodes or edges are selected as impacted cases. In the face of the new
characteristic introduced by the object-oriented programs and aspect-oriented
programs, the control flow graph is extended by [l O] respectively to support
the new characteristic of new programming language. Then based on the ex-
tended control flow graph, the test selection algorithm is applied to select the
impacted test cases [4,[9]. So far as we know, [I] is the only work that also selects
the impacted test cases under the path coverage criteria. In this paper [, all
test paths are represented by a special expression-algebraic expression. Based
on the representation, a test path comparison approach was proposed to select
the impacted test cases. However, this approach is limited by the expression ca-
pability of test path model, and only could be applied to selected the impacted
test cases when the test paths are generated. While the approach of our paper
not only could be applied to the select the (re)run test cases via test paths, but
also could be applied to select the (re)run test cases when test paths are not
generated.

5 Conclusions and Future Work

Service Oriented Architecture (SOA) is recognized as a good solution for the
integration of diverse IT systems. BPEL as a standard for the service orchestra-
tion has been widely used in SOA to compose multiple services to accomplish a
business process. The pivotal role of BPEL in a SOA system makes its reliabil-
ity become especially critical in the maintenance of a SOA system. Regression
testing has been recognized as an effective technology to ensure the quality of

168 H. Liu et al.

modified programs. In this paper, to address the special problems introduced by
the concurrent control structure of BPEL, a regression test selection approach
for BPEL is proposed. In this approach, the changed activities are identified by
BPEL Diff. The impact of concurrent control structure changes to test paths is
classified into two types. Based on the analysis for these two types, an impacted
analysis rule for the changes of concurrent control flow is proposed. By consid-
ering all the link activities on a test path, the test paths impacted by a link
activity changes are classified into modified, obsolete and new-structural paths.
Consequently, the reusable, modified, obsolete and new-structural path sets are
selected out. Finally the related test cases are selected and updated. In future,
we will study a more precise selection algorithm to select the test paths impacted
by link activity changes, and further validate our technology in more real cases.

References

[1] Benedusi, P., Cimitile, A., Carlini, U.D.: Post-maintenance testing based on path
change analysis. In: ICSM’ 88. Proceedings of the Conference on Software Mainte-
nance, Scottsdale, AZ, USA, pp. 352-361 (October 1988)

[2] Chen, L., Wassermann, B., Emmerich, W., Foster, H.: Web service orchestration
with bpel. In: ICSE’06. Proceeding of the 28th International Conference on Software
Engineering, Shanghai, China, pp. 1071-1072 (May 2006)

[3] Vokolos, F.I., Frankl, P.G.: Pythia: A regression test selection tool based on textual
differencing. In: ENCRESS’ 97. Porceedings of the 3th International Conference on
Reliability, Quality, and Safety of Software Intensive Systems, Athens, Greece, pp.
3-21 (May 1997)

[4] Harrold, M.J., Jones, J.A., Li, T., Liang, D.: Regression test selection for java soft-
ware. In: OOPSLA’01. Proceedings of the ACM Conference on OO Programming,
Systems, Languages, and Applications, Tampa Bay, FL, USA, pp. 312-326. ACM
Press, New York (October 2001)

[5] Li, Y., Wahl, N.J.: An overview of regression testing. ACM SIGSOFT Software
Engineering Notes 24(1), 69-73 (1999)

[6] Li, Z., Sun, W.: Bpel-unit: Junit for bpel processes. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, pp. 415-426. Springer, Heidelberg (December
2006)

[7] Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.
ACM Transactions on Software Engineering and Methodology 6(2), 173-210 (1997)

[8] Yuan, Y., Li, Z., Sun, W.: A graph-search based approach to bpeldws test gen-
eration. In: ICSEA’06. Proceedings of the International Conference on Software
Engineering Advances, Papeete, Tahiti, French Polynesia, p. 14 (October 2006)

[9] Zhao, J., Xie, T., Li, N.: Towards regression test selection for aspectj programs.
In: WTAOPO6. Proceedings of the 2nd workshop on Testing Aspect-Oriented Pro-
grams, Portland, Maine, pp. 21-26 (July 2006)

	Business Process Regression Testing
	Introduction
	Business Process Execution Language
	BPEL Regression Testing
	Regression Test Selection Problems Introduced by Concurrent Control Flow
	BPEL Diff
	Path Selection

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

