
B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 132–144, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Monitoring the QoS for Web Services

Liangzhao Zeng, Hui Lei, and Henry Chang

IBM T.J. Watson Research Center Yorktown Heights, NY 10598
lzeng,hlei,hychang@us.ibm.com

Abstract. Quality of Service (QoS) information for Web services is essential to
QoS-aware service management and composition. Currently, most QoS-aware
solutions assume that the QoS for component services is readily available, and
that the QoS for composite services can be computed from the QoS for
component services. The issue of how to obtain the QoS for component services
has largely been overlooked. In this paper, we tackle this fundamental issue.
We argue that most of QoS metrics can be observed/computed based on service
operations. We present the design and implementation of a high-performance
QoS monitoring system. The system is driven by a QoS observation model that
defines IT- and business-level metrics and associated evaluation formulas.
Integrated into the SOA infrastructure at large, the monitoring system can
detect and route service operational events systemically. Further, a model-
driven, hybrid compilation/interpretation approach is used in metric
computation to process service operational events and maintain metrics
efficiently. Experiments suggest that our system can support high event
processing throughput and scales to the number of CPUs.

1 Introduction

Web services are autonomous software systems identified by URIs which can be
advertised, located, and accessed through messages encoded according to XML-based
standards such as SOAP, WSDL and UDDI. Web services encapsulate application
functions and information resources, and make them available through programmatic
interfaces, as opposed to the human-computer interfaces provided by traditional Web
applications. Since they are intended to be discovered and used by other applications
across the Web, Web services need to be described and understood in terms of both
functional capabilities and non-functional, i.e., Quality of Service (QoS) metrics.

Given the rapidly increasing number of functionally similar Web services available
on the Internet, there is a need to be able to distinguish them using a set of well-
defined QoS metrics. Further, in situations where a number of component services are
aggregated to form a composite service, it is necessary to manage the QoS for the
composite service based on the QoS for individual component services. Most systems
for QoS-aware service selection [2][4][5][6] and management [22][23] assume that
the QoS information for component services is pre-existing. How to obtain this QoS
information is largely overlooked. In this paper, we try to address this fundamental
issue.

 Monitoring the QoS for Web Services 133

In general, QoS metrics can be classified into three categories, based on the
approaches to obtaining them:

• Provider-advertised metrics. This type of metrics is usually provided by service
providers, which is subjective to service providers. One example is the execution
prices advertised by service providers.

• Consumer-rated metrics. This type of metrics can be computed based on service
consumer's evaluations and feedback, which is therefore subjective to service
consumers. For example, the service reputation is considered average according to
service consumers' evaluations.

• Observable metrics. This type of metrics can be observed, i.e., computed, based on
monitored service operational events, which is objective to both service providers
and consumers. Majority of QoS metrics in fact can be observed, including those
of IT level and of business level. IT-level metrics include service execution
duration, reliability, and etc. At business level, metrics are usually domain-specific
and require some modeling efforts to define the formulas [5]. For example, the
metric "forecast accuracy" for forecast services in supply chain management is
usually defined as:

0

| |n
i i

i i

actualDemand forecastDemand

actualDemand=

−∑

In order to compute such a metric value, both actual demand and forecasted
demand need to be monitored. It should be noted that the metric value needs to be
recomputed whenever the execution of a service instance is completed.

In this paper, we focus on these observable metrics. We adopt a model-driven
approach to the definition and monitoring of Web service QoS metrics. We introduce
an observation metamodel that specifies a set of standard building blocks for
constructing various QoS observation models. An observation model defines the
specific QoS metric types that are of interest, as well as rules on when and how the
metric values are computed.

An observation model has to be executed by a QoS monitoring system. There are
two main issues in designing and implementing such a monitoring system:

• Service monitoring architecture. To detect service operational events, service
monitoring needs to be integrated into the SOA infrastructure at large. It is
important to leverage existing components in the SOA infrastructure, and to enable
detection and routing of the service operational events systematically.

• QoS metric computation. There are three main challenges in designing an efficient
computation runtime:
• High volume of service operational events. In large-scale SOA solutions, there

can be thousands of business process instances concurrently running. Even if
each process instance generates only one operational event per second, there
may be thousands of events that need to be processed per second. It is thus
important for the runtime to support high event-processing throughput.

• Complexity of metric computation. The ECA rules for metric computation
actually create a workflow representable as statecharts. The complexity of
metric computation stems from two aspects: the topology of the statecharts and

134 L. Zeng, H. Lei, and H. Chang

the formulas for computing the metric values. For example, hundreds of
expressions may be triggered directly or indirectly to update a series of metric
values due to the occurrence of a single service operational event. Unlike most
complex event processing systems that focus on event filtering and composite
event detection, metric computation is concerned with the expression evaluation
triggered by events. The potentially large number of expressions that need to be
evaluated significantly increases the overall complexity of the system.

• Metric value persistence. QoS metric values need to be saved in persistent
storage after they are computed/updated, in order to make them available for
other components (e.g., service selectors). Given the high volume of service
operational events and the complexity of metric networks, an appropriate
persistence mechanism is required, in order to support both efficient metric
value persistence and queries.

Given QoS metrics are time-critical and time-sensitive information, it is important
to develop a high performance metric computation engine that can compute/update
metric values in real time.

In order to tackle the above challenges, we design and implement a service QoS
monitoring system. It provides a user-friendly programming model that allows users
to define the QoS metrics and associated ECA rules. It enables declarative service
QoS monitoring in the SOA infrastructure. It employs a collection of model-analysis
techniques to improve the performance of metric computation. In a nutshell, the main
contributions of this paper are:

• Monitoring-enabled SOA Infrastructure. Building upon our previous work on
semantic service mediation [21] and semantic pub/sub [18] that enables flexible
interoperation among Web services, we further enrich the SOA infrastructure to
enable declarative event detection and routing in dynamic and heterogeneous
environments. Such an extension allows the QoS for Web services to be monitored
with small programming efforts.
• Efficient QoS computation. We present a novel hybrid compilation-
interpretation approach to QoS metric computation. A series of model-analysis
techniques is applied to improve event processing throughput. At build time,
custom executable code is generated for each ECA rule. The custom code is more
efficient to execute than generic code driven by ECA rules. At runtime, model-
driven mediators interpret a transformed observation model to invoke generated
code at appropriate points. Also, model-driven planning is adopted to enable wait-
free concurrent threads for metric computation, which eliminates the overhead of
concurrency control. Our experiments suggest that the system not only can support
high event throughput but also can scale to the number of CPUs.

The rest of this paper is organized as follows. Section 2 presents the QoS

observation metamodel. Section 3 illustrates the SOA infrastructure that enables
service QoS monitoring. Section 4 discusses the design of a high performance metric
computation engine. Section 5 briefly describes the implementation and
experimentation. Following discussion on related work in Section 6, Section 7
provides concluding remarks.

 Monitoring the QoS for Web Services 135

2 QoS Observation Model

In the presence of multiple Web services with overlapping or identical functionality,
service requesters need some QoS metrics to distinguish one service from another.
We argue that it is not practical or sufficient to come up with a standard QoS model
that can be used for all Web services in all domains. This is because QoS is a broad
concept that encompasses a large number of context-dependent and domain-specific
nonfunctional properties. Therefore, instead of trying to enumerate all possible
metrics, we develop a QoS observation metamodel which can be used to construct
various QoS observation models. The observation models in turn define the generic or
domain-specific QoS metrics.

Fig. 1. Simplified Class Diagram of the Observation Metamodel

As indicated by the metamodel in Figure 1, an observation model can include three
types of monitor contexts. Each type of monitor context corresponds to a type of
entity to be monitored. A ProcessMonitorContext corresponds to a business process
and specifies how a composite service should be observed. A ServiceMonitorContext
(resp. ServiceInterfaceMonitorContext) corresponds to a service (resp. service
interface). These two kinds of monitor contexts specify how component services
should be observed. Users can define a collection of QoS metrics in a monitor
context. A QoS metric can be of either a primitive type or a structure type, and can
assume a single value or multiple values. For the computation logic, we adopt Event–
Condition-Action (ECA) rules (c.f. Expression 1) to describe when and how the
metric values are computed. Such a rule-based programming model frees users from
the low-level details of procedural logic.

Event(eventPattern)[condition]|expression (1)

In an ECA rule, the event pattern component indicates either a service operational
event or the value change of a metric value. For example, when a service instance starts
execution, a service activation event can be detected. The condition component in a rule
is a Boolean expression specifying the circumstance to fire the computation action
described in the expression component. The expression consists of an association

136 L. Zeng, H. Lei, and H. Chang

predicate and a value assignment expression. The association predicate identifies which
monitor context instance should receive the event. The operators allowed in the
predicate expressions include relational operators, event operators, vector operators, set
operators, scalar operators, Boolean operators and mathematical operators, etc. An
example ECA rule for metric computation is given in equation (2).

1 2 1 1 2 1
()[. 12] | (. .) . : () ::Event E e a MC serviceID e serviceID MC m f ee > == =

(2)

In the above example, when an instance of event E1,
denoted as e, occurs, if e..a2

>12, then the event is delivery to the instance of MC1 whose serviceID metric
matches the serviceID field of event instance e, and the metric value of m2 is
computed by function f1(e). When there is no matching context instance, a new
monitor context instance is created. It should be noted that the monitor context
represents the entity that is being monitored, which is a service instance in this case.
Another example ECA rule is given in equation (3). In the example, when the value of
metric MC1.m2 changes, the value of metric MC1.m3 is updated by function
f2(MC1.m1,MC1.m2).

1 2 1 3 2 1 1 21((.)[] | . : (, .) .Event changeValue MC m MC m f MC m MC m=

(3)

3 Monitoring-Enabled SOA Infrastructure

Figure 1 illustrates the proposed monitoring-enabled SOA infrastructure. Basing on
the generic SOA infrastructure, three specific components that enable QoS monitoring
are introduced. The Web Service Observation Manager provides interfaces that allow
users to create observation models. The Metric Computation Engine generates
executable code, detects service operational events and computes and saves metric
values. The QoS Data Service provides an interface that allows other SOA
components to access QoS information via a Service Bus. In this section, we mainly
focus on the creation of observation models and the detection of service operational
events. The details of metric computing and saving are presented in next section.

3.1 Observation Model Creation

We start with the observation model creation. When importing a process schema, the
Web Service Observation Manager generates a ProcessMonitorContext first. For each
service request in the process, it creates a ServiceInterfaceMonitorContext definition,
in which two types of event definitions are also created, namely execution activation
event and execution completion event. For example, if a service request is defined as
R (TaskName, Cin, Cout), where Cin (Cin=<C1, C2,…, Cn >) indicates input types and
Cout (Cout=<C1, C2,…, Cm >) indicates excepted output types, then the execution
activation event can be defined as Es(PID, SID, TimeStamp, TaskName, ServiceName,
ServiceInterfaceName, <C1, C2,…, Cn>), where the PID is the process instance ID and
the SID is the service ID. The execution completion event is defined as Ec(PID, SID,
TimeStamp, TaskName, ServiceName, ServiceInterfaceName, <C1,C2,…,Cm>). Based
on these service operational event definitions, the designers can further define the
QoS metrics and their computation logic by creating ECA rules.

 Monitoring the QoS for Web Services 137

Fig. 2. Simplified QoS Monitoring-enabled SOA infrastructure

3.2 Detection and Routing of Service Operational Events

Given that the observation model is an event-driven programming model, there are
two main steps before processing the events to compute the QoS metric values: event
detection and event routing. If we assume that the data types are standardized across
different process schemas and service interfaces, these two steps can be performed
based on the syntactic information on service interfaces and service operational
events.

However, such an assumption is impractical. Since services are operated in
heterogeneous and dynamic environments, it is inappropriate to assume that all the
service providers adopt the same vocabulary to define service interfaces. To improve
the flexibility of SOA solutions, we have introduced semantics in service mediation
[3], wherein service interfaces can be semantically matched with service requests.
Therefore, when there are not any syntactically matched service interfaces for a
service request, semantic match is applied to identify service interfaces. In cases of
semantic matches, the data format transformations are required when invoking the
matched service and returning the execution results to service consumers. In such
cases, semantic matching is also required between the event definitions in observation
models and the actual operational events detected. Fortunately we can leverage the
same semantic-mapping capability provided by semantic service mediation to
transforms operational events into formats that conform to the event definitions in the
observation model.

If we assume that a service request is defined as R(TaskName, Cr
in, Cr

out) and
Cr

out=<C1,C2,…,Cm>, the generated service activation event definition in the
observation model is then Ec(PID, SID, TimeStamp, TaskName, ServiceName,
ServiceInterfaceName,<C1,C2,…,Cm>). We also assume that the matched service
interface is defined as i (serviceInterfaceName, Ci

in, Ci
out), and that the execution

138 L. Zeng, H. Lei, and H. Chang

output is <o1,o2,…,ol>. If <o1,o2,…,ol> does not exactly match <C1,C2,…,Cm>, but is
semantically compatible (see Definition 1),, a semantic transformation that converts
<o1,o2,…,ol> to <o'1,o'2,…,o'm> is needed. Similarly, if the detected service
completion event ec(pID, sID, timeStamp, taskName, serviceName, <o1,o2,…,ol>)
dose not exactly match the event definition Ec, same semantic transformation from
<o1,o2,…,ol> to <o'1,o'2,…,o'm> is also required before the service completion event is
emitted.

Definition 1. (Semantic Compatibility) <o1,o2,…,ol> is semantically compatible
with <C1,C2,…,Cm>, if for each Ci, there is a oj that is either an instance of Ci or an
instance of Ci's descendant class.

In our design, the Metric Computation Engine takes observation models as input and
generates event detection requests to the Semantic Service Mediator. The Semantic
Service Mediator maintains a repository of service event detection requests (not
shown in the Figure 1). Whenever a service execution is activated or completed, it
searches the repository to determinate whether a service activation (or completion)
event needs to be emitted. The search is done by semantically matching the service
input and output with entries in the event detection request repository.

Similarly, it is impractical to assume that different process schemas use
standardized data types and service interfaces. Therefore, when the event definitions
in observation models are derived from service requests, it is necessary to consolidate
those semantically matched monitored events. For example, consider two service
requests R1(TaskName1, C1

in, C1
out) and R2(TaskName2, C2

in, C2
out) in two process

schemas PS1 and PS2. Two execution activation event definitions can be generated as
Es

1 (PID, SID, TimeStamp, TaskName, ServiceName ServiceInterfaceName, <C1,
C2,…,Cn>) and Es

2 (PID, SID, TimeStamp, TaskName, ServiceName,
ServiceInterfaceName, <C1, C2,…,Cm>) in two observation models OM1 and OM2
respectively. If <C1, C2,…,Cn > is semantically matched with <C1, C2,…,Cm>, then
the service operational events detected when executing PS1 (resp. PS2) should also be
transformed and delivered to context instances in OM2 (resp. OM1). These
transformations are performed by a semantic pub/sub engine [4]. Specifically, the
Metric Computation Engine takes observation models as input and generates event
subscriptions for the semantic pub/sub engine, relying on the latter to perform event
transformation and event routing. For example, given OM1, the Metric Computation
Engine subscribes to event Es

1 (PID, SID, TimeStamp, TaskName, ServiceName,
ServiceInterfaceName, <C1, C2,…,Cn>). When an event es

2 (pID, sID, timeStamp,
taskName, serviceName, serviceInterfaceName,<o1,o2,…,om>) (an instance of Es

2) is
published from the service mediator, the event is transformed to es

1(pID, sID,
timeStamp, taskName, serviceName, serviceInterfaceName, <o'1,o'2,…,o'n>) by
semantic pub/sub and delivered to the appropriate context instances of OM1.

4 High Performance Metric Computation Engine

Given a monitoring-enabled infrastructure to detect and route service operational
events, it is imperative that these events be processed efficiently, and that the QoS
metric values be computed and saved efficiently as well. The main challenges of the

 Monitoring the QoS for Web Services 139

system design are tri-fold: high volume of service operational events, complexity of
expressions involved in metric computation and persistence of metric values.
Although most complex event processing systems [12][13][14][15] support high
throughput of events, they primarily focus on event filtering and compound event
detection. They do not address metric computation, where event data triggers and
contributes to a complex flow of computation. Further, they don’t consider the issue
of state persistence. In this paper, we advocate a series of model analysis techniques
to improve event throughput in a monitoring environment. In this paper, we only
sketch out the high-level design but omit more detailed descriptions, due to the
limitation of space. More complete descriptions of these techniques can be found in
[11].

4.1 Model Transformation and Execution Framework

As we discussed earlier, event-driven rule-based programming is user friendly,
particularly for business integration developers. However, because of the overhead in
locating rules to be executed at runtime, the event-driven model does not lend itself to
efficient execution, especially when the number of rules is very large, such as in the
case of service QoS monitoring. In our design, the rule-based model is transformed to
a state-based model, wherein statecharts are adopted to reorganize the rules. The
rationale for such a model transformation is that statecharts organize the rules by
states, which can greatly reduce the overhead in locating rules at runtime.

The construction of statecharts is based on user-defined ECA rules: a state
represents either an event or a metric, while a transition between two states represents
the triggering relationship (see Table 1). For example, if the event pattern is a service
operational event in an ECA rule (see expression 2 for an example), then there is a
transition from the event state to the metric state. In another case, the event pattern is
the value change of a metric (see expression 3 as an example), and the corresponding
transition is from one metric state to another metric state.

Table 1. Transforming the ECA rules to Statecharts

With the above transformation, each service operational event initiates a statechart.
Thus, the execution of the ECA rules is converted to the execution of statecharts. An
example of transformation is shown in Figure 3. In the example, three statecharts are
generated from twelve ECA rules. The advantage of executing statecharts is that the
overhead of a full rule set scan is eliminated when identifying the rules to be executed
at runtime, as the next rules that need to be executed can be located via the outgoing
transitions of the current state.

There are two approaches to executing statecharts, compilation and interpretation.
Both approaches have their own advantages and drawbacks. We discuss the

140 L. Zeng, H. Lei, and H. Chang

interpreting approach first. In order to execute the statecharts, the interpreter not only
interprets the state transition logic, but also interprets the expressions in the rules.
Given that the operators that appear in expressions can be relational, set, vector,
scalar, and etc., interpretation is less efficient than compilation [9]. With a
compilation approach, executable code is generated from a statechart. As custom code
is generated at buildtime for the execution of statecharts, this reduces CPU cycles at
runtime. However, the compilation approach entails another potential performance
issue. When using multi-threads to process events, thread scheduling relies on the
lock-based scheduling mechanism provided by either the operating system or
language runtime (e.g., JVM). Such lock-based scheduling usually results in high
system overhead [10], especially in multiple CPUs systems.

We take advantages of both approaches and propose a hybrid approach. In the
hybrid approach, state transition logic is interpreted, while the expression in a rule is
compiled into standalone executable code. The advantages of such a hybrid approach
are twofold. On the one hand, by interpreting the state transition logic, the
computation engine can plan the execution of rules in finer granularity, i.e., at the
transition level instead of the statechart level. For example, information about the
dataflow among the rules can be used to plan the wait-free execution of the
expressions (details can be found in next subsection). On the other hand, the
execution of an individual expression is done by executing pre-complied code, which
enjoys the efficiency of the compilation approach.

Adopting the hybrid approach, we further develop a queuing network to execute
the statecharts, in order to enable dynamic CPU allocation at runtime. At deployment
time, the ECA rules in different statecharts are distributed to a collection of mediators.

Fig. 3. Execution Model Transformation

 Monitoring the QoS for Web Services 141

Each mediator in the network possesses a work item queue, an interpreter and a thread
pool. The queue buffers available work items. The interpreter executes the complied
code of expressions in the rules. The thread pool enables multi-thread concurrent
processing on work items, wherein the number of thread can be configured
dynamically. The threads in different thread pools have the same level of priority. The
CPU resource allocation for a mediator is determined by the size of its thread pool.
By configuring the size of the thread pool dynamically, CPU resource can be
dynamically allocated.

The collection of mediators forms a queuing network, wherein the number of
mediators and the topology of the network are determined by the topologies of
statecharts. The strategies for constructing the queuing network are: (i) The order of
rule execution is preserved by the network topology. This is achieved by first sorting
the rules based on the execution sequence in each statechart and then distributing the
rules to an ordered collection of mediators based on the rules’ execution order. (ii)
The communication cost among mediators is minimized by eliminating data access
contention among the threads in different mediators. This can be done by distributing
rules that access the same data into the same mediator. An example of queuing
network is shown in Figure 3.

4.2 Execution Planning

One of the key techniques for improve event processing throughput is multi-threaded
concurrent processing. However, event throughput normally is not proportionate with
the number of concurrent threads deployed, because of the runtime overhead incurred
by the concurrency control mechanism. QoS monitoring requires that QoS metric
values be persistent and we use a relation database for this purpose. In order to reduce
the amount of I/O between the Metric Computation Engine and the datastore, a cache
is also instituted. Therefore, either the datastore or the cache needs to provide
concurrency control. Although modern RDBMs support row-level locking, such an
option substantially deteriorates database performance. On the other hand, if
concurrency control is implemented in the cache, a rollback segment needs to be
maintained for each transaction. Given the large volume of events and that each event
occurrence initiates a transaction, a large number of rollback segments need be
managed by the cache. These rollback segments occupy significant memory and
eventually impair performance. Therefore, an approach of supporting concurrent
threads without locking, such as a lock-free approach, is more appealing [16][17].
However, these lock-free approaches rely on either the hardware or programming
language support on for compare-and-swap [3]. Aiming at a solution that is
independent of hardware or programming languages, we plan the execution ahead of
time using information in the observation model The basic idea is that we plan the
rule execution in each mediator: if the execution of two rules update the same metric
or one rule produces operands for another rule, then these two rules need to be
executed sequentially; otherwise these two rules can be executed concurrently. It
should be noted that the execution order relationships between the rules are derived
before the runtime. Therefore, there is not much runtime overhead involved when
planning the executions.

142 L. Zeng, H. Lei, and H. Chang

5 Implementation and Experimentation

Our implementation leverages the Websphere Process Server (WPS) [24]. WPS is a
SOA solution platform that contains a BPEL engine and provides a service bus for
Web services. The proposed Metric Computation Engine uses a message driven bean
to receive service operational events routed from the semantic pub/sub engine. We
have also developed a dashboard to display the metric values from the QoS Data
Service. We have conducted a series of experiments to demonstrate the functionality
of Web service QoS monitoring. We first created a business process called "patient
visit" (see Figure 4) and deployed it on WPS. From the service request definitions in
the process, a skeleton observation model was generated by the Web Service
Observation Manager that consisted of one process monitor context, six service
interface monitor contexts and twelve service operational event definitions. Given the
skeleton model, we then created about forty metric definitions and ECA rules. We
deployed the complete model into the Metric Computation Engine, wherein the model
information was transformed and executable Java classes were generated. These
generated Java classes were distributed to five mediators. When the process "patient
visit" is executed, the related service operational events are detected and published to
the Semantic Pub/Sub engine. When these events are routing to the Metric
Computation Engine, the metric values are computed and saved. Eventually, the
computed metric values are displayed on the dashboard in realtime fashion.

To test the system throughput, we designed an event emitter that sends simulated
service operational events to the Metric Computation Engine with a given sending
rate (i.e., number of events per second). On an Intel CPU Linux server, the Metric
Computation Engine can process 660 events/sec. In order to test its salability, we
deployed the Metric Computation Engine on multiple CPU hardware platforms (2 and
4 CPUs). The experiment results (1210 events/sec and 2012 events/sec respectively)
demonstrate that our system is scaled to the number of CPUs.

Fig. 4. An Example of Business Process

6 Related Work

In this section, we review work in the areas of QoS management and event processing
systems. QoS management has been widely studiesd in the context of middleware
systems [18][19][20]. These efforts have addressed the following issues: QoS
specification to allow description of application behavior and QoS parameters, QoS
translation and compilation to translate specified application behavior into candidate
application configurations for different resource conditions, QoS setup to
appropriately select and instantiate a particular configuration, and QoS adaptation to

 Monitoring the QoS for Web Services 143

runtime resource fluctuations. Most efforts in QoS-aware middleware, however, are
focused on the network transport and system level. Little work has been done at the
application and business process levels.

QoS-Aware service composition [1][2][4][5][6][7][8][19][20] aims for selecting
component services to optimize the overall QoS of a business process. In [2][7], the
system assumes that the QoS information of components is pre-existing, and
therefore, the overall QoS of composite service can be computed based on formulas.
In [8], the formulas that compute the QoS of a workflow based on both the QoS of
component services and the workflow schemas are discussed. However, it only
focuses on the QoS at IT level. In [5], a QoS-aggregation system is presented. It
provides an editor for the QoS aggregation function that allows users to specify QoS
attributes and their aggregation formulas. It also provides an interpreter that evaluates
a workflow's global QoS. Again, it assumes that the QoS information of component
services is pre-existing. Further, it does not provide the details on how to compute the
aggregation formulas efficiently. Different from above works, this paper tries to
tackle the fundamental issue: monitor and compute the QoS of component/composite
services, both at IT and business level. Further, it discusses the design and
implementation of a high performance metric computation engine.

Complex event processing systems [12][13][14] focus on event filtering and
compound event detections However, in service QoS monitoring, event filtering logic
is relatively simple. Complicated computation happens after the events are filtered,
i.e., when the event data is used to compute/update a collection of metrics. rFurther,
most of the complex event processing systems do not support state persistence, even
though it is a critical requirement for a service QoS monitoring system to save metric
values.

7 Conclusion

In this paper, we advocate computing the QoS metrics of services by monitoring the
executions. An observation model is proposed, which allows users to define the
metric types and formulas. We design a monitoring-enabled SOA infrastructure to
enable the systematic detection and routing of service operational events. Further, we
implement a high performance metric computation engine that can support high event
throughput. Our further work includes supporting the metric network (i.e.,
probabilistic, system dynamics and extensible user-defined dependency) and a careful
study of the system.

References

1. Menasce, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6) (2002)
2. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven Web

Services Composition. In: WWW 2003 (2003)
3. Prakash, S., Lee, Y.H., Johnson, T.: A Nonblocking Algorithm for Shared Queues Using

Compare-and-Swap. IEEE Transactions on Computers 43(5) (1994)

144 L. Zeng, H. Lei, and H. Chang

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-aware
Service Composition based on Genetic Algorithms. In: GECCO 2005, ACM Press, New
York (2005)

5. Canfora, G., Di Penta, M., Esposito, R., Perfetto, F., Villani, M.L.: Service Composition
(re)Binding Driven by Application-Specific QoS. In: Dan, A., Lamersdorf, W. (eds.)
ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)

6. Nguyen, X.T., Kowalczyk, R., Han, J.: Using Dynamic asynchronous aggregate search for
quality guarantees of multiple Web services compositions. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)

7. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. IEEE Transactions on Software
Engineering 30(5) (2004)

8. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.J.: Modeling quality of service
for workflows and web service processes. Web Semantics Journal: Science, Services and
Agents on the World Wide Web Journal 1(3), 281–308 (2004)

9. Rao, J., Pirahesh, H., Mohan, C., Lohman, G.M.: Compiled query execution engine using
jvm. In: ICDE 2006 (2006)

10. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concurrency in
Practice. Addison-Wesley Professional, Reading (2006)

11. Zeng, L., Lei, H., Chang, H.: Model-analysis for Business Event Processing. IBM Systems
journal (2007) (to appear)

12. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In:
SIGMOD 2006 (2006)

13. Wang, F., Liu, P.: Temporal management of RFID data. In: VLDB 2005 (2005)
14. Complex Event Processing, http://en.wikipedia.org/wiki/Complex_event_processing
15. Luckham, D.: Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems, 1st edn. Addison-Wesley Professional, Reading (2002)
16. Ennals, R.: Efficient Software Transactional Memory, Intel Research Cambridge Technical

Report: IRC-TR-05-051 (2005)
17. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free Synchronization: Double-ended

Queues as an Example. In: ICDCS (2003)
18. Zeng, L., Lei, H.: A Semantic Publish/Subscribe System. In: IEEE CEC (East) (2004)
19. Gillmann, M., Weikum, G., Wonner, W.: Workflow Management with Service Quality

Guarantees. In: SIGMOD 2002 (2002)
20. Nahrstedt, K., Xu, D., Wichadakul, D., Li, B.: QoS-Aware Middleware for Ubiquitous and

Heterogeneous Environments. IEEE Comm. Magazine 39(11) (2001)
21. Zeng, L., Benatallah, B., Xie, G.T., Lei, H.: Semantic Service Mediation. In: Dan, A.,

Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)
22. Zeng, L., Lei, H., Jeng, J.-J., Chung, J.-Y., Benatallah, B.: Policy-Driven Exception-

Management for Composite Web Services. In: IEEE CEC 2005 (2005)
23. Zeng, L., Jeng, J.-J., Kumaran, S., Kalagnanam, J.: Reliable Execution Planning and

Exception Handling for Business Process. In: Benatallah, B., Shan, M.-C. (eds.) TES 2003.
LNCS, vol. 2819, Springer, Heidelberg (2003)

24. Websphere Process Server, http://www-306.ibm.com/software/integration/wps/

	Monitoring the QoS for Web Services
	Introduction
	QoS Observation Model
	Monitoring-Enabled SOA Infrastructure
	Observation Model Creation
	Detection and Routing of Service Operational Events

	High Performance Metric Computation Engine
	Model Transformation and Execution Framework
	Execution Planning

	Implementation and Experimentation
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

