Pattern Based SOA Deployment

William Arnold, Tamar Eilam, Michael Kalantar, Alexander V. Konstantinou,
and Alexander A. Totok

IBM T.J. Watson Research Center, Hawthorne, NY, USA

{barnold, eilamt, kalantar, avk, aatotok}@us.ibm.com

Abstract. A key function of a Service Oriented Architecture is the sep-
aration between business logic and the platform of its implementation
and deployment. Much of the focus in SOA research has been on service
design, implementation, composition, and placement. In this paper we
address the challenge of configuring the hosting infrastructure for SOA
service deployment. The functional and non-functional requirements of
services impose constraints on the configuration of their containers at dif-
ferent levels. Presently, such requirements are captured in informal doc-
uments, making service deployment a slow, expensive, and error-prone
process. In this paper, we introduce a novel approach to formally captur-
ing service deployment best-practices as model-based patterns. Deploy-
ment patterns capture the structure of a solution, without bindings to
specific resource instances. They can be defined at different levels of ab-
straction supporting reuse, and role-based iterative refinement and com-
position. We show how we extended an existing model driven deployment
platform to support pattern based deployment. We formally define pat-
tern semantics, validation, and refinement. We also present an algorithm
for automatically instantiating such patterns on multiple distributed ser-
vice environments. Our approach has been verified in a large prototype
that has been used to capture a variety of functional and non-functional
deployment constraints, and demonstrate their end-to-end maintenance
and realization.

1 Introduction

Much of the focus in SOA research has been on service design, implementation,
composition, and placement [I]. In order to fully realize the promise of SOA, sim-
ilar attention must also be paid to the deployment, configuration, and runtime
management phases of the service life cycle. While SOA allows designers and
programmers to access business logic independent of implementation platform,
from the operator’s view the situation is the extreme opposite. SOA services
are typically implemented using standard distributed application platforms such
as J2EE, CORBA, and .NET, and are hosted on large middleware stacks with
complex configuration interdependencies. Deployment of SOA services, and the
composite applications that implement them, often involves creation of opera-
tional resources such as databases, messaging queues, and topics. The runtime
container of the service must then be configured to access these resources. Es-
tablishing access may require installation and configuration of client software,

B. Kramer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 1 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 W. Arnold et al.

security credentials, as well as network-level configuration. Deployers must assure
that all service resources have been correctly instantiated and configured, satis-
fying all functional and non-functional requirements. Cross cutting interdepen-
dencies and constraints make this a very challenging and error-prone task [2]. In
addition to the communication and hosting configuration challenge, SOA poses
additional challenges in transforming non-functional requirements and goals to
deployment solutions including configuration for security, availability, and per-
formance.

One approach to reducing the complexity of designing the deployment of ser-
vices is to capture common deployment patterns. Such patterns describe proven
solutions that exhibit certain non-functional properties. For example, experts
in WebSphere Process Server (WPS) have identified 12 best practices patterns
for WPS deployment [3]. Each pattern offers a different set of capabilities (high
availability, scalability, security) and supports classes of applications with dif-
ferent characteristics. Today, these SOA deployment patterns are still captured
informally in lengthy unstructured documents. Information about what com-
binations of products and versions are known to work must be looked up in
manuals and documents libraries. Tradeoffs between cost, availability, security,
scalability, and performance are investigated in an ad hoc fashion. There are no
models, methodology and tools to define, reuse, assemble, customize, validate,
and instantiate SOA deployment patterns.

In this paper we present a novel approach to capturing SOA deployment pat-
terns through formal methods, models, and tools. We use and extend a model-
driven deployment platform that we have previously presented in the context of
middleware[4] and network[5] configuration design, validation and deployment.
We present how we extend the platform with the ability to express model-based
patterns representing abstract deployment topologies. These models are used by
experts to capture the essential outline and requirements of a deployment so-
lution without specific resource bindings. We formally define the semantics and
validation of the realization of such abstract patterns. Using our deployment
platform, we enable non-expert users to safely compose and iteratively refine
such patterns to design a fully specified topology with bindings to specific re-
sources. The resulting desired state topology can be validated as satisfying the
functional service requirements, while maintaining the non-functional properties
of the pattern. We also show how automatic resource binding can be introduced
to reduce the steps required to reach a valid and complete deployment topology.
The desired state of the complete deployment topology can then be provisioned
automatically by generating a one-time workflow as we presented in [6].

The paper is structured as follows. In Section 2 we describe our deploy
platform resource model, architecture and concepts. In Section [Bl we present
our novel pattern modeling constructs, their semantics and validation. We also
present an algorithm to automate the instantiation of patterns over an existing
infrastructure. Section @ covers related work. Finally, we conclude with a brief
discussion of our prototype implementation and on-going work.

Pattern Based SOA Deployment 3

2 Deployment Platform

Our model-driven SOA deployment platform supports the construction of desired
deployment state models that are complete, correct, and actionable. These mod-
els include detailed software stacks and configuration [4/5]. They are consumed
by provisioning automation technologies [7] to drive automated provisioning [6].
The deployment platform is built on a core configuration meta-model, and ex-
poses a number of services for model extension, validation, problem resolution,
resource discovery, query, and provisioning.

2.1 Core Configuration Meta-model

The core model captures common aspects of deployment configuration syntax,
structure and semantics. Core types are extended to capture domain-specific
information. Domain objects and links are instantiated in a Topology which is
used to design the desired state of the infrastructure after deployment. The Unit
core type represents a unit of deployment. A Topology contains Unit instances
that may represent resources that are already installed, or ones that are to be in-
stalled. The install state of a unit is a tuple (init, desired) representing the install
state of the unit when it was provided to the topology, and its state after pub-
lishing. The values of init and desired can be one of {uninstalled,installed}.
Installable Units, may be associated with one or more Artifacts. A Unit may
also represent a configuration node, such as J2EE data source, in a hierarchi-
cal structure (current or desired). A Unit can contain any number of Capability
instances. Subtypes of Capability group domain-specific configuration attributes
by function. The relationships of a Unit with other Units are expressed through
containment of Requirement objects. The core model defines three types of rela-
tionships: hosting, dependency, and membership. Each Requirement is associated
with one of these types. Relationships are represented using a Link association
class. All these types extend a common DeployObject super-type. All DeployOb-
ject can be associated with any number of Constraint instances. The semantics
and validation of a Constraint are defined by the subtypes extending it. The con-
text of Constraint evaluation is the object on which it is defined. In the case of a
Constraint contained in a Requirement, the constraint context is the target of the
requirement link. This allows users to define constraints that must be satisfied
by the resource at the other end of a relationship. Figure [Il outlines a deploy-
ment Topology instance model example. The topology captures the deployment
of a new J2EE Enterprise Application (EAR) on an existing IBM WebSphere
Application Server (WAS), using a pre-configured J2EE data-source. We have
similarly defined extension schemas and instance models for a variety of other
product domains and vendors.

2.2 Deploy Platform Architecture

The overall architecture of our model-based SOA deployment platform is de-
picted in Figure 2l At its base lies the core configuration model, on top of which

4 W. Arnold et al.

Dependency Link <<Capability>>

WasVéDataSource
\indiName="jdbc.plants},
WebService <<Artifact>> <<Unit>
<<Unit> file=plants.ear Db2DataSourceUnit
EarUnit configurationUnit = true
state = {uninstalled, installed} state={installed, installed}
<<Requirement>> <<Requirement>> <<Requirement>>
J2eeDatasource J2eeContainer WasServer
type=dependency type=hosting type=hosting
(jndiName="jdbc:plants” }[version >= 1.4 } Hosting Link
collocate=J2eeContainer
<<Capability>> <<Capability>>
J2eeContainer WasServer
version=1.4 . version=6.0
<<Unit>>
Was6Unit

state={installed, installed}

<<Requirement>>
WindowsOS

type=hosting

version >= 5.1

Fig. 1. Topology instance example modeling the deployment of a J2EE Application

a number of extensible services are supported. The platform defines the deploy-
ment service interfaces and provides the managers for registering extensions.
The Domain Service is used to extend the core model types in domain-specific
schemas. The Validation Service is used by domain authors to inject semantic
validation logic. An example validation rule may express that the database name
attribute of a J2EE datasource must match the actual name of the database on
which it depends. The validation service invokes the validation rules when types
from the domains with which they are associated are instantiated or changed.
Validation rules generate semantically rich status errors markers. These error
markers identify the areas in the model that violate a registered validation rule.
The Resolution Service is used to declare logic for fixing the errors underly-
ing the markers generated by validators. For example, in the earlier datasource
database name validation example, a resolution may be declared to propagate
the name of the database to all of the datasources that have a dependency rela-
tionship to it. For a given error status, the resolution service can be queried to
provide the list of possible resolution actions. These resolutions can be invoked,
either manually or programmatically, to modify the model. The core platform is
packaged together with a core set of Constraints, Requirements, and an accom-
panying set of core validation and resolution rules. The Provider Service is used
to discover and query configuration repositories (e.g. CMDBs), so that units that
represent existing resources can be discovered and incorporated in deployment
topologies. The Publisher Service is used to register provisioning agents whose
role is to configure the infrastructure to match the desired state expressed in
the topology. Finally, the platform supports a Core Editor which is a standard
graphical interface for creating and editing topologies. The editor interfaces with
the existing platform services for resource discovery, topology validation, error
resolution, and publishing.

Pattern Based SOA Deployment 5

? ? ? ? ? ?
Domain Validation | |Resolution| | Provider | | Publisher | | &
Service Service Service Service Service 2

(0]
’ Core Model ‘ S

Fig. 2. Deployment Platform Extension Architecture

2.3 Valid Deployment Models

Users construct deployment models by adding or modifying units, and by execut-
ing resolution rules. The goal is to reach complete and valid deployment topolo-
gies that do not contain any error markers. A topology is validated against a set
of core validation rules, a set of domain-specific type-level rules, and the con-
straints associated at the object instance level. The core validation rules check
the cardinality of the topology links, as well as the type and configuration of
their endpoints. Domain-specific validation rules can be expressed at the type
level, to apply to all instances, or at the instance level as constraints. Formally,
we say that a topology T is valid w.r.t. a given set of validation rules V iff (1)
all core link validation rules are satisfied, (2) all type-level validation rules v € V'
evaluate to true on any object u € T, and (3) all constraints on topology objects
evaluate to true in the context of their evaluation. Recall that for a constraint
defined in a capability the evaluation context is the capability’s attribute set,
while for a constraint defined in a requirement the context is the target of the
relationship (and its contained capabilities). The logic for evaluating constraints
is itself extensible.

3 Pattern Platform

A common requirement across different SOA deployments is the ability to de-
scribe a deployment topology at various levels of abstraction. At a base level
of abstraction, the topology may represent a fully defined deployment struc-
ture that is only missing the relationships to the specific resources on to which
it will be deployed. At higher levels of abstraction, the topology may partially
specify the configuration of resources, focusing on key parameters and structures,
while leaving others to be determined at deployment time. The deployment plat-
form described in the previous section is well suited for modeling the concrete
desired state of services, components, and their relationships that are directly
mappable to native configuration models. In this section, we describe how we
extend the deployment platform to support abstract models, termed patterns.
As depicted in Figure [3 pattern models are defined by experts using a rich de-
sign tool and instantiated by deployers, potentially using a simple installation
wizard for resource and parameter selection. First, we describe the modeling
extensions, including structural constraints, virtual units, and realization links.
Then we describe how we use views to execute the original set of validation rules

6 W. Arnold et al.

Model-based Deployment
| Pattern Editor Wizard [
Expert Deploy Platform CMDB Deploy Platform | Deployer

[Provisioning Engine |

Fig. 3. Pattern use-case

on the extended class of models. Last we describe an approach for automatically
realizing pattern topologies on multiple distributed environments.

3.1 Pattern Modeling Extensions

Structural Constraints. When defining patterns, it is often necessary to ex-
press structural constraints. For example, a fail over high-availability service
pattern may include a structural constraint to anti-collocate the primary and
standby services at the operating system level. To support structural constraints,
we introduce a new constraint link type, and we extended it for two common
types of structural constraints: collocation and deferred host.

A collocation constraint restricts the valid hosting of two units. It is associated
with a type property which determines the type of the host on which the two
units’ hosting stacks must converge (anti-collocation can be defined similarly).
Deferred hosting is a constraint that the source unit be eventually hosted on
the target. For example, a deployer may wish to constrain the deployment of
a service on a particular system without having to model the entire software
stack. A valid topology, realizing a pattern with a deferred host constraint, must
include a direct or indirect hosting link path from the source to the identified
target.

Virtual Units and Realization Links. Many patterns can be expressed in the
form of a model with partially specified units of abstract or non-abstract types.
Our approach to presenting such patterns is through the concept of a virtual unit.
A virtual unit is one which does not directly represent an existing or installable
service, but instead must be realized by another unit. The Virtual property of a
unit is a Boolean attribute on the base Unit type. Typically, virtual units will
include capabilities with unspecified values and associated constraints. Every
unit type can be instantiated as a virtual unit. A new realized By relationship can
be defined between any two objects, where the source is virtual. The semantics
of the relationship is that the source acts as a constraint over its target. Often,
a realizedBy link will be defined from a virtual unit to a concrete (non-virtual)
unit, although it may also target a more specific virtual unit. For simplicity,
in this paper we restrict ourselves to the case where virtual units are realized
only by concrete units. In cases where Unit-level realization is ambiguous in
terms of the mapping of contained objects such as capabilities and requirements,
additional realization links may be required between these objects. In the rest of

Pattern Based SOA Deployment 7

< “<<Capability>>" 7 <<Capability>> Z<Capability>>
slzesCantainer, J2eeContainer WasServer
version>=1.4; - version=1.4 version=6.0

<<Unit>> <<Virtual>> <<Unit>>

| d<realizedBy}p

W

Unit [R WebSphere6Unit
state={*, installed} state={installed, installed} W.0S
fffffffffffffffffffffffffffffffff v.=5.1
;‘ <<Requirement>> | <<Requirement>> m.=4GB
! OperatingSystem | WindowsOS -
____type=hosting ype=hosting ~<unit
i nemony >- 208 r2 [vemono=s. | <<hosi] Woslni

Fig. 4. Example of a virtual unit realized by a concrete unit

the paper, in order to simplify the formal definition, we assume all capabilities
and requirements of realized units are also explicitly realized.

Figure[Mlis a valid realization example which shows a virtual unit in a topology
T that is realized by a unit in a topology 15 representing an installed WebSphere
Application Server. Note that all constraints are satisfied by the realizing unit,
and the type hierarchy is respected. The rules for locally validating a realization
relationship between two units are formally defined in two stages as follows.

For any two model objects o1, 02, matchR (o1, 02) iff (1) supertype(type(or),
type(02)), (2) For every attribute a € attributes(type(or)), isSet(o1,a) — value
(01,a) = value(oz,a), and (3) For every constraint ¢ € constraints(oy), c(o2).

For any two unit objects w1, ug, validR(u1, u2) iff (1) virtual(u,), (2) matchR
(u1,us2), (3) For every capability ¢; € cap(uy), there exists a unique capability
co € cap(uz) s.t. realizedBy(c1,c2) A matchR(c1,c2), and (4) For every re-
quirement 1 € req(up), there exists a unique requirement ro € reg(usz) s.t.
realizedBy(r1,72) A matchR(r1, (12)).

3.2 Pattern Validation

By design, patterns are incomplete topologies. To meaningfully validate patterns,
we have to distinguish between two sources of errors: model violations and model
incompleteness. To formalize this concept we define three different validation
states on attributes, relationships, or constraints, associated with virtual units in
the model: unde fined, satis fied, and violated. An element O is in an unde fined
state in a model M if objects can be added to M, and undefined attributes set,
such that O transitions to a satisfied state.

The deferred host structural constraint between a source A and a target B
is unde fined as long as the hosting stack for A is incomplete and there is no
hosting link path from A to B’ where type(B’) = type(B) A B # B’. The
collocation relationship, with target type ¢, between units A and B is unde fined
as long as there are no hosting link paths from A to C' and from B to C’
where type(C) = type(C’) = t. A topology T is weakly valid iff all constraints,
requirements and links associated with virtual units are in either satisfied or
unde fined states. For example, consider a pattern containing a virtual unit u
with an associated hosting requirement r. If » is not linked, then the model will
still be weakly valid, however if its linked to two different units it will be invalid.

8 W. Arnold et al.

,,._ \- L1 <<virtual unit>>
, . i] <<unit>>
O <<constraint>>
v <<host>>
--* <<realizedBy>>
. > <<depend>>

@2 4@ | | ram

Fig. 5. Topology folding example

Topology Folding. Given a topology (or a set of topologies) with virtual units
and realization links, it is not enough to locally check the validity of individual
realization links using the rules defined in the previous section. For example, in
Figure[the realization would be locally valid even if the WebSphere Application
Server is hosted on an operating system with less than 2GB of memory. As
another example, consider a virtual unit u hosted on a non virtual unit v. A
valid local realization of w can map it to a non virtual unit »’ hosted on a non
virtual unit v" where v’ # v. In this section we complete the semantic definition
of patterns by defining the full set of validation and realization rules.

For this purpose, it is helpful to define the folded topology foldR(T') of a given
topology T', where, intuitively, we collapse all realized virtual units, relationships
and constraints. An example of a folded topology is illustrated in Figure[H The
folded topology foldR(T) satisfies the following rules: (1) For every o € T,
o € foldR(T) iff o is not the source of any realizedBy relationship, (2) For
every o € T, constraints(o) is the union of constraints defined on all o’ € T' such
that realizedBy(o',0), (3) For every 01,09 € foldR(T) : 3r of type t from oy to
o2 iff there exists a relationship r' € T s.t. type(r’) = t, and for o} = source(r’)
: ((01 = o)) V realizedBy(0),01)) (resp. target(r’) and o03), and (4) For every
r € foldR(T), constraints(r) includes the union of constraints defined on the
set of relationships ' € T as defined in item (3).

A strict folded topology foldR°(T) of a topology T, is foldR(T) where all
virtual units and their associated relationships are removed. Note that the class
of strict folded topologies is identical to the class of concrete topologies defined in
Section 2l Thus, for a given pattern T' all of the core deploy platform validation
rules can run on foldR®*(T) without requiring any changes.

Topology Realization Semantics. Given our definition of a locally valid
realization, and the folded view of a topology, we can now define the validity of
a topology containing multiple realization links. Given a topology T', T forms
a wvalid topology realization iff the following properties are satisfied: (1) Every
virtual unit is realized by at most one unit, (2) Each realization link in 7T is
locally valid, and (3) FoldR(T) is weakly valid (defined earlier in this section).
Note that Item (3) guarantees that links between virtual units “agree” with
links between their realizing concrete units (if they don’t we will get a link
multiplicity constraint violation in the folded topology). A topology realization
is complete when it is valid and all its virtual units are realized. Note that if T’
forms a complete topology realization then foldR(T) = foldR®(T). Now that

Pattern Based SOA Deployment 9

we extended the set of topologies defined in Section B] to include patterns, the
definition of a valid topology must be generalized, as follows. A topology T is
valid* iff (1) T forms a valid and complete realization, and (2) foldR(T) is valid
(according to the definition in Section P2l). Note that for the provisioning phase
of a valid* topology T, only foldR(T') is needed.

3.3 Automatic Pattern Realization

In the beginning of this section, we introduced the idea of automatically instan-
tiating patterns in multiple environments. To do that, we have to have a way to
automatically generate a valid* topology T”, given an input pattern T} and a tar-
get topology T» representing the target environment. To simplify the discussion,
lets assume that the inputs 77 and T, are merged into one topology T'. Now, T'
must be automatically modified by adding realization links between virtual units
originating in 77 and concrete units originating in 75. When the modified topology
T’ forms a valid and complete realization, it may still be necessary to automati-
cally execute some resolution rules to reach a valid* state. For example, values of
attributes, originating in objects in T» may need to be propagated to units origi-
nating in 77. An approach for automatic resolution execution was proposed in [4].
Hereafter, we limit the discussion to the automatic realization function.

Following is the formal definition of the automatic realization problem. Given
a source topology 71 and a target topology Tb, let R be a set of realization links
from T} to Ts, and let 7" = T} U T5 U R be the merged topology. The tuple
(Th,Ts, R) is a mazimum valid realization iff (1) T' forms a valid realization,
and (2) |R| is maximum. The goal of the automatic realization problem is to
find a maximum realization for given source and target topologies.

Note that a maximum valid realization may be incomplete: unrealized virtual
units may exist. An incomplete topology may still be automatically completed to
a valid* topology in some cases. We defer the discussion of automatic completion
to future publications.

Our approach to address the automatic realization problem is based on the
observation that the problem is reducible (with some variations) to the error
correcting subgraph isomorphism problem [8], where realization links play the
role of the isomorphism mapping. Given T}, T5, R, and T”, as defined above, let
r be the mapping function. Then we define the following changes to the original
definition of the error correcting subgraph isomorphism problem. For every two
units a € Ty and b € Ty, r(a) = b is permissible only if the following conditions
are satisfied. (1) validR(a,b), (2) every constraint ¢ € constraints(a) is not in
a violated state in foldR(T"), and (3) for every link [€ T} with source(l) = a,
the corresponding link I in foldR(T") is not in a violated state.

Consider the example in Figure [6, where colored nodes represent concrete
units. The mapping 7 in all of the of the topologies in the figure is a valid error
correcting subgraph isomorphism mapping. However, only topologies (a) and
(¢) show valid mapping according to our modified definition of the problem,
and according to the definition of a valid realization in the previous section.
Topologies (b) and (d) violate Item (3) in the the definition above.

10 W. Arnold et al.

fo Sod & &
O ©~0 @ ©® ® ©
(a) (b) () (d)

Fig. 6. Valid and invalid mappings according to our modified definition of error cor-
recting subgraph isomorphism

Clearly, existing algorithms for error correcting subgraph isomorphism can
be modified to handle the modified version defined above. The formal definition
of such an algorithm is beyond the scope of the paper. We implemented and
studied the performance of a simpler variant of the problem, where all virtual
units must be matched. Preliminary performance results are on the practical
side, although maximum subgraph isomorphism is NP-Complete. We speculate
that this is because our graphs are heavily labeled, and sparse.

4 Related Work

Service deployment often refers to service selection [9] and service composition
to satisfy functional and QoS requirements, for example, [TO/TI]. In contrast
to this, our work focuses on the deployment, configuration and management of
complex services including their supporting middleware. Work that addresses
this depth of deployment and configuration often assumes a simplified model
such as common middleware already deployed [10] or knowledge of the specific
target environment so that provisioning steps are known in advance [12]. In
[13] models are used to realize a conceptual service interface with one or more
interfaces of its concrete implementation. The focus is on interface realization,
not middleware configuration and deployment. Models are also used to capture
non-functional aspects in [I4] at the service design level. Such constraints can
be used as input to our deployment refinement process.

The use of object-relationship models for the design and configuration of
systems[T5] and networks[I6] has been widely adopted in industry[T7/I8] and
their use is being standardized for service deployment models as SML[I§]. [19]
used a spreadsheet-style system to propagate configuration attributes over an
object-relationship structure. Design tools for application deployment[5/20] have
adopted Model Driven Architecture (MDA)[2I] approaches.

Patterns have been used for the deployment of network services[22]. In this
case, a pattern represented a detailed description of the conditions needed for
the deployment of a service. While our patterns can be used as a key to find
necessary conditions, they can also be used to create the necessary conditions.
Patterns were used as a mechanism for service deployment in [I2]. In this latter
case, patterns are pre-defined and associated with concrete provisioning steps
or workflows. Pattern selection is identified by mapping from a service level
agreement. In our work, we divorce the pattern from the provisioning actions.

Pattern Based SOA Deployment 11

Instead, the pattern can be used to drive resource selection and to complete
configuration planning, creating a detailed configuration plan. Such a plan can
then be consumed by other tools such as [23/6] for provisioning.

5 Future Work

The model extensions for patterns that we have presented in this paper have
been implemented in our model-driven deployment platform prototype. We are
currently using this prototype to capture deployment patterns for complex do-
mains such as WPS [3], as well as complex high-availability patterns for data-
bases, messaging, and application servers. We have also implemented same basic
structural constraints, such as collocation and deferred hosting, as well as more
complex ones, such as communication. A rich visual interface supports simple
model-based pattern creation and refinement. An initial implementation of the
automatic realization algorithm allows users to automatically realize complex
patterns over existing infrastructure resources. We plan on extending our im-
plementation to also support installation of resources that may be missing. In
future research we plan on investigating automated pattern composition, reverse
pattern discovery, and pattern maintenance.

Acknowledgements

The authors would like to thank Daniel Berg, Andrew Trossman, Michael Elder,
Edward Snible, and John Pershing for helping to shape our vision, contributing
ideas, and assisting in implementation.

References

1. Curbera, F., Ferguson, D., Nally, M., Stockton, M.L.: Towards a programming
model for service oriented computing. In: Benatallah, B., Casati, F., Traverso, P.
(eds.) ICSOC 2005. LNCS, vol. 3826, pp. 33-47. Springer, Heidelberg (2005)

2. Brown, A.B., Keller, A., Hellerstein, J.: A model of configuration complexity and its
applications to a change management system. In: Integrated Management (2005)

3. Redlin, C., Carlson-Neumann, K.: Websphere process server and websphere enter-
prise service bus deployment patterns. Technical report, IBM (2006)

4. Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G.: Reducing the complexity
of application deployment in large data centers. In: Integrated Management (2005)

5. Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G., Pershing, J., Agrawal, A.:
Managing the configuration complexity of distributed applications in internet data
centers. IEEE Communication Magazine 44(3), 166-177 (2006)

6. El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M., Konstantinou, A.:
Model driven provisioning: Bridging the gap between declarative object models and
procedural provisioning tools. In: van Steen, M., Henning, M. (eds.) Middleware
2006. LNCS, vol. 4290, pp. 404-423. Springer, Heidelberg (2006)

7. IBM: Tivoli Provisioning Manager (TPM) (2006)

12

10.

11.

12.

13.

14.

15.
16.

17.
18.
19.

20.
21.
22.

23.

W. Arnold et al.

. Tsai, W., Fu, K.: Error-correcting isomorphisms of attributed relational graphs for

pattern recognition. IEEE Trans. on Sys., Man, and Cybernetics 9, 757-768 (1979)

. Su, X., Rao, J.: A survey of automated web service composition methods. In:

SWSWPC (2004)

Kichkaylo, T., Karamcheti, V.: Optimal resource-aware deployment planning for
component-based distributed applications. In: HPDC, Washington, DC, USA, pp.
150-159. IEEE Computer Society Press, Los Alamitos (2004)

Canfora, G., Penta, M.D., Esposito, R., Perfetto, F., Villani, M.L.: Service compo-
sition (re)binding driven by application-specific QoS. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, pp. 141-152. Springer, Heidelberg (2006)
Ludwig, H., Gimpel, H., Dan, A., Kearney, B.: Template based automated service
provisioning supporting the agreement driven service life-cycle. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 283-295. Springer,
Heidelberg (2005)

Emig, C., Krutz, K., Link, S., Momm, C., Abeck, S.: Model-driven development of
SOA services. Technical report, Forschungsbericht (2007)

Wada, H., Suzuki, J., Oba, K.: Modeling non-functional aspects in service oriented
architecture. In: IEEE Int. Conf. on Service Computing, IEEE Computer Society
Press, Los Alamitos (2006)

Sloman, M.: Management for open distributed processing. DCS 1(9), 25-39 (1990)
Sengupta, S., Dupuy, A., Schwartz, J., Yemini, Y.: An Object-Oriented Model
for Network Management. In: OO Databases with Applic. to CASE, Networks and
VLSI CAD. Series in Data and Knowledge base systems, Prentice-Hall, Englewood
Cliffs (1991)

DMTEF: Common Information Model (CIM). Technical report, DMTF (2006)
W3C: Service Modeling Language, version 1.0. Technical report (2007)

Yemini, Y., Konstantinou, A., Florissi, D.:. NESTOR: An architecture for self-
management and organization. In: JSAC, vol. 18(5) (2000)

Microsoft: DSI: Applications of model-based management (Technical report)
Soley, R.: Model driven architecture. Technical report, OMG (2000)

Bossardt, M., Miithlemann, A., Zircher, R., Plattner, B.: Pattern based service
deployment for active networks. In: ANTA (2003)

Keller, A., Hellerstein, J., Wolf, J., Wu, K.L., Krishnan, V.: The CHAMPS system:
change management with planning, and scheduling. In: NOMS, IEEE Press, Los
Alamitos (2004)

	Pattern Based SOA Deployment
	Introduction
	Deployment Platform
	Core Configuration Meta-model
	Deploy Platform Architecture
	Valid Deployment Models

	Pattern Platform
	Pattern Modeling Extensions
	Pattern Validation
	Automatic Pattern Realization

	Related Work
	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

