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Abstract. The problem of learning metrics between structured data
(strings, trees or graphs) has been the subject of various recent papers.
With regard to the specific case of trees, some approaches focused on
the learning of edit probabilities required to compute a so-called stochas-
tic tree edit distance. However, to reduce the algorithmic and learning
constraints, the deletion and insertion operations are achieved on entire
subtrees rather than on single nodes. We aim in this article at filling
the gap with the learning of a more general stochastic tree edit distance
where node deletions and insertions are allowed. Our approach is based
on an adaptation of the EM optimization algorithm to learn parameters
of a tree model. We propose an original experimental approach aiming at
representing images by a tree-structured representation and then at us-
ing our learned metric in an image recognition task. Comparisons with a
non learned tree edit distance confirm the effectiveness of our approach.

1 Introduction

In many machine learning or pattern recognition tasks, the choice of metrics
plays an essential role for computing similarity between objects. Some classifica-
tion, clustering or learning techniques are even intrinsically based on a metric,
that is the case for the nearest-neighbors-based algorithms or some kernel-based
methods. So, the choice or the parametrization of a similarity measure can dras-
tically influence the result of an algorithm. One way to improve the influence of
a metric is to integrate domain knowledge about the objects. While calling on
an expert seems to be reasonable for small amount of data in domains where the
background knowledge does exist, it becomes clearly intractable with huge data
sets, where the expertise is low. In this context, a solution is to automatically
infer the metric while capturing domain knowledge from a learning sample.

The general problem of learning metrics received an increasing interest since
the beginning of 2000. With regards to numerical data, Bilenko et al [1] proposed
an EM-based algorithm that integrates constraints and metric learning in the
domain of semi-supervised clustering. Schultz et al [2] use some SVM techniques
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to learn a measure given a set of relative comparisons of the form “x is closer
to y than to z”. Kummamuru et al in [3] improved these techniques providing
the concept of Context-sensitive Learnable Asymmetric Dissimilarity (CLAD)
measures. Bayoudh et al [4] proposed an approach for learning a measure by
analogy in the form “x is to y as z is to t”. Concerning structured data, recent
works have tried to tackle this learning problem with data represented by strings
or trees. In the majority of the cases, they dealt with the edit distance (ED) [5]
that handles three primitive edit operations (deletion, insertion, substitution)
for changing an input instance into an output one. The resulting learned met-
rics lead to significant improvements on real world applications. For instance,
Oncina et al. [6] introduced a string ED learning algorithm via the inference of a
discriminative stochastic transducer. They showed a dramatic improvement on a
handwritten digit recognition task, using Freeman codes for converting scanned
digits to strings. In [7], Ristad and Yianilos provided a generative model of string
ED, and illustrated its high utility on the difficult problem of learning the pro-
nunciation of words in conversational speech. Recently, the Pascal network of
excellence funded a pump priming project on the learning of a stochastic tree
ED for musical recognition. A first learning algorithm, where deletions and in-
sertions only concern entire subtrees, has been proposed in [8]. Although this
type of tree ED is costless from an algorithmic standpoint (quadratic complexity
[9] rather than a polynomial complexity of order 4 for a more general case [10]),
it is not the most used in the literature because of a clear loss of generality. In
this paper, we propose to overcome this restriction by allowing insertions and
deletions of single nodes. However, this requires to define a new probabilistic
learning framework. This is the main aim of this paper. Then, we propose to
apply our learned metric on an image recognition task, whose novelty comes
from the use of a structured representation of images. If much work has been
done on images having high levels of definition, the question of recognizing small
images for which the definition is too low to allow the application of numerical
techniques (such as segmentation into regions) is still an open problem. More-
over, numerical vectors are, in general, not suited for expressing notions such as
sequentiality or relationships between features. In this context, we think that a
symbolic structural representation can provide a richer modeling of the object.
Among the first approaches using a symbolic representation for image recog-
nition, Jolion et al. [11] have proposed a method for encoding some relevant
information of images in strings. The idea consists in extracting some character-
istic points with a high level of contrast and to sort them in the form of a string.
Despite of its interest, this representation does not include spatial knowledge,
that implies a strong loss of information. In order to add this spatial informa-
tion, one needs a two dimensional representation. In this paper, we propose an
original representation of images in the form of trees, and we use our learned
tree ED in an image recognition task.

The paper is organized as follows. We introduce in Section 2 some definitions
and notations. Then, we recall the classic tree ED in Section 3. Section 4 deals
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Fig. 1. (a) Substitution of s1 ∈ L into s2 (b) Deletion of s1 (c) Insertion of s1

with our stochastic model for learning tree edit probabilities. We finally present
our application in image recognition in Section 5.

2 Definitions and Notations

We assume we handle ordered labeled trees of arbitrary arity. There is a left-to-
right order among siblings of a tree and trees are labeled with elements of a set
L of labels. We denote T (L) the set of all labeled trees buildable from L.

Definition 1. Let V be a set of nodes. We inductively define trees as follows:
a node is a tree, and given T trees a1, .., aT and a node r ∈ V, r(a1, .., aT ) is a
tree. r is the root of r(a1, .., aT ), and a1, .., aT are subtrees.

Definition 2. Let L be a set of labels, and let λ �∈ L be the empty label. Let
l : V → L be a labeling function. r(a1, .., aT ) is a labeled tree if its nodes are
labeled according to l.

We assume that trees can be concerned by three edit operations (see Fig.1): The
substitution operation which consists in changing the label l(r) of a node r by
another label of L; the deletion operation which removes a node r of parent r′,
the children of r becoming a subsequence of those of r′ according to a left-to-
right order; the insertion operation adds a node r as a child of r′ making r the
parent of a subsequence of children of r′ according to a left-to-right order.

Definition 3. Assuming that a cost function assigns a cost to each edit opera-
tion, an edit script between two trees r(a1, .., aT ) and r′(b1, .., bV ) is a set of edit
operations changing r(a1, .., aT ) into r′(b1, .., bV ). The cost of an edit script is
the sum of the costs of its edit operations.

Definition 4. The edit distance (ED) between two trees r(a1, .., aT ) and
r′(b1, .., bV ) is the cost of the minimum cost edit script.

We are interested in the learning of a probabilistic tree ED. Roughly speaking,
we aim at learning the probability of each edit operation used during a trans-
formation process of an input tree into an output one. These probabilities are
the parameters of a generative model describing a joint distribution over (in-
put,output) pairs of trees. In [8], we proposed a first solution to this problem,
in a restrictive case of tree edit distance, when a deletion (resp. an insertion)
implies the removal (resp. the add) of an entire subtree. The objective of this
paper is to fill the gap with a more general approach of the tree ED allowing
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the insertion/deletion of nodes. This case is more general because the deletion
(or insertion) of an entire subtree can also be achieved by iteratively using the
deletion (or insertion) operation on a single node. However, it implies to set a
new probabilistic framework, intrinsically more difficult due to a larger size of
the search space. To do that, we recall the principle of the algorithms computing
such a tree ED. The interested reader can find more details in [10,12,13].

3 Tree ED Algorithm

To allow a larger spectrum of applications, the majority of the tree ED algorithms
usually handled forests, a tree being a particular case of a forest.

Definition 5. A forest F = {a1, .., aT } is a set of trees. F is an ordered forest if
there is a left-to-right order among the trees a1, .., aT and if each tree is ordered.

Definition 6. Let F be a forest, and ρ(a) be the root node of a tree a ∈ F .
F − ρ(a) is the forest obtained from F by the deletion of ρ(a). Children of ρ(a)
becomes a sequence of trees of the forest F −ρ(a). f(ρ(a)) is the forest composed
of the children of ρ(a). F − a is the forest obtained by removing the tree a of F .

Let F1 and F2 be two forests and a and b the rightmost trees of F1 and F2
respectively. Let δ be a cost function on pairs of labels, representing the edit
operations. The ED d(F1, F2) for the general case of forests is given by:

d(λ,λ) = 0
d(F1, λ) = d(F1 − ρ(a), λ) + δ(l(ρ(a)), λ)
d(λ,F2) = d(λ,F2 − ρ(b)) + δ(λ, l(ρ(b)))

d(F1, F2) = min

⎧
⎪⎪⎨

⎪⎪⎩

d(F1 − ρ(a), F2) + δ(l(ρ(a)), λ) \ ∗ deletion
d(F1, F2 − ρ(b)) + δ(λ, l(ρ(b))) \ ∗ insertion
d(F1 − a, F2 − b) + d(f(ρ(a)), f(ρ(b)))
+δ(l(ρ(a)), l(ρ(b))) \ ∗ substitution

where l(ρ(x)) is the label of the root of tree x.
This pseudo-code suggests a dynamic programming approach to compute the

tree ED. In fact, we can note that d(F1, F2) depends on a constant number
of relevant subproblems of smaller size. Zhang and Shasha [10] defined these
subproblems from the notion of keyroots of a given tree a:

keyroots(a) = {ρ(a)} ∪ {r ∈ V(a)|r has a left sibling}.

From this set of keyroots (see Fig 2.a), one can deduce the set of special sub-
forests of a (see Fig 2.b), defined by the forests f(u), where u ∈ keyroots(a).
Zhang and Shasha also defined the set of relevant subproblems that allows us to
design a dynamic programming algorithm to compute the tree ED. These rele-
vant subproblems are all the forests corresponding to the prefixes of the special
subforests (see Fig 2.(b+c)). Then, to compute the tree ED d(F1, F2), one can
show that is it sufficient to compute d(S1, S2) for all relevant subproblems S1
and S2 (for more details see [10]). So far, we assumed that we had a function δ



58 L. Boyer, A. Habrard and M. Sebban

2 3

6

1 54

(a)

1 . 1 . 2 . 1 . 3 .2 . .3 4

2 3

5 . 2 . 3 .2 .1

2 3

4 . 5 .1

2 3

4 .

(b) (c)

Fig. 2. (a) Example of keyroots represented by nodes with a circle, (a)+(b) the special
subforests, and (a)+(b)+(c) the relevant subproblems

which returns the cost induced by an edit operation. In real world applications,
these costs are often tuned by hand. We claim that machine learning techniques
can efficiently be used to improve this task which can become tricky when the
size of the alphabet is large. In the next section, we show how to automatically
learn edit probabilities (rather than edit costs) from a learning set of tree pairs.

4 Learning Tree Edit Probabilities

4.1 Stochastic Tree ED

A stochastic tree ED supposes that edit operations occur according to a random
process. We aim at learning the underlying distribution δ(s, s′), (s, s′) ∈ ({L ∪
{λ})2, in order to infer a generative model of all possible edit scripts. We will use
a special symbol # to denote the end of an edit script. For sake of convenience,
we will also denote the termination cost of a script δ(#) by δ(λ, λ). To be a
statistical distribution, the function δ must fulfill the following conditions:

∑

(s,s′)∈(L∪{λ})2
δ(s, s′) = 1 and δ(s, s′) ≥ 0 (1)

Let e = e1 · · · en be an edit script with n edit operations (ei = (s, s′) �= (λ, λ)),
the probability of e is evaluated by: p(e) =

∏n
i=1 δ(ei) × δ(#). To model the

distance between two trees, we propose to compute the probability of all ways
to change a tree a into another one b (as described in [7] for the case of strings).

Definition 7. Let two trees a and b, we denote by E(a, b) the set of all possible
edit scripts for transforming a in b. The stochastic tree ED between a and b is
defined by: ds(a, b) = − log

∑
e∈E(a,b) p(e).

To learn the matrix δ, we propose to adapt the Expectation-Maximization (EM)
algorithm [14] to this specific context of tree ED. Let us remind that EM esti-
mates the hidden parameters of a probabilistic model by maximizing the like-
lihood of a learning sample. In our case, the parameters will correspond to the
matrix δ of edit probabilities, and the learning sample will be composed of (in-
put,output) tree pairs. In a pattern recognition task, these pairs can be either
randomly generated from instances of the same class, or built by hand by an
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Algorithm 1. α({a1, .., aT }, {b1, .., bV })
Input : Two forests {a1, .., aT }, {b1, .., bV }
Let α be a matrix of dimension (T + 1)× (V + 1); α[{}, {}]← 1
for t de 0 à T do

for v de 0 à V do
if (t > 0) or (v > 0) then

α[{a1, .., at}, {b1, .., bv}] = 0

if t > 0 then
α[{a1, .., at}, {b1, .., bv}]+ = δ(l(ρ(at)), λ).α[{a1, .., f(ρ(at))}, {b1, .., bv}]

if v > 0 then
α[{a1, .., at}, {b1, .., bv}]+ = δ(λ, l(ρ(bv))).α[{a1, .., at}, {b1, .., f(ρ(bv))}]

if (t > 0) and (v > 0) then
α[{a1, .., at}, {b1, .., bv}]+ = α(f(ρ(at)), f(ρ(bv))).δ(l(ρ(at)), l(ρ(bv)))

.α[{a1, .., at−1}, {b1, .., bv−1}]

return α[{a1, .., aT }, {b1, .., bV }]

expert who judged them as being similar. EM achieves an expectation step fol-
lowed by a maximization stage. During the first step, EM accumulates, from the
training corpus, the expectation of each hidden event (edit operation) for trans-
forming an input tree into an output one. In the maximization step, EM sets
the parameter values (edit probabilities) in order to maximize the likelihood.

4.2 Forward and Backward Functions

To learn the matrix δ, EM uses two auxiliary functions, so-called forward (α)
and backward (β), that are respectively described in Algorithms 1 and 2. The
bold font is used for a recursive call of these algorithms (α and β), while the
normal font (α and β) describes intermediate values stored in a local matrix.
We can note that both functions α and β return the quantity

∑
e∈E(a,b) p(e),

i.e the sum of probabilities of all paths (described by a script e) changing an
input forest into an output one. Beyond the fact that they allow to compute
the tree ED (cf Def. 7), they are overall combined to achieve the expectation
step in order to estimate the expectation of each edit operation (see Fig. 3 and
details in the next section). What is important to note is that functions α and β
are nothing else but an extension to the stochastic case of the original tree ED
algorithm. Actually, they contain the three main instructions corresponding to
the three edit operations. For instance, considering the substitution operation,
α(f(ρ(at)), f(ρ(bv))) and α[{a1, .., at−1}, {b1, .., bv−1}] are the stochastic version
of d(f(ρ(a)), f(ρ(b))) and d(F1 − a, F2 − b) respectively. The main difference is
that in our probabilistic framework, we use all the paths transforming a forest
into another one, while the classic ED only keeps the costless path.

4.3 Expectation

During the expectation step, we estimate the expectation of the hidden events,
i.e the edit operations used to transform an input tree into an output one. These
expectations are stored in an auxiliary matrix γ (|L|+1)×(|L|+1). This process
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Algorithm 2. β({a1, .., aT }, {b1, .., bV })
Input : Two forests{a1, .., aT }, {b1, .., bV }
Let β be a matrix of dimension (T + 1) × (V + 1); β[{}, {}]← 1
for t de T à 0 do

for v de V à 0 do
if (t < T ) or (v < V ) then

β[{at, .., aT }, {bv , .., bV }] = 0

if t < T then
β[{at, .., aT }, {bv , .., bV }]+ = δ(l(ρ(aT )), λ).β[{at, .., f(ρ(aT ))}, {bv , .., bV }]

if v < V then
β[{at, .., aT }, {bv , .., bV }]+ = δ(λ, l(ρ(bV ))).β[{at, .., aT }, {bv , .., f(ρ(bV ))}]

if (t < T ) and (v < V ) then
β[{at, .., aT }, {bv , .., bV }]+ = δ(l(ρ(aT )), l(ρ(bV ))).β(f(ρ(aT )), f(ρ(bV )))

.β({at, .., aT −1}, {bv , .., bV −1})

return β[{a1, .., aT }, {b1, .., bV }]

takes a training tree pair (x, y) in input. Then, for all the subtree pairs (at, bv),
where at is a subtree of x and bv a subtree of y, it accumulates the expectations
of the three edit operations consisting either in deleting ρ(at), or inserting ρ(bv)
or substituting l(ρ(at)) by l(ρ(bv)). The pseudo-code of the expectation step is
described in Algorithm 3, which requires the following definitions.

Definition 8. A postorder traversal of a labeled tree x = r(a1, .., aT ) is obtained
by first recursively visiting the subtrees at, t = 1..T and then the root r. The
postorder numbering assigns a number to each node of x according to a postorder
traversal. Let φα : V(x) → T (L)∗ be the function that takes a node r′ and returns
the ordered forest composed of the subtrees with root a node having a number
strictly smaller than that of r′ according to a postorder numbering.

Definition 9. Let x = r(a1, .., aT ) be an ordered tree. Let φβ : V(x) → T (L)∗

be the function that takes a node r′ and returns the ordered tree with root r and
with the children of r having a number strictly smaller than that of r′ according
to a reverse postorder numbering.

Fig. 3 shows an example of postorder (in arabic font) and reverse postorder
numbering (in roman font). Considering the node labeled by 4|III of the left
tree, φα returns the forest composed of 3 subtrees with root the nodes labeled
respectively by 1|VI, 2|V and 3|IV, φβ returning the subtree with root the
node labeled by 6|I and with the child 5|II. Let us recall that this algo-
rithm calculates the expectation of the number of times each edit operation
is used for changing a tree x into another one y. To do this, for each edit op-
eration (whose probability is given by δ), we consider not only all the ways
leading to this operation (given by α) but also those allowing us to finish the
transformation (given by β) after the edit operation. While the deletion and
insertion operations are quite understandable, the substitution one deserves
some explanations. Fig. 3 graphically describes the substitution of the input
node 4|III into the output one 4|IV. This requires to calculate the forward
function α(φα(ρ(at)) − f(ρ(at)), φα(ρ(bv)) − f(ρ(bv))), i.e. the probability of
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1 | VI 4 | III

3 | IV2 | V

6 | I 7 | I

4 | IV 6 | II

3 | V

2 | VI

1 | VII 5 | III

5 | II

α(φα(ρ(at)) − f(ρ(at)), φα(ρ(bv)) − f(ρ(bv))) α(f(ρ(at)), f(ρ(bv)))

β(φβ(ρ(at)), φβ(ρ(bv)))

Fig. 3. Illustration of the Expectation step for a substitution operation

Algorithm 3. expectation(x, y)
Input : Two trees x and y

Let E be the empty tree;
foreach at s.t. ρ(at) ∈ V(x) ∪ E, bv s.t. ρ(bv) ∈ V(y) ∪ E do

if at �= E then

γ(l(ρ(at)), λ)+ =
α(φα(ρ(at)),φα(ρ(bv ))∪{bv}).δ(l(ρ(at)),λ).β(φβ (ρ(at)),φβ (ρ(bv )))

α(x,y)

if bv �= E then

γ(λ, l(ρ(bv)))+ =
α(φα(ρ(at))∪{at},φα(ρ(bv ))).δ(λ,l(ρ(bv ))).β(φβ (ρ(at)),φβ (ρ(bv )))

α(x,y)

if (at �= E) and (bv �= E) then
γ(l(ρ(at)), l(ρ(bv)))+ =

α(φα(ρ(at))−f(ρ(at)),φα(ρ(bv ))−f(ρ(bv ))).α(f(ρ(at )),f(ρ(bv ))).δ(l(ρ(at )),l(ρ(bv ))).β(φβ (ρ(at)),φβ (ρ(bv)))
α(x,y)

the forest pair [{1|VI}, {2|VI(1|VII)}]. This forest pair is constituted of sub-
trees with root node having a numbering smaller than 4 according to a pos-
torder numbering (given by function φα), minus subtrees that are the children
of 4|III and 4|IV (given by function f). We estimate, as well, the backward
function (β(φβ(ρ(at)), φβ(ρ(bv)))) on the pair [{6|I(5|II)}, {7|I(6|II(5|III))}],
with nodes smaller than III for the input forest and IV for the output one, ac-
cording to a reverse postorder numbering. We need also to compute the forward
function (α(f(ρ(at)), f(ρ(bv)))) on the pair [{2|V, 3|IV}, {3|V}] corresponding to
the children of the nodes involved in the substitution operation.

4.4 Maximization

The final step of the EM algorithm is achieved by the maximization procedure
presented in Algorithm 4. This step is crucial since it ensures a convergence of the
process under constraints thanks to the normalization of the expectations. For
learning a stochastic tree ED in the form of a generative model, we must fulfill
constraints of Eq.1. This implies a simple normalization consisting in dividing
each expectation γ(s, s′) by the total accumulator TA =

∑
(s,s′)∈(L∪{λ})2 γ(s, s′).

With Algorithms 1,2,3 and 4, we can now present in Algorithm 5 the global
procedure for learning a stochastic tree ED.
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Algorithm 4. maximization
Input: A matrix of accumulators γ

Output: A matrix of probabilistic edit costs δ

TA← 0
foreach (s, s′) ∈ (L ∪ {λ})2 do TA← TA + γ(s, s′)

foreach (s, s′) ∈ (L ∪ {λ})2 do δ(s, s′)← γ(s,s′)
T A

Algorithm 5. tree edit distance − EM
Input: LS a learning set of tree pairs
repeat

foreach (s, s′) ∈ (L ∪ {λ})2 do γ(s, s′)← 0
foreach (x, y) ∈ LS do expectation(x,y)
maximization(γ)

until convergence

4.5 Example of Learning

We present here the running of our algorithm on a simple example, with an
input alphabet L1 = {a, b, c}, an output alphabet L2 = {a, b} and a training set
composed of only one tree pair [a(b, c(a, b)); b(c, a(b), a, b)] (see Fig. 4(a)). The
algorithm converges towards an optimum after only 4 iterations. The learned
matrix δ (initialized with random values) is described in Fig. 4(b). We can note
that our algorithm has correctly learned the target. Actually, on this example,
one optimal solution consists in: (i) inserting the symbol a that becomes the
father of the symbol b, (ii) keeping unchanged the symbol b, (iii) deleting the
symbol c and (iv) changing one out of twice the symbol a by b or by itself.

a a b

Output

b

b

a

b c

ba

Input
(a) Learning tree pair

δ λ a b
λ − 0.167 0
a 0 0.167 0.167
b 0 0 0.332
c 0.167 0 0

(b) Matrix δ after 4 EM iterations.

Fig. 4. Example of learning from a tree pair

5 Experiments in Image Recognition

5.1 From a Numerical to a Symbolic Representation of Images

In this section, we aim at verifying the interest of our learning algorithm on
an image classification task. So far, the main trend in image recognition has
mainly concerned numerical approaches based on color and texture [15,16,17].
However, many objects are poorly modeled with numerical values that can not
express the relationships between attributes. Strings and trees are structured
representations that allow us to take into account either the sequentiality or the
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(a) Original image (b) Charact. points (c) Binary image

Fig. 5. Example of image represented by characteristic points

hierachization between attributes. A pioneer work has been recently achieved by
Jolion et al. [11] with a string representation showing very interesting results on
clustering and recognition tasks. The principle of this approach is first based on
the extraction of characteristic points (see Fig. 5(b)) according to their contrast
level in the original image (Fig. 5(a)). Then, to each of these points is assigned
the symbol of the alphabet constituted of all the 512 binary masks 3 × 3, and
that is applicable on that point in the binary version of the image (see Fig. 5(c)).
Finally, these characteristic points are sorted according to their decreasing level
of contrast, providing a sequence of masks labeled by a symbol ∈ [0, 512].

5.2 Tree Representation of Images

This string representation outperformed numerical features in various classifica-
tion and clustering tasks [11]. However, we can note that no spatial information
is considered. One way to tackle this drawback is to consider a tree representa-
tion linking the depth of a tree with that information. To illustrate our approach,
consider the example of Fig. 6(a). First, we propose to divide the image in four
equal parts and we extract, for each of them, the characteristic point with the
highest level of contrast. These four points constitute the first level of our tree.
They are ordered from left-to-right according to their respective level of con-
trast. In a second step, we sub-divide each of the four original parts into four
new sub-parts, and we extract again the characteristic points with the highest
level of contrast in each sub-part. These points become the children of the node
extracting during the first step. We recursively repeat this process until no more
division can separate two points. To obtain a labeled tree, we assign to each node
its corresponding mask applicable in the binary image. The main properties of
this tree representation are the following: (i) We do not challenge the alphabet
distribution observed in the sequence built with Jolion’s approach; (ii) we keep
the sequentiality between the characteristic points for each granularity level; and
(iii) deep leaves represent a large local density of characteristic points.

5.3 Experimental Setup and Results

In order to assess the relevance of our model in a pattern recognition task, we
applied it in handwritten digit classification. We used the NIST Special Database
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Fig. 6. (a) Tree representation and (b) experimental results

3 of the National Institute of Standards and Technology, already used in several
articles such as [18,6]. A part of this database consists in 128 × 128 bitmap
images of handwritten digits written by 100 different writers. Each class of digit
(from 0 to 9) has about 1,000 instances. We divided these data in a learning
set LS (6,000 digits) and a test set TS (4,000 digits). Since our model handles
trees, we coded each digit as previously explained but we reduced the alphabet
from 29 to 15 by removing small frequent masks. Then, to construct a learning
set of tree pairs, we used an uniform matrix δ of tree edit probabilities and we
associated to each input tree x ∈ LS the output tree y ∈ LS, y �= x s.t. p(x, y)
is maximal and s.t. x and y belong to the same class. We then learned matrix
δ with our EM algorithm. We classified each digit t ∈ TS by the class i of the
tree x ∈ LS maximizing p(t, x) (result TWL).

We compared our learning approach with a standard tree ED with a priori fixed
edit costs (result TNL). Moreover, to assess the relevance of our tree-based image
representation, we used the same protocol with images coded in strings (see Sec-
tion 5.1) using non learned and learned stochastic string EDs as presented in [6]
(results SNL and SWL). To compare all the results, we present in Table 6(b) the rela-
tive accuracy gain on TS of each approach (SWL, TNL, TWL) in comparison with the
standard string ED SNL. We can make the following interesting remarks: First, the
results confirm the relevance of our tree-based image representation in comparison
with strings (+11 percentage points); second, they definitely prove the interest of
our approach for learning a tree similarity measure. Actually, not only a learned
tree distance outperforms a standard string ED (+32 percentage points) but also
it outperforms a non learned tree ED (+21 percentage points).

6 Conclusion

In this paper, we extended the tree ED, in its more general form, to a stochastic
context. From this new point of view, the probabilities of the primitive edit
operations are seen as hidden parameters that an adapted EM-based algorithm
is able to learn from a set of tree pairs. We think that this work opens the door to
significant improvements in classification and clustering, that is confirmed by our
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first experimental results in digit recognition. However, some problems deserve
further investigations. First, we think that the constitution of the learning tree
pairs can be highly improved and still constitutes an open problem; second, the
tree representation issued from characteristic points must be further studied to
tackle a larger spectrum of image recognition tasks; moreover, our algorithm has
to be adapted in a form of a discriminative model (rather than the presented
generative one) to handle small datasets; finally, in front of the emergence of huge
datasets of XML documents, we plan to use our model on web applications.
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