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Abstract. Choosing a suitable feature representation for structured
data is a non-trivial task due to the vast number of potential candidates.
Ideally, one would like to pick a small, but informative set of structural
features, each providing complementary information about the instances.
We frame the search for a suitable feature set as a combinatorial opti-
mization problem. For this purpose, we define a scoring function that
favors features that are as dissimilar as possible to all other features.
The score is used in a stochastic local search (SLS) procedure to maxi-
mize the diversity of a feature set. In experiments on small molecule data,
we investigate the effectiveness of a forward selection approach with two
different linear classification schemes.

1 Introduction

Feature generation and selection for structured data is complicated by the vast
number of possible candidate features. In graph classification, for instance, the
number of ways to describe a graph is virtually unlimited, and often expert
knowledge is necessary to identify relevant aspects of a graph. A popular choice
is to represent a graph by features that specify whether or not a subgraph
is present. If there is only limited expert knowledge available about relevant
subgraph features in an application, the learning algorithm needs to generate
meaningful features on its own. Unfortunately, the number of subgraphs grows
exponentially with the size of the graphs, so it is clearly infeasible to use all
possible subgraphs as features. Therefore, many approaches restrict the set of
subgraph features to frequently occurring, frequent closed, or class-correlated
subgraphs [3,2]. In all of these cases, however, there is no guarantee that the
resulting feature sets have sufficient coverage over all instances of a dataset.
Moreover, the resulting features may be only slight alterations of a few sub-
graphs. As a consequence, the number of features required to reach some level of
performance may be unnecessarily high, potentially harming comprehensibility
and efficiency. While we focus on graph classification in this paper, the same
problems occur with other forms of structured data, for instance, in logic-based
representations.

Instead of generating a bulk of features and obtaining a well-balanced coverage
only incidentally, it may be worthwhile to actively construct favorable structural
features in the first place. One way to minimize the number of features required
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is to explicitly maximize the diversity of subgraph features. Thus, we frame the
search for diverse, complementary sets of subgraph features as an optimization
problem. We define a scoring function measuring the diversity of a feature set
and present a stochastic local search (SLS) procedure to find subgraphs optimiz-
ing that score. Stochastic local search is motivated by the NP-hardness of the
problem of finding a perfectly complementary subgraph given a set of graphs
and optimal features so far. To focus the search for useful structural features
even further, it is possible to extend the scoring function by balancing diversity
with class correlation. The resulting feature sets are used in linear classifiers.
The effectiveness of the method and its dependence on variations are tested in
experiments on three small molecule datasets from cheminformatics.

2 Background and Motivation

We deal with the problem of feature generation for linear classifiers. In this
setting, the instances are arbitrary objects and we need to find features that
extract meaningful information from the objects. In particular, we are inter-
ested in features that are well suited for use by a learning algorithm to con-
struct a predictive classifier. Information theory gives us the tools to quantify
what constitutes a feature set that is informative about the target class: Let
X ∈ {−1, 1}m×n be the training matrix containing m instances x1, . . . , xm,
where each instance xi = (xi(1), . . . , xi(n)) ranges over n features. Xi denotes
the ith column of the training matrix, that is, the instantiation of the ith feature.
Assuming a binary classification problem, we denote the class labels of the in-
stances by Y ∈ {−1, 1}m. Then we are aiming at features X1, . . . , Xn with high
mutual information I(X ; Y ) = I(X1, . . . , Xn; Y ) between features and target
class. We can write the mutual information as the difference between the entropy
of X and the conditional entropy of X given Y : I(X ; Y ) = H(X) − H(X |Y ).
Thus, in order to obtain highly informative features, we need to maximize
H(X) := H(X1, . . . , Xn) and to minimize H(X |Y ) := H(X1, . . . , Xn|Y ). This
leads to the following three criteria:

– High correlation with the class. Since we would like to minimize H(X |Y ), we
are looking for features that are highly correlated with Y . This is the criterion
that is most prominently applied in most traditional multi-relational learning
systems. Theoretically, a single feature Xi agreeing with Y on all instances
would be enough to ensure H(Xi|Y ) = 0. In practice it is rarely possible to
find such a perfect feature and often there is only a small number of features
with high correlation. In such a setting, the learning algorithm also needs to
consider features with comparably low correlation and the two other criteria
below become relevant for optimal feature construction.

– High feature entropy. The joint entropy can be upper-bounded by the sum
of single features: H(X) =

∑n
i=1 H(Xi|Xi−1, . . . , X1) ≤

∑n
i=1 H(Xi). Thus,

in order to maximize H(X) we need to maximize the entropy of each single
feature. For Boolean features this means that each feature should divide the
training instances in two parts of preferably equal size, so that it assigns −1
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to roughly the same number of objects as +1. This is intuitively intriguing:
a set of k features that assign +1 to only one training instance and −1 to the
others can discriminate only between k different instances, whereas a set of
features that divide the instances into two equal-sized parts can discriminate
between up to 2k bins of instances.

– High inter-feature entropy. Even if all single features have maximal entropy,
it could be the case that the features are highly correlated to each other.
In the most extreme case, it could be that all features assign the same
labels to all instances X1 = . . . = Xn. Clearly, we need to ensure that
the features complement each other and do not provide the same informa-
tion all over again. In terms of information theory one can write H(X) =∑n

i=1 H(Xi|Xi−1, . . . , X1) ≤
∑n

i=1 H(Xi|Xi−1). Thus we need to maximize
H(Xi|Xi−1) for all 1 < i ≤ n. Since the features can be ordered arbitrar-
ily, this essentially means we need to maximize H(Xi|Xj) for each pair of
features.

The first criterion has been dealt with to great extent in the existing literature
on relational learning, the second is sometimes addressed by putting minimum
frequency constraints on the features, and the third is usually not considered or
included only implicitly. This is a problem in particular in the graph learning
setting, where a feature indicates the occurrence or absence of a substructure in
a graph. Typically, it is easy to construct substructures that appear in only a
very small number of graphs, so the entropy of single features tends to be low. To
avoid this, one often selects substructures that appear only with a certain mini-
mal frequency in the graph database. Unfortunately, the resulting substructure’s
instantiations are often very similar to each other so that inter-feature entropy
is low. For instance, mining all subgraphs that appear in at least six percent of
the NCTRER dataset (see section 4) yields 83,537 frequent subgraphs. However,
when comparing the instantiation Xi with Xj for all pairs of subgraphs (i, j), it
turns out, that in 19% of the pairs Xi = Xj and in 77% of the pairs Xi differs
from Xj on less than ten instances. Hence, training matrices based on minimum
frequency mining tend to be large and exhibit an unnecessarily large degree of
redundancy.

On the other hand, it is easy to see that Hadamard matrices constitute optimal
training matrices with regard to the latter two criteria, because any two columns
are orthogonal (so H(Xi, Xj) = 2 is maximal for all i �= j), and the number
of ones is equal to the number of minus ones in each column (so H(Xi) = 1
is maximal for all i). Hadamard matrices of order 2i can be generated using
Sylvester’s recursive construction:

H1 =
(

1 1
1 −1

)

, Hi =
(

Hi−1 Hi−1
Hi−1 −Hi−1

)

.

Hadamard matrices are also well suited for linear classifiers, because they have
full rank. One can show that a matrix of rank d leads to 2d different linear
classifiers, so a large-rank matrix allows the linear learner to choose from a
larger amount of different hypotheses. In the following we propose a method
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that optimizes the second and third criterion for linear classifiers on subgraph
features.

While a Hadamard matrix would be optimal for learning, it is certainly im-
possible to find subgraphs whose instantiations give rise to it. Instead, we are
faced with the problem of finding subgraphs that approximate a Hadamard ma-
trix as good as possible. In the following, we assume a forward selection setting
and frame the problem as an iterative combinatorial optimization problem: Let
D = {g1, . . . , gm} be a set of graphs (the instances), and F = {f1, . . . , fn}
be a set of subgraphs (the already included features), and denote by si the
instantiation vector of the ith subgraph fi with regard to D, i.e., the vector
whose jth component is 1 if fi is a subgraph of gj and -1 otherwise. We are
then looking for a new subgraph fn+1 whose instantiation vector sn+1 optimizes
some score quantifying the criteria explained above. For the experiments in sec-
tion 4, we use what we call a dispersion score in the remainder of the paper:1

d(sn+1) :=
∑n

i=1(s
T
i sn+1)2. Minimizing this score directly addresses the third

criterion: if sn+1 and some si agree on many instances, the square of their dot
product is large. Thus, summing up over all squared dot products essentially pe-
nalizes features that are similar to existing ones. One can show that it promotes
features that discriminate between instances that have not been separated well
by the existing features. It also implicitly optimizes the second criterion, because
it aims at features that agree with existing features on half of the instances and
disagree on the other half, thus leading on average to features which assign +1 to
approximately the same number of instances as -1. Finally, the score reaches the
global optimum zero precisely for the Hadamard matrix. Of course, the disper-
sion score does not aim at finding features that correlate well with the target. In
order to also incorporate the first criterion, we extend it to not only penalize fea-
tures that are similar to the existing features si, but also to reward features that
are similar to the target class vector t: d′(sn+1) :=

∑n
i=1(s

T
i sn+1)2−n(tT sn+1)2.

The modified class-correlated dispersion score is designed to value dispersion to
the same extent as similarity with the target. In the following section we describe
our algorithmic approach to optimizing the dispersion score.

3 Stochastic Local Search for Optimal Dispersion
Features

The dispersion score provides a practical way to formulate the search for fea-
tures with large discriminative power as a combinatorial optimization problem.
Unfortunately, due to the complexity inherent in graph operations, the problem
can be extremely difficult to solve. It is clear that computing the instantiation
vector for an arbitrary graph involves the repeated computation of solutions to
NP-complete graph isomorphism problems. Even if one avoids these subgraph
isomorphism tests, the problem can be shown to be NP-hard:

1 In principle one could also apply mutual information instead of the dispersion score,
but experiments have shown that this is not effective for the datasets in section 4.
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Theorem 1. The problem of deciding whether there exists a graph, that achieves
a dispersion score of zero on a given training matrix and a given graph database
is NP-hard.

(Proof omitted)

There is no generally applicable approach to solving such a combinatorial
optimization problem. However, in recent years stochastic local search (SLS)
algorithms have been applied with remarkable success on similar NP-hard combi-
natorial problems. In particular, they are among the best algorithms available to
solve hard satisfiability problems. SLS can be described as a randomized greedy
walk in the space of solution candidates. More precisely, an SLS algorithm starts
by generating a random solution candidate. It then iterates in a loop over two
steps: in the first step, it calculates “neighboring” solution candidates accord-
ing to some predefined neighborhood relation. For each neighbor, it computes a
score indicating to which degree the candidate is optimal. In the second step, it
randomly selects a new candidate among the neighbors with the best score. As
such a pure greedy algorithm can easily be trapped in local optima, the second
step is from time to time (i.e., with a predefined noise probability p) replaced
by a step, where a completely random neighbor is selected as new candidate.
Finally, the algorithm keeps track of the best candidate found so far and out-
puts this candidate as a solution after a maximum number of iterations. While
modern SLS algorithms often use more sophisticated decision functions, the ba-
sic principle has been shown to be effective on a range of NP-hard problems, see
e.g. [8] for an generic SLS algorithm and applications.

The SLS framework can be easily adjusted to the optimization problem pre-
sented in this paper. A solution candidate is simply a graph, and the scor-
ing function is the dispersion score explained in the preceding section. For the
neighborhood relation we generate two different kinds of neighbors: more specific
neighbors are built by extending the current candidate graph with an edge so
that the resulting subgraph occurs in at least one graph of the graph database.
This avoids generating neighbors that do not occur in the database at all. More
general neighbors are built by removing one edge from the current candidate. If
the removal of the edge separates the graph into two unconnected components,
we keep the larger of the two as neighbor and discard the smaller one.

It is crucial for the effectivity of an SLS algorithm that the calculation of the
score function and the neighbors is as fast as possible. Unfortunately, both tasks
are exceptionally expensive in our case. To compute the dispersion score and to
determine more specific neighbors, one needs to identify the instantiation vector
and that implies a subgraph isomorphism test with each graph in the database.
To overcome this performance bottleneck, we pre-compute an index structure
that stores all subgraphs up to a maximum size that occur in the database. The
calculation of a candidate’s instantiation vector and more specific neighbors is
then just a lookup or a limited search operation in the index structure. As there
is a huge number of subgraphs in a typical database, it is important to design
the index structure to be space efficient, yet fast to access. We achieve this
by associating each (sub-)graph with a canonical code string, i.e., a string that
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uniquely determines the graph, and storing those canonical strings in a trie. We
follow the breadth-first-search scheme [1] to compute the canonical code strings
of all subgraphs with less than a user-defined number of edges. The strings are
then stored in a trie structure, so that the SLS procedure can simply look up
which of the database graphs contain a specific subgraph.

4 Experiments

In order to evaluate the approach, we implemented the dispersion optimizing
SLS algorithm and applied it to three data sets. The NCTRER dataset [4] deals
with the binding activity of small molecules at the estrogen receptor, the Yoshida
dataset [10] classifies molecules according to their bio-availability, and the blood-
barr dataset [7] deals with the degree to which a molecule can cross the blood-
brain barrier. For the experiments, we set the noise probability of taking a purely
random step in the SLS loop to 0.2, the maximum size of subgraphs stored in
the graph trie to fifteen edges and the maximal number of iterations for the SLS
loop to 2000. The resulting feature sets are processed by a SVM with the C
parameter set to 1 and Margin Minus Variance (MMV) optimization [9] with
the p parameter set to 2. To keep the induced linear model comprehensible, we
build it in an iterative fashion: we start with an empty feature set and then add
the features one by one according to the optimal dispersion criterion. Whenever
the number of features exceeds one hundred, we compute the linear classifier and
remove the feature with the smallest weight before adding a new feature. The
time to generate the trie is typically a few minutes. As it is generated once per
dataset (like an index structure in a database), it does not influence the runtimes
of subsequent SLS runs.

For the first experiment, we investigate to what extent SLS with dispersion
and the class-correlated dispersion are able to generate training sets that are
well suited for classification. To do so, we apply SLS with the two scores to
construct four feature sets containing 25, 50, 150 and 300 features. We report
the training set and test accuracies of SVM and MMV as estimated by tenfold
cross-validation in the first four columns of table 1. The results point out some
interesting insights. First of all, dispersion with class correlation is on average
able to obtain a better training accuracy than the pure dispersion score, in
particular with larger feature sets. This is expected as the pure dispersion score
does not consider the class labels. However, the improvement in training accuracy
does not always translate to an improvement in predictive accuracy. It does so
for small feature sets up to 50 features, but for larger feature sets the difference in
predictive accuracy is small even though the training accuracy is way larger for
the class-correlated dispersion score. Also, MMV tends to perform better with
regard to predictive accuracy than the SVM, even though its training accuracy
is generally inferior to that of the SVM. Overall, MMV with the class-correlated
dispersion score achieves good predictive performance for all feature set sizes.

As the SLS-based method should be particularly well-suited for obtaining
small (e.g., size 25 or 50) useful feature sets, we set up an experiment comparing
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Table 1. Results: percentage of correct classifications of four feature generation meth-
ods on training and test set according to tenfold cross validation

Dataset SLS SLS MinFreq MinFreq
& Nr. (Dispersion) (Class Corr.) (Sorted by Size) (Sorted by Corr.)

Features MMV SVM MMV SVM MMV SVM MMV SVM
Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst

25 70.1 61.5 72.4 60.0 75.3 65.3 76.7 60.0 65.7 58.5 68.6 60.0 70.9 61.9 71.2 60.0
yo- 50 75.6 64.5 79.2 62.3 78.0 67.2 80.5 66.4 67.7 57.0 73.4 60.0 72.2 60.4 73.1 60.0
shida 150 76.6 67.2 81.5 62.3 78.8 68.3 81.7 64.2 80.8 66.4 91.3 68.7 73.5 64.9 76.4 60.0

300 77.2 66.4 81.5 63.8 85.9 66.4 96.1 65.7 85.8 66.8 96.4 68.7 76.4 66.8 83.4 63.4
25 84.2 82.8 83.1 77.6 82.6 81.5 82.9 76.3 80.2 76.3 80.7 59.9 79.2 78.4 79.6 59.9

NCT 50 84.1 81.9 85.2 78.4 83.8 82.3 84.5 78.0 83.4 79.7 84.2 69.4 80.6 80.2 79.3 59.9
RER 150 84.2 81.0 84.5 77.2 84.3 82.3 86.1 82.8 87.1 82.3 91.3 78.0 80.8 79.7 82.2 79.3

300 84.4 80.2 84.5 77.2 88.6 81.5 96.5 78.4 87.6 80.6 92.5 75.9 81.1 79.7 82.5 77.6
25 72.7 69.6 76.8 66.5 77.1 72.5 78.2 68.2 72.9 70.4 73.6 66.5 76.2 73.7 77.3 67.5

blood 50 77.5 71.3 80.0 67.2 77.5 73.5 79.5 68.4 76.8 71.3 81.0 70.4 76.7 74.2 79.7 67.5
barr 150 77.3 69.9 81.1 69.9 78.0 74.9 80.8 68.0 83.2 75.7 90.0 75.9 78.4 72.0 85.6 70.1

300 77.7 71.1 81.2 70.4 84.7 73.7 95.2 74.5 85.7 75.2 95.1 74.2 81.3 73.7 87.9 74.0

it to minimum-frequency and class-correlation feature generation within this
range and beyond (size 150 and 300). First, we apply a subgraph mining tool
to identify all subgraphs that occur in more than six percent of the dataset’s
graphs. Then, we sort the subgraphs by size (i.e. number of edges) or by the
correlation with the target according to a χ2 test on the 2x2 contingency table.
Finally we derive four feature sets with 25, 50, 150 and 300 features from those
two sorted feature sequences. Hence, the first sorting order is essentially an
unsupervised propositionalization approach (similar to the one by Deshpande
et al. [3]), while the second resembles the class-correlation based approach by
Bringmann et al. [2]. The third and fourth column of table 1 give the training and
test accuracies for MMV and the SVM. On feature sets with 150 and 300 features,
the differences between dispersion-based and minimum frequency approaches
are only marginal. However, in the target range of small feature sets, the SLS
optimization of dispersion outperforms other approaches on two of the three
datasets (Yoshida and NCTRER) in almost all pairwise comparisons.

We also compared our approach with the published accuracies (as estimated
by tenfold cross validation) of two recently proposed learning systems for struc-
tured data. On the Yoshida dataset, an SVM with optimal assignment kernel
[5] had 67.8% accuracy, a bit more than the dispersion-based SVM (65.7%), but
less than dispersion-based MMV (68.3%). On bloodbarr, the dispersion-based
approaches featured 74.9% (MMV) and 74.5% (SVM), outperforming the OA
kernel SVM with 57.97% by a large margin. On the NCTRER dataset, kFOIL,
an extension of FOIL incorporating an SVM in a novel evaluation function [6],
had 77.6% accuracy, while the presented system yields 82.3% (MMV) and 82.8%
(SVM), a significant improvement.
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5 Conclusion

On structured data, a small set of strong features is vital for comprehensibility
and efficiency of computation. In the paper, we framed the search for a suitable
set of structural features as a combinatorial optimization problem. We proposed
a scoring function fostering the diversity of feature sets and an optimization
scheme based on stochastic local search (SLS) to maximize that score. The choice
of SLS is motivated by the NP-hardness of finding an optimally complementary
subgraph feature. In our experiments on small molecule data, we found that
the optimization of dispersion pays particularly when aiming for small feature
sets. Unlike many other approaches to feature selection (e.g. [11]), we can take
advantage of the structure of features, intertwining structure search and feature
selection. In principle, the basic approach is more general than presented here.
First, it is not restricted to graphs, but could be extended to more expressive
representations such as first-order logic. Second, it is not restricted to the forward
selection procedure tested in section 4, since a variant of the dispersion score and
SLS could be used for the optimization of fixed-size feature sets as well.
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