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Abstract. This paper presents Active Class Selection (ACS), a new
class of problems for multi-class supervised learning. If one can control
the classes from which training data is generated, utilizing feedback dur-
ing learning to guide the generation of new training data will yield better
performance than learning from any a priori fixed class distribution. ACS
is the process of iteratively selecting class proportions for data genera-
tion. In this paper we present several methods for ACS. In an empirical
evaluation, we show that for a fixed number of training instances, meth-
ods based on increasing class stability outperform methods that seek to
maximize class accuracy or that use random sampling. Finally we present
results of a deployed system for our motivating application: training an
artificial nose to discriminate vapors.

1 Introduction

Active Class Selection (ACS) addresses the question: if one can collect n addi-
tional training instances, how should they be distributed with respect to class?
We recognized this new class of supervised learning problems when working with
chemists to train an artificial nose. In this domain, creating more data requires
chemists to conduct experiments where vapors are passed over a sensor (the
nose). Thus, the new data is labeled at the same time as it is generated. This is
in contrast to a domain, such as the Reuters articles [15], in which data can be
collected independent of the labeling process.

One might assume that ACS is a subclass of active learning rather than its
complement [5]. Both iteratively grow the training data. However, active learning
requests labels for existing instances [1] or explicitly queries the feature space
by creating instances for an expert to label [5]. ACS requests that instances be
generated for a particular class.

Successful methods for ACS can be grounded by recent results in stability
and generalization [3,13,10], which show that one can predict expected error
based on empirical error with a stable learning algorithm that satisfies certain
constraints [13]. The goal of ACS is to minimize the number of new training
examples needed in order to maximize learning performance. In our case, given
the ability to choose class proportions for data collection we are interested in
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assessing for each class whether empirical error is converging to expected error;
i.e., to determine when we can do no better for this class. Uniform sampling
works best if the error rates of all classes are converging at the same rate. If this
is not the case, then one heuristic is to sample in proportion to the inverse of the
convergence rates for each class. Using this intuition, we propose two methods
for ACS that base class proportions on heuristic assessments of class stability.
We compare these two methods to uniform and random sampling (sampling in
proportion to the distribution specified as best by the domain expert), and to a
method that uses error rate directly.

Section 2 outlines five methods for ACS. Section 3 presents a comparison of
methods for ACS on both a land cover task and on the motivating problem of
this research, building an artificial nose, including results of ACS deployed in the
laboratory. In Section 4 we discuss the relationship of ACS to active learning and
instance weighting methods. Finally, in Section 5 we conclude with a discussion
of the open problems in this new research area.

2 ACS Methods

In this section, we present several methods for determining the class proportions
for the generation of new training instances. We assume there are no limits
on generating instances of a particular class. All of our methods begin with a
small set of labeled training data T1 of size b[1], where b[r] is the number of
instances to add in round r. The choice of b[1] and the class proportions of T1
are domain specific issues. We perform a f -fold cross validation (CV) over T1 (in
our experiments, f=10). From the CV, we obtain class predictions for T1. Our
methods differ in how they use these predictions to specify the class proportions
(Pr[c], c ∈ classes) for the next round of data generation. Specifically, on round
r, we generate a new set of examples, Tnew, a set of b[r] examples generated
using the class proportions Pr[c]. We add this data to the existing data to create
a new set Tr := Tr−1 +Tnew. We next describe five methods for generating Pr[c]
followed by a discussion of the choice of batch size and stopping criteria.

1) Uniform: Sample uniformly from all classes. Pr [c] := 1
|classes| ∗ b[r]

2) Inverse: Select class proportions Pr[c] inversely proportional to their CV
accuracy on round r − 1. Thus, we obtain more instances from classes on which
we have a low accuracy. This method relies on the assumption that poor class
accuracy is due to not having observed sufficient training data. Although this
may be true initially, our results show that this method does not perform well.

Pr[c] :=
1

acc[c]
∑ |classes|

i=1
1

acc[i]

∗ b[r]

3) Original Proportion: Sample in proportion to the class proportions in T1. The
idea is that domain knowledge led to these proportions, perhaps because they
are the true underlying class distribution or because of the creator’s intuition as
to which classes are more difficult. Pr[c] := nc ∗ b[r], where nc is the proportion
of class c found in the collected data Tr.
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4) Accuracy Improvement: Sample in proportion to each classes’ change in ac-
curacy from the last round. If the change for class c is ≤ 0, then Pr[c] = 0. The
intuition is the accuracy of classes that have been learned as well as possible will
not change with the addition of new data and thus we should focus on classes
that can be improved. This method looks for stability in the empirical error of
each class. Pr[c] := max(0, currAcc[c]−lastAcc[c]

∑ |classes|
i=1 currAcc[i]−lastAcc[i]

∗ b[r])

5) Redistricting: The idea behind redistricting is that instances from Tr−1 whose
classification changes when classified by a new classifier trained on Tr−1 ∪ Tnew

are near volatile boundaries. Thus, we strive to assess which classes are near
volatile boundaries in order to sample from these these “unstable” classes. The
pseudocode is shown in Algorithm 1. We begin with a CV over T1, the initial
sample of the data. We obtain a prediction for each xi ∈ T1. In the second round,
we collect T2 of size b[2]. We next perform a CV over all of the data collected thus
far and create a classifier for each fold. Note that on subsequent iterations, we
keep the data from Tr−1 in the same folds, and stratify only the newly generated
data Tnew into the existing folds. For each fold f , we compare the classification
results of Cr,f and Cr−1,f on each instance xi ∈ Tr−1. If the labels are different,
then the counter for the class specified by the true label yi, redistricted[yi] is
incremented. We conclude by generating predictions of the new batch of data
Tnew and increment r.

After the second round we add instances using the formula in Step 12, where
c is a class from the set of all classes in the dataset, Pr[c] is the number of
instances of c to add, nc is the proportion of c in Tr−1 and b[r] is the number
of new training instances. We divide redistricted[c] by nc to keep small classes
from being ignored and large classes from being overemphasized.

We note the special cases here rather than in pseudocode. First, for any round
r the next batch is added uniformly if instances were not redistricted in round r−
1. Second, if instances of class c have not been redistricted, then instances of c will
not be generated in the next round. Thus, resources are not wasted generating
instances of a class in which the accuracy is not changing. Redistricting may
temporarily blacklist c, but request c later. Empirical results show a class may
be removed from the blacklist upon adding instances of neighboring classes.

Because redistricting seeks to measure stability of the class boundaries, it cares
whether the prediction for instances are different than prediction in the previous
iteration, not whether it is correct. Ideally, we would like new instances to be
near the volatile class boundary. However, for many domains, there is no control
over whether data from a particular class is near a classification boundary.

Before moving to our experimental section, we discuss the issues of batch size
and stopping criteria. Batch size depends on the cost of generating instances.
If too few instances are added, the method may be impractical for domains in
which data is generated in large batches. If the batch size is too large, then
potentially less instructive training data may be gathered. Note that a different
batch size can be specified for each round. Stopping criteria depend on domain-
based constraints. Data collection terminates if the accuracy is acceptable to the
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Algorithm 1. Redistricting Algorithm (b)
Require: b, array of the number of instances to add in round r
1: Generate a sample T1 of size b[1]
2: Divide T1 into 10 stratified folds T1,1, T1,2....T1,10

3: for f = 1 to 10 do
4: Build Classifier C1,f from {T1 − T1,f}
5: for all instances xi in T1,f do label1[xi] := C1,f (xi) end for
6: end for
7: r := 2
8: while instance creation resources exist and stopping criteria not met do
9: if r = 2 then

10: Tnew := “random” sample of size b[2]
11: else
12: Tnew := sample of size b[r] where the number of instances for class c is com-

puted as: Pr[c] =
redistricted[c]

nc
∑ |classes|

i=1
redistricted[i]

nc

∗ b[r]

13: end if
14: Tr := Tr−1 + Tnew

15: Initialize redistricted[c], ∀c ∈ classes
16: Divide Tnew into 10 stratified folds Tnew,1,Tnew,2....Tnew,10

17: for f = 1 to 10 do
18: Tr,f := Tr−1,f ∪ Tnew,f

19: Build Classifier Cr,f from {Tr − Tr,f}
20: for all instances xi in Tr−1,f do
21: labelr[xi] := Cr,f (xi)
22: if labelr[xi] �= labelr−1[xi] then
23: redistricted[yi]++ /* yi is the true label of xi */
24: end if
25: end for
26: for all instances xi in Tnew,f do labelr[xi] := Cr,f (xi) end for
27: end for
28: r++
29: end while

domain expert, data generation resources are exhausted, or given the available
features one is unable to wring more accuracy from the data. Investigation of
stopping criteria is an open problem.

3 Experiments

Our experiments compare the proposed methods on two domains for which ACS
is applicable. ACS can be applied with any supervised learning algorithm. In
our experiments, we report results run with (SVMs)1 and k-NN.

1 We used the SMO [12] with pair-wise classification to assess accuracy [7]. Using the
default parameters in Weka [21], the complexity parameter is set to one, and we use
a linear kernel.
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Experimental Method for Static Datasets: We simulate ACS using pre-existing
static datasets. We used a uniform distribution for the test set because it is
the default choice without knowledge of the class distribution of the underlying
population. We performed experiments where T1 had the same class distribution
as the entire dataset, but found no significant difference in any method and
thus present the results for T1 collected uniformly. Because the data are pre-
existing static datasets, we may run out of instances from a particular class. In
this case, we make the large classes uniform and include all instances from the
smaller classes. Similarly, when running the proposed ACS methods, we may not
have sufficient data of class c on round r as dictated by the proportion Pr[c].
In such cases, we sample the remainder of Tnew uniformly with respect to the
classes that still contain data. In our experiments, we used a 5-fold CV to assess
accuracy. This is distinct from the 10-fold CV that redistricting uses on training
data.

Artificial Nose Dataset: Gathered in the Walt Laboratory at Tufts University
[19], the “artificial nose” dataset consists of experiments in which vapors were
passed over an array of sensors (the nose) [2]. The nose is a general purpose
device that can be trained to discriminate the k vapors of interest. The accuracy
is a function of how well the sensors can differentiate among the vapors. We
first present results on a static dataset, and then at the end of this section, we
present results from deploying redistricting in the lab.

Prior to our collaboration, the chemists on our team generated a dataset of six-
teen classes2. The dataset is not uniformly distributed according to class because
the chemists used their intuition to collect data from “needed” classes. The nose
software currently uses 3-NN and we continued this practice. We repeated the ex-
periments using SVMs, with no significant difference in the results. We started
with 100 instances because the chemists believe it is sufficient to to make the ini-
tial redistricting decisions. We then add ten instances at a time. As more data is
added, all methods have seen the same data, and the results converge.

Figure 1(a) shows the results for the nose. The x-axis represents the number
of instances collected and the y-axis shows accuracy. We see that redistricting
rivals the scientists’ intuitions (“proportion” in the graph), and performs over
10% better than uniform sampling for parts of the graph. The reason that pro-
portion performs comparably to redistricting for this data set is because it was
collected before we began to work with the chemists. Prior to our collaboration,
the chemists were performing ACS by manually examining the results after each
new data collection to see where they were doing poorly and which classes were
confused. Inverse performs poorly because as mentioned in Section 2, it skews
data collection to favor classes that are “less learnable.” Results for “Improve-
ment” for this dataset are inconclusive because this method tends to focus on
just a few classes at a time, improving their accuracy, and then moving on to

2 Toluene, Dimethylmethlphosponate, ethanol, heptane, p-cymene, Isopropenyl ac-
etate, combinations of these vapors, water, and air For some vapor classification prob-
lems, the artificial nose can achieve almost 100% accuracy [2].
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(a) Nose (b) Land Cover

Fig. 1. Results show that the stability-based method, Redistricting, outperforms other
methods of ACS

the next set of classes. The small number of instances in the dataset does not
allow the full cycle.

Land Cover Data: The land cover dataset consists of a time series of globally
distributed satellite observations of the Earth’s surface [4]. ACS is applicable
because geographers know where on the Earth’s surface one can expect to find
a given land cover type. We used an existing static dataset to illustrate the ben-
efits of ACS for this domain. Figure 1(b) shows the results for the land cover
data. The x-axis represents the number of training instances. The y-axis is the
accuracy obtained by applying a set of pair-wise SVMs on the test data that vote
based on the confidence assigned by the SVMs. T1=5000 and b[r]=250, a rea-
sonable number to be hand-labeled at one sitting. We exhaust the entire static
dataset, causing the same ultimate accuracies for all of the methods because
each method has seen the entire dataset. This is a function of the experimen-
tal method, not redistricting or ACS, nor limitations in the land cover types
of the Earth. Redistricting outperforms uniform, inverse and proportional (for
land cover, class proportions are dictated by the geographers’ intuition, which
is a highly skewed distribution). Accuracy improvement outperforms inverse,
proportional and uniform, but is worse than redistricting. We conjecture this is
because it looks only for improvements in accuracy rather than stability.

ACS in the Field: We deployed our software in the Walt Laboratory and the
chemists have begun gathering data guided by redistricting. An initial dataset
was gathered using the chemists’ intuition of the eight vapors of interest3. We
compute accuracy using k-NN with k=3 and 5-fold CV. Because of time limita-
tions in the lab, we only deployed uniform and redistricting.

The CV accuracy on the initial 168 instances was 74%. On each iteration,
we collected 49 additional instances. After one iteration, uniform achieves an

3 The vapors are benzaldehyde, benzene, butyraldehyde, chloroform, decanol, ethyl
propionate, and n-butanol.
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accuracy of 74% and redistricting leads to an accuracy of 83%. The second
iteration gives 85% and 86% accuracy, respectively. On the second iteration, both
uniform sampling and redistricting obtain similar performance. We conjecture
that we are close to the maximum obtainable accuracy for this set of vapors
and beads. To test this conjecture we re-ran the k-NN with all of the data (325
instances in total) and obtained an accuracy of 86%, supporting our conjecture.

4 Related Work: Active Learning and Instance Selection

Little attention has been paid to determining whether more accuracy can be
achieved when a practitioner can select the classes from which to generate train-
ing data. One notable exception is Jo and Japkowicz’s method for collecting
more examples of the minority class with the goal of increasing accuracy [9].

Active learning, like ACS, adds training examples to the dataset after exam-
ining properties of the classifier learned thus far. However, it assumes an existing
set of unlabeled data or that one can query the feature space explicitly [14,11].
For active learning, requesting more data is actually requesting a label [18]. ACS
does not draw from unlabeled data, rather it guides the generation of new data.
Indeed, situations in which both ACS and active learning are applicable trans-
late into situations where both the features’ values and the labels exist. In this
case, instance selection or weighting are applicable.

ACS is similar to methods for constructing a training set, either by instance
selection [17,11], or by weighting methods such as boosting [8]. Instance selection
methods focus on removing instances from a dataset that hinder classification
accuracy, e.g. [17,4,20,16]. Other methods change the training set’s class distri-
bution by sampling or instance replication to handle misclassification costs or
minority class issues (see [8] for an overview).

5 Conclusion

This paper identified a new class of problems called Active Class Section. ACS
answers the question: If given the opportunity, from which classes should you
generate additional training data? We evaluated several methods for ACS, each
of which can be applied in conjunction with any supervised learning al-
gorithm. We deployed redistricting as part of a real-world system in the Walt
Laboratory.

Many open problems remain. First, a deeper analysis of the relationship be-
tween the proposed methods and results on stability may lead to even better
methods. Second, determining when all of the available “structure” has been
learned from the data, and additional learning will lead to over-fitting, is a
critical objective for any learning problem. Thus, a more thorough analysis of
stopping criteria is needed.
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