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Abstract. In this paper we study the identification of sparse interaction networks
as a machine learning problem. Sparsity means that we are provided with a small
data set and a high number of unknown components of the system, most of which
are zero. Under these circumstances, a model needs to be learned that fits the
underlying system, capable of generalization. This corresponds to the student-
teacher setting in machine learning. In the first part of this paper we introduce
a learning algorithm, based on L1-minimization, to identify interaction networks
from poor data and analyze its dynamics with respect to phase transitions. The
eÆciency of the algorithm is measured by the generalization error, which repre-
sents the probability that the student is a good fit to the teacher. In the second part
of this paper we show that from a system with a specific system size value the
generalization error of other system sizes can be estimated. A comparison with a
set of simulation experiments show a very good fit.

Keywords: machine learning, sparse network reconstruction, feature
identification.

1 Introduction and Motivation

In this paper we consider the problem of identifying interaction networks from a given
set of observations. An example of such a network is a sparse gene-protein interaction
network, for more details see [1,5,2,7,10,11].

In some engineering applications, the number of measurements M available for sys-
tem identification and model validation is much smaller than the system order N, which
represents the number of components. This substantial lack of data can give rise to
an identifiability problem, in which case a larger subset of the model class is entirely
consistent with the observed data so that no unique model can be proposed. Since con-
ventional techniques for system identification are not well suited to deal with such situ-
ations, it thus becomes important to work around this by exploiting as much additional
information as possible about the underlying system. In particular, we are interested in
the relation between the number of measurements and the number of components, the
sparsity of the regulatory network and the influence of noise.
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In this setting, it is natural to link network identification to feature selection. Only
very few components influence the expression level of any given component, so one can
restate the problem as selecting exactly those few among the large amount of compo-
nents under consideration. Hence the results presented here will not only be applicable
to network identification, but more generally to feature selection as well.

In Section 2, we will introduce the definitions of several concepts we use. Section 3
summarizes five research questions we will answer on experimental results. A brief
discussion and our conclusions will be presented in Section 4.

2 Definitions and Algorithm

In the first paragraph we translate the problem of network identification formally into
machine learning terminology [6]. In the next paragraph we introduce and elucidate the
learning algorithm. Then we elaborate on the relation to feature selection. Finally, we
discuss the issue of noisy data.

Terminology: Data and Teacher. In order to formalize the problem stated in the previ-
ous section we now introduce the model which we will consider more rigorously below.
We assume that a training set of M input�output pairs �tr � �(xm� ẋm) � m : 1� � � � � M� is
given, where xm� ẋm � �N . The components of the input vectors xm are independently
and identically distributed so that they are linearly independent. Since the data is as-
sumed to be generated by some interaction network, this network will be denoted by
T � (AT � BT ) where AT � �

N�N and BT � �
N . In this context, we refer to T as the

unknown teacher. For each (xm� ẋm) � �tr, ẋm � AT � xm � BT , i.e., ẋm is the output pro-
duced by the teacher T on input xm. In general, the teacher’s output ẋ on some input x is
computed as follows: ẋ � T (x) � AT � x � BT � Moreover, we consider sparse networks,
for each row of the matrix AT , only KT components are non-zero. Since the latter mod-
els the interactions in the network, a non-zero value of AT

i� j indicates that component i
of input x influences component j of the output ẋ. So the sparsity constraint implies that
each component of the output is determined by exactly KT components of the input.

Learning Algorithm. The learning algorithm should return a network S � (AS � BS ),
referred to as the student, with AS � �N�N and BS � �N , that reproduces the training set
�tr: ẋm � AS � xm � BS for m : 1� � � � � M. More importantly however, the student should
also perform well on input that was not used by the algorithm, i.e., the algorithm should
be able to generalize beyond the training set �tr. To test the student’s generalization
ability, we use a validation set �v � �(xv� ẋv) � v : 1� � � � �V� such that ẋv � AT � xv � BT

for each v : 1� � � � �V . The generalization error �gen is defined as the ratio of the number
of tuples in �v that is not reproduced by the student to the total number of tuples. More
formally, it is the fraction of the patterns in �v for which �ẋv � AS � xv � BS ���ẋv� � �err,
where �err is the maximum deviation from zero that is considered insignificant. The
learning task can now be formulated as follows: the algorithm should produce a student
S given �tr such that �gen is minimal.

The algorithm we use is a reformulation of the problem in terms of linear program-
ming: the objective is to minimize �AS �1 subject to the M constraints ẋm � AS � xm�BS .
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In the target function, �C�1 denotes the 1-norm of the matrix C, i.e., �C�1 �
�

i� j �Ci� j�.
This choice is motivated by the sparsity constraint on the networks to be identified.
If the student S reproduces the teacher T , it will be sparse, hence we prefer solutions
with as few non-zero components as possible. It is known from the literature [3,4] that
the 1-norm is an acceptable approximation for the 0-norm. Since the latter can only
be computed by explicit enumeration, it is unsuitable in practice due to the ensuing
combinatorial explosion. For more details about this technique, see [8] and [9].

The constraints can be written more explicitly as:

N�

i�1

AS
i� jxm� j � BS

i � ẋm�i� j : 1� � � � � N; m : 1� � � � � M� (1)

Hence each row of A and B is a solution to a set of M equations and can be deter-
mined independently, an observation to which we will return later on. For M 	 N,
infinitely many solutions can be found, from which linear programming will select the
most sparse. Trivially, for M � N � 1 the set of equations will have a unique solution:
the teacher T . This implies that one can expect a generalization error �gen 
 1 for very
small training sets, i.e., M � N, while �gen 
 0 for M 
 N. We may conclude that �gen

will be a function of the training set size M. By convention, the number of patterns such
that �gen � 1�2 is denoted by Mgen, the generalization threshold.

Although the generalization error is a good measure to evaluate the student’s quality,
it will nevertheless be useful to consider a measure to compare the student’s structure
to that of the teacher. Since our setting is that of identifying interaction networks, the
presence or absence of such an interaction in the inferred model S is important. This
can be characterized by the following three quantities: (1) nfneg, the number of false
negatives, i.e., interactions that are modeled by T , but not by S ; (2) nfpos, the number
of false positives, i.e., interaction modeled by S , but not by T ; and (3) ncorr the number
of correlation errors, i.e., those components of S and T that are significantly non-zero,
but have opposite sign. These three quantities measure the quality of the identification
process. By definition, 0 	 nfneg 	 NKT , 0 	 nfpos 	 N(N � KT ) and 0 	 ncorr 	 NKT .
Note that these error measures can all be zero, even if the student does not generalize
well, i.e., �gen � 0. Also notice that 0 	 nfneg � nfpos � ncorr 	 N2. Therefore, we
aggregate these three measures into the operator S � T � (N2 � nfneg � nfpos � ncorr)�N2

that measures the quality of the identification.

Relation to Feature Selection. From Eq. (1), it is clear that the problem of identify-
ing the interactions within a network modeled by the matrix AT can be decomposed
into identifying the N rows of that matrix. Since, apart from the sparsity constraint,
interactions in the teacher are completely random, these rows can be determined inde-
pendently. Hence we can reformulate the original problem in terms of N simpler ones:
given an input vector x � �

N , which of the N components of x will e�ectively con-
tribute to the output ẋ � �? This can be viewed as a feature selection problem, since the
sparsity of the teacher implies that only very few components will contribute. As for
network identification, we can define the generalization error for feature selection �fs

gen.
At this point, it is useful to note that the generalization error can be interpreted as the
probability that the student will not compute the correct output on a random input. The
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probability that N independent feature selection problems will all compute the correct
answer is thus given by (1��fs

gen)N , which allows us to compute the generalization error
for network identification �gen from that for feature selection �fs

gen as follows:

�gen � 1 � (1 � �fs
gen)N (2)

Noisy data. Until now, we have considered an ideal situation in the sense that the data
�tr used to identify the network was noise-free. Obviously, the quality of real world data
is typically far from ideal and an algorithm can only be used e�ectively in practice if it is
robust to noise. To model this situation, we will consider a training set with noise: �tr �

�(xm� ẋm � Æm) � m : 1� � � � � M� where Æm � �N . The Æm are identically and independently
distributed and randomly drawn from a normal distribution with zero mean and standard
deviation �noise. To quantify the quality of a student derived from a noisy training set,
we introduce the output deviation, defined as Æẋ �

�
x��v

�T (x) � S (x)���T (x)�.

3 Experiments

In this section, we will consecutively address the following research questions:

1. Is it possible to identify T with a training set that contains less than N � 1 input-
output pairs? If so, what is the value of the generalization error �gen as a function
of the training set size?

2. Does the generalization error �gen depend on the teacher’s sparsity?
3. What is the evolution of the student when compared with the teacher as a function

of the training set size?
4. Is the algorithm robust against noise?
5. How does the generalization error �gen scale with the system size N?

All experiments have been carried out using the algebra package Maple 9.5 on a
Pentium-M class processor of 1.73 GHz and 1 GB of RAM. The standard implementa-
tion of linear programming in Maple is used, which is very convenient since it allows
to specify the objective function and the constraints symbolically.

To facilitate the discussion, we first introduce some convenient notation. The ratio
of the training set size to the system size is denoted by � � M�N. In particular, �gen �

Mgen�N. The fraction of non-zero components per row of a system is denoted by 	 �

K�N. In particular, 	T � KT �N. The amplitude of the noise should be considered relative
to the amplitude of the signal, i.e., we define � � �noise��ẋ, where �ẋ is the standard
deviation of the output vectors’ components ẋm�i. The components of the teacher AT ,
BT and of the input xm are drawn from an uniform distribution over ] � 1� 1[.

Generalization error. To determine the generalization error, we randomly generate a
set of M input vectors and a random teacher system so that we can compute the output
to obtain a training set �tr . The algorithm produces a student, for which we calculate
the generalization error. Since its value depends on the particular selection of input and
teacher, we independently repeat this procedure many times to compute the average.
Fig. 1 shows the observed generalization error as a function of the training set size �.
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Fig. 1. The generalization error �gen as a
function of the training set size � for N �

100 (Æ), N � 160 (�) and N � 300 (�) for
�T � 0�03
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Fig. 2. The generalization error for feature
selection �fs

gen as a function of the training
set size � for N � 100 (Æ), N � 160 (�) and
N � 300 (�) for �T � 0�03
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Fig. 3. The observed (�) versus the com-
puted (Æ) generalization error �gen as a func-
tion of � for N � 80, �T � 0�03. The curve
representing �fs

gen (�) is given as reference.
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Fig. 4. The generalization threshold �gen as
a function of the sparsity �T for N � 80
(Æ) and a few values for N � 160 (�). The
generalization threshold for feature selec-
tion �fs

gen (�) is given as reference.

This result is surprising in two respects: (1) the generalization error decreases to zero
for a training set size � 
 1 and (2) the transition towards generalization is quite abrupt.
It is also clear from Fig. 1 that the transition is increasingly abrupt for increasing system
size N. It is instructive to relate the generalization error �gen for network identification to
that for feature selection �fs

gen in Fig. 2. The latter figure illustrates that �fs
gen, the training

set size � for �fs
gen � 1�2, is independent of the system size N and that the �fs

gen converges
to a step-function for N  �. Hence we observe a first order phase transition between
a regime for � 
 �fs

gen where the student simply reproduces the training set, and another
regime for � � �fs

gen where he is able to reproduce the teacher’s output perfectly.
The relation between the generalization error for the network identification problem

�gen and that for feature selection �fs
gen, given by Eq. (2), is illustrated in Fig. 3. It is clear

that �gen for the network identification problem can reliably be estimated from �fs
gen for
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the feature selection problem. Values beyond �gen are less reliable since inaccuracies
for �fs

gen are amplified considerably due to the mathematical form of Eq. (2).

Sparsity. The next question concerns the relation between the sparsity of the teacher
and the generalization threshold. For a non-sparse teacher, i.e., 	T 
 1, one would need
a training set of size � 
 1 since each of the N(N � 1) components has to be deter-
mined. However, as Fig. 1 illustrated, the fact that the teacher is sparse simplifies the
identification process considerably. Fig. 4 shows the generalization threshold �gen for
network identification as a function of 	T . It is clear that training sets of increasing size
� are required to facilitate the transition to the generalization regime as 	T increases,
i.e., as the sparsity decreases. As expected, for 	T 
 1, �gen 
 1. It is clear that the
advantage sparsity o�ers to the eÆciency of the learning algorithm virtually vanishes
for 	T 
 0�5. However, it is very pronounced for 	T 
 0�2. As before, these results have
been obtained for many independent instances of the training set and teacher.

Learning process. To gain a better understanding of the learning process, i.e., the evo-
lution of the student with respect to the teacher as a function of the training set size
we first consider a fixed training set and teacher. Define a sequence of training sets
�m for m : 1� � � � � M such that �m � �m�1 and ��m�1� � ��m� � 1. These sets are used
to determine a sequence of students S m for m : 1� � � � � M. Fig. 5 shows S �N � T as a
function of the training set size �. For �N � 1, the number of false negatives is N2	T

and the number of false positives is 0. For increasing �, the number of false positives
increases approximately linearly with �, while the number of false negatives decreases
very slowly. The plot illustrates clearly that the transition to generalization is very sud-
den: at �gen, S �genN � T � 1. Fig. 6 and 7 confirm that the scenario sketched above is
indeed the typical behavior when it is averaged over many independent training sets
and teachers. The latter plot illustrates the explanation given above for the behavior of
S �N � T .
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Fig. 5. The learning process characterized
by S m � T as a function of the size of the
training set m�N for an individual run
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Fig. 6. The learning process characterized
by S m � T as a function of the size of the
training set m�N, system sizes N � 100 (Æ),
N � 160 (�) and N � 300 (�) for �T � 0�03
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Fig. 7. Measures nfneg (�, N � 100 dotted
line, N � 160 solid line), nfpos (Æ, N � 100
dotted line, N � 160 solid line) and ncorr (�,
N � 100 dotted line, N � 160 solid line)
as a function of the training set size � for
�T � 0�03
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Fig. 8. Fig. 2 using Eq. (3) for N � 100 (Æ),
N � 160 (�) computed, N � 160 observed
(�), �T � 0�03
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Fig. 9. Deviation of the student and teacher
output Æẋ as a function of the noise level �
on the training set
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Fig. 10. nfneg (�), nfpos (�) and ncorr (Æ) as a
function of the noise level � for N � 100,
�T � 0�03

Noisy data. Noise is ubiquitous in real world applications, hence it is mandatory to test
the algorithm’s robustness. Fig. 9 shows the relative deviation of the respective output of
student and teacher Æẋ as a function of the noise level �. As can be expected for a linear
system, the quality is acceptable for low noise levels only. In particular, � 
 0�01 still
yields a reasonably accurate output. The breakdown for higher noise levels is explained
by Fig. 10 which shows a very large increase in the number of false positives nfpos for an
increasing noise level �. Although these components are very small, they nevertheless
preclude perfect identification of the network.

Scaling with system size. How the system scales with the system size has already been
illustrated in Fig. 1, 4, 6 and 7. However, it is Fig. 2 that provides the most insight. It
turns out that the generalization error curves for various system sizes can be computed
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by applying the correct scaling on the system size �. Suppose we have a curve for �fs
gen

versus � for N0, then the curve for system size N can be obtained by scaling

�(N) � �fs
gen �

�
N0�N (�(N0) � �fs

gen) (3)

The result is shown in Fig. 8 for system sizes N � 100 and N � 160 with sparsity
	T � 0�03. The curve computed for N � 160 from that for N � 100 is in very good
agreement with the one observed for that system size.

4 Discussion and Conclusions

It is quite remarkable that a simple model such as the one considered here exhibits
so many interesting features. With respect to the research questions addressed, we may
conclude that the algorithm identifies a network with N(N�1) interactions using a train-
ing set of considerably smaller size. This turns out to be a consequence of the teacher’s
sparsity. Moreover, a first order phase transition occurs during the learning process. The
system shows a sudden transition to perfect generalization during the learning process.
The latter can be explained by considering the geometric interpretation of linear pro-
gramming. Adding an additional constraint in the form of an input-output pair can lead
to abrupt changes of the minimal values that can be attained by the objective function
when its domain is further restricted. The relation between the feature selection problem
and the network identification task is of note, especially since the generalization behav-
ior of the latter can be derived from the former’s. Moreover, the scaling properties of
feature selection have been demonstrated: given the generalization curve for a certain
size and a fixed sparsity, one can compute the generalization curve for a system of any
size with that sparsity. Unfortunately, the algorithm’s robustness to noise is fairly lim-
ited. This is to be expected given the nature of linear programming as mentioned above.
This is definitely an area for future research.
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