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Abstract. The area under the ROC curve (AUC) has been widely used to mea-
sure ranking performance for binary classification tasks. AUC only employs the
classifier’s scores to rank the test instances; thus, it ignores other valuable in-
formation conveyed by the scores, such as sensitivity to small differences in the
score values. However, as such differences are inevitable across samples, ignor-
ing them may lead to overfitting the validation set when selecting models with
high AUC. This problem is tackled in this paper. On the basis of ranks as well
as scores, we introduce a new metric called scored AUC (sAUC), which is the
area under the sROC curve. The latter measures how quickly AUC deteriorates
if positive scores are decreased. We study the interpretation and statistical prop-
erties of SAUC. Experimental results on UCI data sets convincingly demonstrate
the effectiveness of the new metric for classifier evaluation and selection in the
case of limited validation data.

1 Introduction

In the data mining and machine learning literature, there are many learning algorithms
that can be applied to build candidate models for a binary classification task. Such mod-
els can be decision trees, neural networks, naive Bayes, or ensembles of these models.
As the performance of the candidate models may vary over learning algorithms, effec-
tively selecting an optimal model is vitally important. Hence, there is a need for metrics
to evaluate the performance of classification models.

The predicted outcome of a classification model can be either a class decision such
as positive and negative on each instance, or a score that indicates the extent to which
an instance is predicted to be positive or negative. Most models can produce scores; and
those that only produce class decisions can easily be converted to models that produce
scores [3IT1]]. In this paper we assume that the scores represent likelihoods or posterior
probabilities of the positive class.

The performance of a classification model can be evaluated by many metrics such
as recall, accuracy and precision. A common weakness of these metrics is that they
are not robust to the change of the class distribution. When the ratio of positive to
negative instances changes in a test set, a model may no longer perform optimally,
or even acceptably. The ROC (Receiver Operating Characteristics) curve, however, is
invariant to changes in class distribution. If the class distribution changes in a test set,
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but the underlying class-conditional distributions from which the data are drawn stay
the same, the ROC curve will not change. It is defined as a plot of a model’s true
positive rate on the y-axis against its false positive rate on the x-axis, and offers an
overall measure of model performance, regardless of the different thresholds used. The
ROC curve has been used as a tool for model selection in the medical area since the
late 1970s, and was more recently introduced to evaluate machine learning algorithms
(9L10].

The area under the ROC curve, or simply AUC, aggregates the model’s behaviour
for all possible decision thresholds. It can be estimated under parametric [13], semi-
parametric [[6] and nonparametric [5]] assumptions. The nonparametric estimate of the
AUC is widely used in the machine learning and data mining research communities.
It is the summation of the areas of the trapezoids formed by connecting the points on
the ROC curve, and represents the probability that a randomly selected positive in-
stance will score higher than a randomly selected negative instance. It is equivalent to
the Wilcoxon-Mann-Whitney (WMW) U statistic test of ranks [3]. Huang and Ling
argue that AUC is preferable as a measure for model evaluation over accuracy.

The nonparametric estimate of the AUC is calculated on the basis of the ranks of the
scores. Its advantage is that it does not depend on any distribution assumption that is
commonly required in parametric statistics. Its weakness is that the scores are only used
to rank instances, and otherwise ignored. The AUC, estimated simply from the ranks of
the scores, can remain unchanged even when the scores change. This can lead to a loss
of useful information, and may therefore produce sub-optimal results.

In this paper we argue that, in order to evaluate the performance of binary classifi-
cation models, both ranks and scores should be combined. A scored AUC metric is in-
troduced for estimating the performance of models based on their original scores. The
paper is structured as follows. Section [2] reviews ways to evaluate scoring classifiers,
including AUC and Brier score, and gives a simple and elegant algorithm to calculate
AUC. Section[3lintroduces the scored ROC curve and the new scored AUC metric, and
investigates its properties. In Section ] we present experimental results on 17 data sets
from the UCI repository, which unequivocally demonstrate that validation sAUC is su-
perior to validation AUC and validation Brier score for selecting models with high test
AUC when limited validation data is available. Section[3l presents the main conclusions
and suggests further work. An early version of this paper appeared as [12].

2 Evaluating Classifiers

There are a number of ways of evaluating the performance of scoring classifiers over a
test set. Broadly, the choices are to evaluate its classification performance, its ranking
performance, or its probability estimation performance. Classification performance is
evaluated by a measure such as accuracy, which is the proportion of test instances that
is correctly classified. Probability estimation performance is evaluated by a measure
such as mean squared error, also called the Brier score, which can be expressed as
3. (p(x) — p(x))?, where p(x) is the estimated probability for instance x, and p(x) is 1
if x is positive and O if x is negative. The calculation of both accuracy and Brier score is
an O(n) operation, where n is the size of the test set.
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Ranking performance is evaluated by sorting the test instances on their score, which
is an O(nlogn) operation. It thus incorporates performance information that neither ac-
curacy nor Brier score can access. There are a number of reasons why it is desirable to
have a good ranker, rather than a good classifier or a good probability estimator. One of
the main reasons is that accuracy requires a fixed score threshold, whereas it may be de-
sirable to change the threshold in response to changing class or cost distributions. Good
accuracy obtained with one threshold does not imply good accuracy with another. Fur-
thermore, good performance in both classification and probability estimation is easily
obtained if one class is much more prevalent than the other. For these reasons we prefer
to evaluate ranking performance. This can be done by constructing an ROC curve.

An ROC curve is generally defined as a piecewise linear curve, plotting a model’s
true positive rate on the y-axis against its false positive rate on the x-axis, evaluated
under all possible thresholds on the score. For a test set with ¢ test instances, the ROC
curve will have (up to) ¢ linear segments and 7 + 1 points. We are interested in the
area under this curve, which is well-known to be equivalent to the Wilcoxon-Mann-
Whitney sum of ranks test, and estimates the probability that a randomly chosen positive
is ranked before a randomly chosen negative. AUC can be calculated directly from the
sorted test instances, without the need for drawing an ROC curve or calculating ranks,
as we now show.

Denote the total number of positive instances and negative instances by m and n,
respectively. Let {y1,...,ym} be the scores predicted by a model for the m positives,
and {xi,...,x,} be the scores predicted by a model for the n negatives. Assume both y;
and x; are within the interval [0, 1] for all i = 1,2,...,m and j = 1,2,...,n; high scores
are interpreted as evidence for the positive class. By a slight abuse of language, we
will sometimes use positive (negative) score to mean ‘score of a positive (negative)
instance’.

AUC simply counts the number of pairs of positives and negatives such that the
former has higher score than the latter, and can therefore be defined as follows:

Z (1)

where ;; is 1 if y; —x; > 0, and O otherwise. Let Z, be the sequence produced by
merging {y1,...,ym} and {x,...,x,} and sorting the merged set in ascending order (so
a good ranker would put the positives after the negatives in Z,), and let r; be the rank of
yi in Z,. Then AUC can be expressed in terms of ranks as follows:
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Here, r; — i is the number of negatives before the ith positive in Z,, and thus AUC is the
(normalised) sum of the number of negatives before each of the m positives in Z,.

Dually, let Z; be the sequence produced by sorting {yi,...,ym} U {x1,...,x,} in

descending order (so a good ranker would put the positives before the negatives in Z).
We then obtain

D>

1 n ) 1 n Sj_j
IDNCENEIEDIN (3)

=1 j=11=1



An Improved Model Selection Heuristic for AUC 481

Table 1. Column-wise algorithm for calculating AUC

Inputs: m positive and n negative test instances, sorted by decreasing score;
Outputs: §: AUC value of the model;
Algorithm:
1: Initialise: AUC < 0, ¢« 0
2: for each consecutive instance in the ranking do
if the instance is positive then
c—c+1
else
AUC «— AUC +c¢
end if
: end for

. A AUC
B R

CRXIINEW

where s; is the rank of x; in Z;, and s; — j is the number of positives before the jth neg-
ative in Z;. From this perspective, AUC represents the normalised sum of the number
of positives before each of the n negatives in Z;.

From Eq. @) we obtain the algorithm shown in Table [[] to calculate the value of the
AUC. The algorithm is different from other algorithms to calculate AUC (e.g., [4]) be-
cause it doesn’t explicitly manipulate ranks. The algorithm works by calculating AUC
column-wise in ROC space, where ¢ represents the (un-normalised) height of the current
column. For simplicity, we assume there are no ties (this can be easily incorporated by
reducing the increment of AUC in line 6). A dual, row-wise algorithm using the ascend-
ing ordering Z, can be derived from Eq. (). Alternatively, we can calculate the Area
Over the Curve (AOC) row-wise using the descending ordering, and set 6 «— m":nﬁoc at
the end.

3 sROC Curves and Scored AUC

Our main interest in this paper is to select models that perform well as rankers. To
that end, we could simply evaluate AUC on a validation set and select those models
with highest AUC. However, this method may suffer from overfitting the validation set
whenever small difference in the score values lead to considerable differences in AUC.

Example 1. Two models, M and M,, are evaluated on a small test set containing 3
positives and 3 negatives. We obtain the following scores:

M; :1.04+0.74- 0.6+ 0.5— 0.4— 0.0—
M :1.04+ 0.94 0.6— 0.5+ 0.2— 0.0—

Here, for example, 0.7+ means that a positive instance receives a score of 0.7, and 0.6—
means that a negative instance receives a score of 0.6. In terms of AUC, M achieves the
perfect ranking, while M> has AUC = 8/9. In terms of Brier score, both models perform
equally, as the sum of squared errors is 0.66 in both cases, and the mean squared error is
0.11. However, one could argue that M, is preferable as its ranking is much less sensitive
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Fig. 1. SROC curves for example models M| and M, from Example[T]

to drift of the scores. For instance, if we subtract 0.25 from the positive scores, the AUC
of M decreases to 6/9, but the AUC of M, stays the same.

In order to study this more closely, we introduce the following parameterised version
of AUC.

Definition 1. Given a margin T with 0 < 1 < 1, the margin-based AUC is defined as

0w =, ¥ S wi) 4)

i=1j=1
where ;i (t) is 1 if y; —xj > 1, and 0 otherwise.

Clearly, 8(0) = 6, and 8(1) = 0. More generally, 6(7) is a non-increasing step function
in 7. It has (up to) mn horizontal segments. For a given T, 6(t) can be interpreted as
the AUC resulting from decreasing all positive scores with T (or increasing all negative
scores with 1). Figure [l plots 8(t) of models M, and M, from Example [Tl It is clear
that the margin-based AUC of M| deteriorates more rapidly with T than that of M», even
though its initial AUC is higher. We call such a plot of 6(t) against T an sROC curve.

Consider the area under the sROC curve, denoted by és. This is a measure of how
rapidly the AUC deteriorates with increasing margin. It can be calculated without ex-
plicitly constructing the SROC curve, as follows.

Theorem 1. 6, =) S ", (i — x;)yij.

Proof
n 1 1 m n
6.~ [ dmar= | ) 2 X w0
1 m n 1 1 m n
= 2 21 L Vi(@dr= Y (i x)Vij (5)
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Thus, just as 0 is the area under the ROC curve, éx is the area under the SROC curve; we
call it scored AUC (sAUC). An equivalent definition of sSAUC was introduced in [12],
and independently by Huang and Ling, who refer to it as soft AUC [[7]]. Its interpretation
as the area under the sSROC curve is, to the best of our knowledge, novel. The SROC
curve depicts the stability of AUC with increasing margins, and sAUC aggregates this
over all margins into a single statistic.

Whereas in Eq. () the term ;; is an indicator that only reflects the ordinal com-
parison between the scores, (y; —x;)yi; in Eq. (3) measures how much y; is larger than
x;. Notice that, by including the ordinal term, we combine information from both ranks
and scores. Indeed, if we omit y;; from Eq. (@) the expression reduces to ,:12?‘:1 Vi—
1 xi=M + — M~ :i.e., the difference between the mean positive and negative scores.
Thls measure (a quantity that takes scores into account but ignores the ranking) is
investigated in [2]]. ‘

We continue to analyse the properties of SAUC. Let R = ! ¥ "Iy, be the
weighted average of the positive scores, weighted by the proportion of negatives that
are correctly ranked relative to each positive. Similarly, let R~ = rll Z;f S’ Ty ; be the
weighted average of the negative scores, weighted by the proportion of posmves that
are correctly ranked relative to each negative (i.e., the height of the column under the
ROC curve). We then have the following useful reformulation of sAUC.

Theorem 2. 6, =RT —R".

Proof
R 1 m n 1 m n m n
05 = 2 2 i xj)Wij = D ViV — Z PR
mn 22 niZ1j=1 e
m ri—i n Sj— J 1 i 1 & S/—J N
= y X yi— ' xXj=R"—R"
S N N o

This immediately leads to the algorithm for calculating 8, in Table 2l The algorithm
calculates R™ column-wise as in the AUC algorithm (Table[I), and the complement of
R~ row-wise (so that the descending ordering can be used in both cases).

Example 2. Continuing Example[T] we have

My: R" =0.77,R- =0.3 and 6, = 0.47;
M>: RT =0.74,R~ =0.2 and §, = 0.54.

We thus have that M, is somewhat better in terms of SAUC than M; because, even
though its AUC is lower, it is robust over a larger range of margins.

The following theorems relate 6, & and M+ — M~

Theorem 3. (1)R+<M+ and R~ <M.
2)MT—M <6, <0.
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Table 2. Algorithm for calculating sSAUC

Inputs: m positive and n negative test instances, sorted by decreasing score;
Outputs: éS: scored AUC;
Algorithm:
1: Initialise: AOC «— 0, AUC «+— 0, r«+— 0,¢c 0
2: for each consecutive instance with score s do
if the instance is positive then
cC+Ss
AOC — AOC+r
else
r<r—+s
AUC — AUC +c¢
end if
10: end for
11: R~ — mr—AOC

. AU
12: Rt n

R A Al

13:0y — RT —R~
Proof. (1)
mni:lj—ll mni:lj:ll
TSI 30 D 3 IR
- X< M-
mn = 5 J mn =5 /
(2)
1m n 1m n
MY —M" = (i —xj) < (vi —xj) i
~ 1 & ~
:exgmnzz%jze

The last step follows because y; < 1 and 0 <x; <1, hence y; —x; < 1, for any i and j.

Theorem 4. (1) For separated scores (i.e., y; > x;j for any i and j), M™ — M~ = 0, <

A

0=1.
(2) For perfect scores (i.e., yi =1 and x; = 0 for any i and j), M* — M~ = 0, =0=1

|
D>
By

Proof. (1) For separated scores we have y;; = 1 for any i and j, hence Mt — M~ =
and = 1.
(2) For perfect scores we additionally have y; —x; = 1 for any i and j, hence 6, = 1.

Finally, we investigate the statistical properties of sSAUC. We note that ; is an unbiased
estimate of 0, = fol P(y > x+1)dt, which is proved in the following theorem.

Theorem 5. és is an unbiased estimate of 6.
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Proof. From Eq. (), we have

The variance of the estimate 6 can be obtained using the method of DeLong et al. [T]]
(we omit the proof due to lack of space).

Theorem 6. The variance of éx is estimated by

m

2
Var(és) = n—l Z ( Z —Xi W:/ s>

mn(m—

4 Experimental Evaluation

Our experiments to evaluate the usefulness of sSAUC for model selection are described
in this section. Our main conclusion is that sSAUC outperforms AUC and BS (Brier
score) for selecting models, particularly when validation data is limited. We attribute
this to sAUC having a lower variance than AUC and BS. Consequently, validation set
values generalise better to test set values.

In the first experiment, we generated two artificial data sets (A and B) of 100 exam-
ples, each labelled with a ‘true’ probability p which is uniformly sampled from [0, 1].
Then, we label the instances (+ if p > 0.5, — otherwise). Finally, we swap the classes
of 10 examples of data set A, and of 11 examples of data set B. We then construct
‘models’ M4 and Mp by giving them access to the ‘true’ probabilities p, and record
which one is better (either M4 on data set A or Mp on data set B). For example, by
thresholding p at 0.5, M, has accuracy 90% on data set A, and Mp has accuracy 89%
on data set B. We then add noise to obtain ‘estimated’ probabilities in the following
way: p' = p+kxU(—0.5,0.5), where k is a noise parameter, and U (—0.5,0.5) obtains
a pseudo-random number between —0.5 and 0.5 using a uniform distribution (if the
corrupted values are > 1 or < 0, we set them to 1 and O respectively).

After adding noise, we again determine which model is better according to the four
measures. In Figure 2l we show the proportion of cases where noise has provoked a
change in the selection of the better model, using different values of the noise param-
eter k (averaged over 10,000 runs for each value of k). As expected, the percentage of
changes increases with respect to noise for all four measures, but sSAUC presents the
most robust behaviour among all these four measures. This simple experiment shows
that AUC, BS and accuracy are more vulnerable to the existence of noise in the pre-
dicted probabilities, and therefore, in this situation, the model selected by sAUC is
more reliable than the models selected by the other three measures.
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Fig. 2. The effect of noise in the probability estimates on four model selection measures

We continue reporting our experiments with real data. We use the three metrics
(AUC, sAUC and BS) to select models on the validation set, and compare them using
the AUC values on the test set. 17 two-class data sets are selected from the UCI repos-
itory for this purpose. Table [3 lists their numbers of attributes, numbers of instances,
and relative size of the majority class.

Table 3. UCI data sets used in the experiments (larger data sets used in separate experiment in
bold face)

# Dataset  #Attrs #Exs %Maj.Class # Data set #Attrs #Exs %Maj.Class
1 Monk1 6 556 50.00 10 Breast Cancer 9 286 70.28
2 Monk2 6 601 65.72 11 Breast-w 9 699 65.52
3 Monk3 6 554 55.41 12 Colic 22 368 63.04
4 Kr-vs-kp 36 3,196 52.22 13 Heart-statlog 13 270 59.50
5 Tic-tac-toe 9 958 64.20 14 Sick 29 3,772 93.87
6 Credit-a 15 690 55.51 15 Caravan 85 5,822 94.02
7 German 20 1,000 69.40 16 Hypothyroid 25 3,163 95.22
8 Spam 57 4,601 60.59 17 Mushroom 22 8,124 51.80
9 House-vote 16 435 54.25

The configuration of the experiments is as follows. We distinguish between small
data sets (with up to 1,000 examples) and larger data sets. For the 11 small data sets, we
randomly split the whole data set into two equal-sized parts. One half is used as training
set; the second half is again split into 20% validation set and 80% test set. In order to ob-
tain models with sufficiently different performance, we train 10 different classifiers with
the same learning technique (J48 unpruned with Laplace correction, Naive Bayes, and
Logistic Regression, all from Weka) over the same training data, by randomly removing
three attributes before training. We select the best model according to three measures:
AUC, sAUC and BS using the validation set. The performance of each selected model
is assessed by AUC on the test set. Results are averaged over 2000 repetitions of this
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Table 4. Experimental results (AUC) on small data sets. Figures in bold face indicate a win of
SAUC over AUC/BS. The last line indicates the total number of wins, which is never smaller than
the critical value (9 out of 11).

J48 Naive Bayes
#  sAUC AUC BS sAUC AUC BS
1 86.34 83.76 85.81 70.80 67.98 69.96
2 51.79 51.3251.05 51.19 51.81 51.78
3 95.92 93.20 95.47 95.47 92.21 94.96
5
6
7

Logistic Regression
sAUC AUC BS

70.07 67.28 69.23
51.19 51.76 51.80
95.98 92.65 95.58
74.62 72.11 72.68
91.12 90.62 90.55
77.60 77.29 77.20
98.36 98.24 98.28
65.19 64.94 65.33
99.24 99.18 99.22

79.48 77.72 78.16 72.13 70.88 71.05

90.16 89.25 89.56 89.70 89.06 89.61

68.95 68.75 68.85 77.69 77.24 77.25
9 98.11 97.81 97.98 96.90 96.74 96.81
10 61.75 62.10 62.09 69.62 69.09 68.98
11 97.68 97.64 97.67 98.01 97.94 98.00
12 87.13 85.65 86.13 83.85 83.60 83.82 84.18 83.74 83.76
13 83.42 83.56 83.45 88.69 88.68 88.49 89.24 89.12 89.13
wins 9 9 10 10 10 9

experiment to reduce the effect of the random selection of attributes. These results are
reported in Table [l We performed a sign test over these results to compare the overall
performance. The critical value for a two-tailed sign test over 11 data sets at oo = 0.05 is
9 wins. We conclude that SAUC significantly outperforms AUC/BS in all experiments.
Given that the sign test is relatively weak, we consider this to be strong experimental
evidence that SAUC is a good model selector for AUC in cases where we have limited
validation data.

For the 6 larger data sets we employed a slightly different experimental configura-
tion. In this case we employ 50% of the data for training the models, 25% for validation,
and 25% for test. Here we only run 100 iterations. Our intuition is that when we have
enough validation data, sSAUC demonstrates less of an advantage for selecting models
with higher test AUC because the variance of validation AUC is drastically reduced.
The results included in Table 3l confirm this intuition, as the critical number of wins or
losses (6 at oo = 0.10) is never achieved, and thus no significant differences in perfor-
mance are observed.

Table 5. Experimental results (AUC) on larger data sets. Figures in bold face indicate a win of
SAUC over AUC/BS. According to the sign test, the numbers of wins and losses are not significant.

14
15
16
17
wins

J48
sAUC AUC BS
99.92 99.91 99.91
96.69 96.78 96.67
98.70 98.67 98.65
69.55 69.67 69.90
96.73 97.28 96.59
100 100 100

2 3

Naive Bayes
sAUC AUC BS
95.88 96.45 96.45
95.88 96.50 96.45
91.85 92.00 91.62
70.47 70.59 70.75
98.00 97.99 97.90
99.80 99.88 99.79

1 3

Logistic Regression
sAUC AUC BS
99.59 99.55 99.57
96.95 96.93 96.91
93.68 93.78 93.59
94.83 96.55 94.90
96.91 97.01 96.98
100 100 100
2 3
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Fig. 3. Scatter plots of test AUC vs. validation AUC (left) and test AUC vs. validation sAUC
(right) on the Credit-a data set.

Finally, FigureBlshows two scatter plots of the models obtained for the Credit-a data
set, the first one plotting test AUC against validation AUC, and the second one plotting
test AUC against validation SAUC. Both plots include a straight line obtained by linear
regression. Since validation SAUC is an underestimate of validation AUC (Theorem[3)),
it is not surprising that validation SAUC is also an underestimate of test AUC. Validation
AUC appears to be an underestimate of test AUC on this data set, but this may be caused
by the outliers on the left. But what really matters in these plots is the proportion of
variance in test AUC not accounted for by the linear regression (which is 1 — g2, where
g is the linear correlation coefficient). We can see that this is larger for validation AUC,
particularly because of the vertical lines observed in FigureBl(left). These lines indicate
how validation AUC fails to distinguish between models with different test AUC. This
phenomenon particularly occurs for a number of models with perfect ranking on the
validation set. Since sAUC takes the scores into account, and since these models do
not have perfect scores on the validation set, the same phenomenon is not observed in
Figure[3] (right).

5 Conclusions

The ROC curve is useful for visualising the performance of scoring classification mod-
els. ROC curves contain a wealth of information about the performance of one or more
classifiers, which can be utilised to improve their performance and for model selection.
For example, Provost and Fawcett [[10] studied the application of model selection in
ROC space when target misclassification costs and class distributions are uncertain.

In this paper we introduced the scored AUC (sAUC) metric to measure the perfor-
mance of a model. The difference between AUC and scored AUC is that the AUC
only uses the ranks obtained from scores, whereas the scored AUC uses both ranks and
scores. We defined sAUC as the area under the SROC curve, which shows how quickly
AUC deteriorates if the positive scores are decreased. Empirically, SAUC was found to
select models with larger AUC values then AUC itself (which uses only ranks) or the
Brier score (which uses only scores).
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Evaluating learning algorithms can be regarded as a process of testing the diversity
of two samples, that is, a sample of the scores for positive instances and that for negative
instances. As the scored AUC takes advantage of both the ranks and the original values
of samples, it is potentially a good statistic for testing the diversity of two samples,
in a similar vein as the Wilcoxon-Man-Whitney U statistic. Preliminary experiments
suggest that SAUC has indeed higher power than WMW. Furthermore, while this paper
only investigates SAUC from the non-parametric perspective, it is worthwhile to study
its parametric properties. We plan to investigate these further in future work.
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