Bayesian Substructure Learning - Approximate
Learning of Very Large Network Structures

Andreas Nigele!?, Mathius Dejori!, and Martin Stetter!

! Siemens AG, Corporate Technology, CT IC 4, D-81730 Munich, Germany
2 Dept. of Computer Science, Technical University of Munich, D-85747 Garching,
Germany

Abstract. In recent years, Bayesian networks became a popular frame-
work to estimate the dependency structure of a set of variables. However,
due to the NP-hardness of structure learning, this is a challenging task
and typical state-of-the art algorithms fail to learn in domains with sev-
eral thousands of variables. In this paper we introduce a novel algorithm,
called substructure learning, that reduces the complexity of learning large
networks by splitting this task into several small subtasks. Instead of
learning one complete network, we estimate the network structure iter-
atively by learning small subnetworks. Results from several benchmark
cases show that substructure learning efficiently reconstructs the network
structure in large domains with high accuracy.

Keywords: Graphical Models, Bayesian Networks, Structure Learning.

1 Introduction

Bayesian networks (BNs) are popular graphical models to describe the depen-
dencies between a set of random variables in a probabilistic as well as graph
theoretic way. They provide a consistent and intuitive graphical representation
of higher-order statistics between these variables. One important task for BNs
that became important in recent years is the learning of the qualitative depen-
dency structure from data. Due to the NP-completeness of structure learning
[6], many interesting domains for Bayesian network learning face the problem of
high dimensionality. The computational time of learning Bayesian networks can
be reduced by applying heuristic assumptions about possible network structures
combined with heuristic search strategies. For example, the “Sparse Candidate”
algorithm with polynomial computational complexity was introduced [IT]. This
algorithm restricts the number of possible parents for each variable to a small
number and allows only edges between a variable and its “candidate” parents.
The basic idea behind this algorithm is following heuristic argument: If variables
X, and X5 are almost independent in the data, they are unlikely to be connected
in a Bayesian network and, thus, the search space of possible network structures
can be restricted on those that have no edge between X; and X5. Recently, a
very competitive algorithm was introduced [16]. This so called MMHC algorithm
uses a constraint based method to detect possible parent-child relationships and

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 238 2007.
© Springer-Verlag Berlin Heidelberg 2007



Bayesian Substructure Learning - Approximate Learning 239

combines all these relationships to an undirected skeleton of the network struc-
ture. Afterwards, a score-based greedy search procedure is used to learn the edge
orientation based on the skeleton.

However, structure learning in domains with tens of thousands of variables
is intractable for current learning methods given the available computational
power except for very restricting cases with boolean variables paired with very
sparsely linked graphs [12]. Areas of applications for large networks are, besides
others, social networks, warehousing or biological processes. For learning in such
large domains, one typically restricts the feature dimensions on a feasible subset
of relevant variables that are of high interest, as it was done in [I0] for the
estimation of biological processes.

Here we introduce the substructure learning algorithm which combines the ap-
proach of restricting possible network structures with dimensionality reduction.
This approach is shown to be efficient in terms of accuracy and scalability for
structure learning in large domains. In a first step, we learn the skeleton of the
network structure. In a second step, for each variable, we learn one small subnet-
work to estimate the local structure “around” this variable. Thereby, the possible
network structures are restricted, based on the undirected skeleton. By learning
one subnetwork for each variable in the complete network, we systematically
estimate the complete directed network structure step by step, without learning
one single Bayesian network for the whole domain. Based on all subnetworks, we
provide a graphical representation of the directed dependency structure using
the framework of a fPDAG (feature partial directed graph) to enable a unifying
representation of all small and local subnetworks.

2 Methods

2.1 Background

At first, we provide a brief summary of learning multinomial Bayesian networks
(BNs) and instead direct the interested reader to [T4JT16] for further information.
Bayesian networks can be used to describe the joint probability distribution of
n random variables X = {X1, X2, X3, ..., X,,}. A Bayesian network B = (G, O)
consists of two parts. The first part is the network structure which is a directed
acyclic graph (DAG) G with each variable X; represented as a node. The edges
in the DAG represent statistical dependencies between the variables. The second
part is a set of parameters describing the probability density. With the indepen-
dence statements encoded in the DAG the joint probability function over X can
be decomposed into the product form

p(X17X27“'7Xﬂ) = Hp(XZ‘Pah@ag)ﬂ (1)
i=1
where Pa,; are the parents of variable X; in the DAG G.

Learning the structure and the parameters of a Bayesian network from a
data set D can be formulated as the following problem: Given a finite data



240 A. Néagele, M. Dejori, and M. Stetter

set D = (d',...,d") with N different independent observations, where each
data point d! = (d!, ..., d!)) is an observation of all n variables, find the graph

structure G and the parameters @ that best match data set D. In the Bayesian
approach this implies maximizing the function

p(DIG)p(G)

p(gip) = ", 2)

where p(G) is the prior for the structure, p(D) a normalization constant and
p(D|G) the marginal likelihood of D given the model graph G.

By using an uniform prior over all possible network structures, the learning
problem can be reduced by searching solely the structure with best marginal
likelihood

p(DIG) = / p(D|G. 6)p(6]G)de, 3)

where p(D|©, G) is the likelihood of the data set D given the Bayesian network
(G,0) and p(O|G) denotes the prior for the local probability distributions © of
the Bayesian network with structure G.

The approach described so far is commonly referred to as “score-based” ap-
proach since the DAGs are rated by their score. Constraint-based methods form
the second class of structure learning algorithms. Instead of searching the opti-
mal scoring DAG, they reconstruct the network by applying conditional indepen-
dence tests on the data. Recently, a new and quite competitive algorithm that
combines both approaches was developed [16]. The so called MMHC (max-min
hill-climbing) algorithm performs Bayesian network learning in two steps: firstly,
an undirected network skeleton is estimated with MMPC (max-min parents and
children) that employs constraint-based techniques. Afterwards, a score-based
greedy search is performed to orient the edges in order to obtain a high-scoring
DAG.

Our substructure algorithm utilizes the same approach to estimate the skele-
ton, thus we shortly summarize the MMPC algorithm. For more details we direct
the interested reader to [16]. MMPC is a local discovery algorithm to assess the
set of parents and children PC; of a variable X;. This is done in two phases. In
the first phase, conditionally dependent variables can enter the set of candidate
parents and children according to a heuristic function which is called Max-Min
heuristic: This variable enters next the candidate set that maximizes the mini-
mum association to X; given the current candidate set. Thereby, the minimum
association is defined as the minimal conditional dependency of a variable and
X, tested for all possible subsets of the current candidate set. This means that
this variable enters the candidate set which is most unlikely to be condition-
ally independent from X;. The growing phase stops after all dependent variables
have entered the candidate set. In the second phase, the false positive variables
are removed which possibly entered the candidate set in the first phase. False
positives are such variables that are independent of X; given some subset of all
variables. Thus, all variables that are conditionally independent given a subset



Bayesian Substructure Learning - Approximate Learning 241

of the candidates are removed from the candidate set. The authors of MMPC
have shown that under the assumption of faithfulness this algorithm will return
no false negatives. It also returns no false positives if the PC relation is made
symmetric, i.e. for all X; € PC; it is tested whether X; € PC;j; if this condi-
tion is not fulfilled, X; is removed from PC;. To construct the skeleton of the
Bayesian network, the MMPC algorithm is performed for all variables, and each
variable is connected to all members of its set of parents and children.

It has been shown that the MMHC algorithm has a good performance in terms
of quality as well as runtime and outperforms many state-of-the-art BN learning
algorithms such as the Sparse-Candidate algorithm [T6/TT]. However, MMHC
faces the problem of its computational complexity if applied in a domain with
more than several thousand variables. While the skeleton reconstruction phase
is quite efficient, the edge orientation phase is the limiting part in the MMHC
algorithm. The authors have reported from a benchmark with 5000 variables
where the first phase took 19 hours on a Pentium Xeon with 2.4 GHz, while the
edge orientation took almost two weeks [16].

2.2 Substructure Learning

In this section we introduce substructure learning as an efficient and scalable
method for estimating the structural dependencies in large and sparse domains.
The general idea behind this algorithm is that subparts of very large networks
can be learned by omitting unimportant variables, as it is done e.g. for the
estimation of the genetic regulatory network where the large amount of about
30,000 genes (variables) is reduced to a small set of relevant genes [10]. How
the selection of important network nodes for one subnetwork can influence the
learned structure is exemplarily shown in Fig. [l that is taken from [4]. The
removal of one important node (X7 in this example) can disrupt the structure of
the BN. The direct relationships that pass originally over X7 in left hand network
must be represented by indirect relationships between the remaining nodes in
the subnetwork on the right hand side, which leads to a massive appearance of
false positive and false negative edges, thus leading to an entirely wrong set of
relationships.

Based on the idea of dimensionality reduction and instead of learning the
whole network, we learn a set of small subnetworks that together resemble the
original global structure with high accuracy. The algorithm itself is a two-step
process (see Table [[]): Firstly, the skeleton S of the complete network structure
is reconstructed. Secondly, small subnetworks are learned independently of each
other for an estimation of the complete network structure. The new approach of
substructure learning is to estimate the complete network structure by learning
several subnetworks, one for each variable in the complete network.

In the first step, our algorithm (lines 2 — 5) is identical to the first phase of
MMHC and determines the set of parents and children PC; of each variable X; to
reconstruct the skeleton S of the complete network. In the second step (lines 6 —
12), we introduce a variable selection component by leaving, for each variable X,
a subnetwork that is centered “around” the variable. This estimation starts with



242 A. Néagele, M. Dejori, and M. Stetter

Table 1. Substructure learning algorithm

1: procedure SUBSTRUCTURE(D)
Input: data D
Output: set of Bayesian subnetworks B
// skeleton reconstruction

2 for each variable X; € X do

4: end for

5 create skeleton S by all PC;
// structure learning

6: for each variable X; € X do

7 M, := NEIGHBOURHOOD(X;,S);

8: D, := restrict data D on variables in M,

9: B; := LEARN BN(M;, D, S);

10: B; := restrict B; on the Markov blanket of X; and X;
11: B:=BUB;

12:  end for
13: return B;
14: end procedure

the selection of variables M; for learning one BN (line 7). For that purpose we
utilize the skeleton S to determine the set IM; of structurally important variables
which is calculated by NEIGHBOURHOOD(X,S). This procedure returns a set
of variables which includes X;, the neighbours of X; in § and their neighbours.
Thus, the central variable X; of the local structure, the parents and children of
X; and their parents and children are all put together for learning one single BN.
This variable selection is the first crucial step since a suboptimal selection with
missing variables which are structurally important can lead to false positives as
well as false negatives, as it was shown before examplarily.

The second crucial step is the learning of the local Bayesian subnetworks (line 9).
As done for MMHC, we restrict edges in the subnetwork to edges that also appear
(as undirected edges) in the skeleton, this means an edge between two variables
can only be added during structure search if the variables are also connected in the

Fig. 1. The left Bayesian network is an example for a complete Bayesian network, the
network on the right-hand side is the simplest Bayesian network that encodes the same
probability distribution, but without node X~. Note that the nodes X4, X5 and Xg are
no longer independent given their parents.



Bayesian Substructure Learning - Approximate Learning 243

skeleton. To increase the quality of the network estimation we afterwards restrict
the learned subnetwork to the Markov blanket of X; by removing all variables and
edges that do not belong to the Markov blanket or X; itself. The Markov blanket
of a variable is a subset of variables that render this variable independent from all
others. In a BN, the Markov blanket of a variable consists of its parents, its children
and the parents of its children. The result of the substructure algorithm is the set
B, containing all local Bayesian subnetworks B;, one for each variable. All the local
subnetworks allow a structural estimation of the complete DAG and, as well, build
a quantitative model for each single variable given its Markov blanket, encoded
as a BN.

2.3 Structure Representation

The set of partially overlapping subnetworks B lacks of a unifying representation
of the network structure. While the structure of a single subnetwork forms a
DAG, the edges of all subnetworks together need neither to be acyclic nor to
have all edges with conforming orientations in all subnetworks. For example,
it is likely that there exists an edge between two variables in one subnetwork
that has the opposite direction in another subnetwork, or it does not occur in
the other subnetwork at all. For a unifying representation of such structural
uncertainties we use the framework of feature partial directed graphs (fPDAG)
[819], which assigns confidences to edge features. The features of an edge between
two variables X; and X; can be described by a probability distribution with four
states, that is

Diesj = {DimjsPi—j DijsDilj} - (4)

pi—; denotes the probability of a directed edge from X; to X, p;—; the prob-
ability of a directed edge from X; to X;, p;—; the probability of an undirected
edge and p;1; the probability that there is no edge between the two variables.
We estimate the confidence of a feature as the empirical mean of the confidences
in the subnetworks:

pica®]) = L 3" Fics(By)), )

where f(B,) is the truth-value of the feature in network Bj: it is one if the
feature appears in the network, otherwise it is zero. The normalization constant
a denotes the number of networks that can make a statement about the feature.
In more detail, the normalization constant of an edge feature with X; and X
as endpoints is the number of networks that contain both variables X; and
X. If there is no network that contains both variables, the probability of the
edge is set to zero. As the direction of edges that do not belong to a collider
structure can be ambiguous [I8], the features are not calculated directly from
the structure of a Bayesian network but from the PDAG (partial directed acyclic
graph) representation of its network structure [7].

The fPDAG of Bayesian networks is a graph which contains all variables that
are present in the Bayesian networks. Each edge between two variables X; and



244 A. Néagele, M. Dejori, and M. Stetter

X is weighted with its feature p;.,;. Thus, unlike Bayesian networks or PDAGs,
the structure of a fPDAG is neither an acyclic directed nor a partially directed
acyclic graph. Instead, it is a weighted graph that has edges between related
variables, and these edges are labeled with p;_.;.

2.4 Time Complexity of Substructure Learning

In the first phase of the substructure algorithm, the skeleton of the underlying
dependency structure is reconstructed using MMPC. Each single call on MMPC
has a computational complexity of O(|X|[PC|"*") with [ as the maximum size
of all conditioning subsets. Thus, the overall cost for reconstructing the whole
skeleton is O(|X|*|PC|""), where [PC| is the largest set of parents and children
over all variables in X (we refer to [I6] for more details). So far, the substruc-
ture algorithm does not differ from MMHC. However, in the edge orientation
phase substructure learning splits the structure search problem into several small
problems.

We now estimate the influence of this splitting on the number of possible
network structures. Given a skeleton where each variable has at least two neigh-
bours (or parents in the case of the sparse candidate algorithm), finding the best
DAG is NP-hard in the number of variables [ITJ6]. Thus, learning one subnet-
work is NP-hard in \PC|2, since [PC|? is an upper bound for the number of
variables in one subnetwork. This means, if |[PC]| is much smaller than the num-
ber of all variables, the substructure approach dramatically reduces the number
of possible network structures. This affects the performance of heuristic search
strategies like hill climbing, as well. For an estimation of the impact, we define
the cost of a search strategy, depending on the maximum number of parents
and children and the size of the domain, as F(|PC]|, |X]). For one subnetwork,
the cost becomes f(|PC|, [PC|?). Thus, the overall cost for the second phase of
substructure learning is |X|f(|PC|, |PC|?). For large networks with small |PC|
we expect the substructure algorithm to perform faster than approaches that
learn the complete DAG. If we restrict |[PC| on a fixed value, the second phase
performs even linearly in the number of variables.

3 Results

In this section, we empirically benchmark the substructure algorithm by a com-
parison to MMHC. We use only MMHC for comparison as it has been shown
in [I6] to outperform many other structure learning algorithms in terms of ac-
curacy and time efficiency. For the benchmark, we sample training data from
known benchmark networks and request both algorithms to reconstruct the orig-
inal network structures. These reconstructed networks are then compared to the
original network to assess the quality of the learned structures. As benchmark
networks we have chosen the Alarm [3] and the Insurance network [4]. Both net-
works are relatively small and have only a few variables (Alarm: 37; Insurance:
27). However, we are particularly interested in the performance in large domains.



Bayesian Substructure Learning - Approximate Learning 245

Thus, we used the tiling method described in [I7], which uses one network as tile
and puts several tiles together, to enlarge both networks in size. We generated
several large networks with the 10-fold, 20-fold and 30-fold size of the original
network using the Causal Explorer software package [2]. The resulting networks
are denoted as Alarm 10, Alarm 20, Alarm 30, Insurance 10, Insurance 20 and
Insurance 30 (or abbreviated: A. 10, ..., I. 30). From each of the benchmark
networks we sampled data sets of different sizes (100, 200, 500, 1000 and 5000
samples).

For the structure learning part of the substructure algorithm we use random
hill climbing as heuristic search method. This means we select randomly two
variables, calculate the scores for arc addition, arc removal and arc reversal and
apply the highest scoring local change until no action can improve the total
score. As scoring function that solves (@), we use the Bayesian Dirichlet equiv-
alent (BDeu) score [I4] with an equivalent sample size of ten. For the MMHC
algorithm we used the implementation of the original authors from the Causal
Explorer software package [2]. For the DAG search, they implemented Greedy
Hill Climbing and used the BDeu score with an equivalent sample size of ten,
as well. The here presented approach is focused on optimally reconstructing the
original structure. Thus, we assess the accuracy by using evaluation measures
that are based on structural features only. Other quality measures that take
the density distribution into account are not considered here. As first evaluation
measure we use the structural hamming distance (SHD) which is defined as the
number of the following operations to make two PDAGs match [I6]: (1) insert
or remove an undirected edge or (2) insert, reverse or remove a directed edge.
For feature graphs (fPDAGs), we extend the definition in such a way that each
operation counts not as one but as the confidence of the corresponding feature.
Additionally, we report the number of false positives (FP) and false negatives
(FN) defined as the number of operations to remove all false positive or false
negative edges. For runtime comparisons we use the real-time of both algorithms
in seconds on a computer with an Intel Pentium M processor, 2 GHz, and two
GB working memory.

Table 2. Performance results for different networks and sample sizes

500 1000 5000
Runtime SHD Runtime SHD Runtime SHD

A, 1.22(543) 1.25(26.2) 1.23 (7.31) 1.03 (16.4) 1.30 (26.4) 1.85 (18.5)
A. 10 0.64 (162.8) 1.01 (382.4) 0.73 (228.3) 0.99 (314.5) 0.85 (862.1) 1.10 (253.9)
A. 20 0.40 (582.9) 0.91 (742.8) 0.45 (802.4) 0.89 (620.9) — -
A. 30 0.24 (1265) 0.88 (1066) 0.33 (1741) 0.85 (867.0) — -

I 1.18(51) 100 (42.1) 1.09 (7.66) 0.90 (36.1) 1.11 (57.2) 0.92 (34.1)
L 10 0.78 (129.3) 1.11 (405.0) 0.88 (199.6) 1.04 (327.1) 0.98 (1348) 1.08 (201.6)
.20 0.54 (398.5) 1.03 (757.0) 0.65 (598.0) 1.01 (592.3) — -
1. 30 0.39 (815.7) 1.02 (1137) 0.45 (1202) 0.97 (885.2) — -



246 A. Néagele, M. Dejori, and M. Stetter

Table 3. Average performance results

Network Size Edges Runtime SHD FP FN
Alarm 37 46 1.32 1.37 0.98 1.31
Alarm 10 370 570 0.74 1.21 0.81 1.06
Alarm 20* 740 1101 0.43 0.90 0.32 1.09
Alarm 30* 1110 1580 0.29 0.86 0.31 1.08
Insurance 27 52 1.31 1.00 1.04 1.09
Insurance 10 270 556 1.27 1.15 1.40 1.04
Insurance 20* 540 1074 0.59 1.02 0.86 1.03
Insurance 30* 810 1619 0.42 0.99 0.87 1.01
| ——Alarm

- |- - ~Insurance

Normalized Runtime

0 200 400 600 800 1000 1200
Network Size

Fig. 2. Speed-up of substructure learning increases with the size of the network

Table [2 shows the relative performance of substructure learning compared to
MMHC for different sample sizes (500, 1000 and 5000 samples) and networks by
means of runtime (in seconds) and SHD. The numbers denote the normalized
performance of substructure learning. This means that we divided each measure
for substructure learning by the corresponding measure for MMHC. Thus, a
value smaller than one denotes that substructure learning performs better than
MMHC. The number in brackets denote the original, unnormalized measures
for substructure learning. Additionally, in table [3] we report the network-wise
averaged values over all sample sizes (100, 200, 500, 1000 and 5000 samples).
Some of the networks (denoted by an asterisk in the table) are only learned
with 500 and 1000 samples due to the large amount of time needed for one
network reconstruction. As we can see, the substructure algorithm generally
shows a good performance in terms of runtime and network quality compared
to MMHC, especially for large networks. There is only one prominent outlier:
the relatively small Alarm network is reconstructed poorly for 5000 samples
with a normalized hamming distance of 1.85. For all other cases, however, the
structural hamming distances are comparable for both approaches, in some cases
substructure learning even outperforms MMHC. Besides, the number of false



Bayesian Substructure Learning - Approximate Learning 247

positives are even less in most substructure networks, while there are slightly
more false negatives (see table [3).

In Fig. Bl the normalized and averaged runtimes for 500 and 1000 samples are
plotted against the size of the network. As MMHC shows better runtime results
for small networks, the reduced complexity of substructure learning shows its ad-
vantage for larger networks: For the Insurance 30 benchmark case, substructure
learning needs only about 40 % of MMHCSs runtime, while for the largest Alarm
network only about 30 % of the runtime is needed. We also tried to learn larger
networks, thus we created a tiled Alarm network with 1850 variables and 2853
egdes. However, MMHC failed to learn the complete network within one day
(we interrupted the algorithm because of time issues). In contrast, substructure
learning reconstructed the whole network within 255 minutes with a hamming
distance of 1378, 88 false positives, 661 false negatives and 1564 correctly iden-
tified edges. Thereby, the network learning phase of substructure learning took
only 10 minutes, while the skeleton reconstruction phase took the rest.

4 Discussion

Many other approaches for efficient network learning optimize the search proce-
dure to find a good DAG by utilizing the sparseness of the structure. Recently,
an algorithm that deals with domains up to hundreds of thousands of variables
was introduced [12]. However, it restricts on binary variables paired with very
sparsely linked graphs. Another approach that is closely related to MMHC was
introduced in [5]. While, in the worst case, the skeleton reconstruction phase
using MMPC can have an exponential cost, they developed an polynomial algo-
rithm (called PMMS) for learning the skeleton. Empirically results on benchmark
cases have shown that this algorithm significantly improves the runtime with a
comparable quality of the reconstructed skeleton. In future we plan to include
this algorithm in our substructure learning.

Since substructure learning detects the Markov blanket for each variable and
thus renders this variable independent from all other variables given the Markov
blanket, it can also be seen as a feature selection algorithm. In [T5] a variation
of MMPC is developed that estimates the Markov blanket using conditional
independency tests. A comparison of different other approaches can be found
in [I]. However, these methods return only the set of variables that belong to
the Markov blanket, without discovering the probability distribution and its
underlying network structure.

Another approach that is somehow related to our work is the framework
of dependency networks [I3]. There, the joint distribution is defined by a set
of conditional probabilities. Unlike BNs where the conditional probability of a
variable is defined given its parents, the conditional probability for each variable
is determined by the complete Markov blanket. Subnetworks, resulting from
substructure learning, can be easily transformed into a dependency network:
The conditional probability of variable X; is given by the joint distribution
of subnetwork B;, conditioned on the Markov blanket of X;. For inference in



248 A. Néagele, M. Dejori, and M. Stetter

a dependency network, the original authors have introduced a Gibbs-sampling
method. Since subnetworks can be transformed into dependency networks, this
inference method can also be applied to subnetworks.

5 Conclusion

The problem of learning the best scoring Bayesian network from data is NP-hard.
In this paper, we have introduced the substructure algorithm that efficiently
estimates the features of the underlying network structure by independently
learning small subnetworks. Results from benchmark cases show that structural
features of large networks can be learned with high accuracy, comparable to
the results of MMHC. However, substructure learning scales much better for
large domains, if the network is only sparsely linked. We have also shown that
the framework of dependency networks can be utilized to perform inference on
subnetworks.

References

1. Aliferis, C.F., Tsamardinos, I., Statnikov, A.: HITON: a novel Markov Blanket al-
gorithm for optimal variable selection. In: AMIA: Annual Symposium proceedings,
American Medical Informatics Association (2003)

2. Aliferis, C.F., Tsamardinos, I., Statnikov, A., Brown, L.E.: Causal Explorer: A
Causal Probabilistic Network Learning Toolkit for Biomedical Discovery. In: Vala-
far, F., Valafar, H. (eds.) Proceedings of the International Conference on Mathe-
matics and Engineering Techniques in Medicine and Biological Scienes, METMBS
’03, June 2003, pp. 371-376. CSREA Press (2003)

3. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM Moni-
toring System: A Case Study with Two Probabilistic Inference Techniques for Belief
Networks. In: Second European Conference on Artificial Intelligence in Medicine,
London, Great Britain, vol. 38, pp. 247-256. Springer, Berlin (1989)

4. Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive Probabilistic Networks
with Hidden Variables. Machine Learning 29(2-3), 213-244 (1997)

5. Brown, L.E., Tsamardinos, 1., Aliferis, C.F.: A Comparison of Novel and State-of-
the-Art Polynomial Bayesian Network Learning Algorithms. In: AAAI pp. 739-745
(2005)

6. Chickering, D.M., Geiger, D., Heckerman, D.: Learning Bayesian Networks is NP-
Hard. Technical Report MSR-TR-94-17, Microsoft Research, Redmond, WA, USA
(November 1994)

7. Chickering, D.M.: A Transformational Characterization of Equivalent Bayesian
Network Structures. In: Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pp. 87-98 (1995)

8. Dejori, M.: Inference Modeling of Gene Regulatory Networks. PhD thesis, TU
Miinchen, Garching, Germany (2005)

9. Friedman, N., Goldszmidt, M., Wyner, A.J.: On the Application of The Bootstrap
for Computing Confidence Measures on Features of Induced Bayesian Networks. In:
Seventh International Workshop on Artificial Intelligence and Statistics (January
1999)



10.

11.

12.

13.

14.

15.

16.

17.

18.

Bayesian Substructure Learning - Approximate Learning 249

Friedman, N.; Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to an-
alyze expression data. In: RECOMB, pp. 127-135 (2000)

Friedman, N., Nachman, I., Pe’er, D.: Learning Bayesian Network Structure from
Massive Datasets: The ”Sparse Candidate” Algorithm. In: UAT 99, pp. 206-215
(1999)

Goldenberg, A., Moore, A.: Tractable Learning of Large Bayes Net Structures from
Sparse Data. In: ICML '04: Proceedings of the twenty-first international conference
on Machine Learning, p. 44. ACM Press, New York (2004)

Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.: Depen-
dency networks for inference, collaborative filtering, and data visualization. Journal
of Machine Learning Research 1, 49-75 (2001)

Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data. Machine Learning 20(3), 197243
(1995)

Tsamardinos, 1., Aliferis, C.F., Statnikov, A.: Time and Sample Efficient Discovery
of Markov Blankets and Direct Causal Relations. In: KDD ’03: Proceedings of the
ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 673-678. ACM Press, New York (2003)

Tsamardinos, 1., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Machine Learning 65(1), 31-78 (2006)
Tsamardinos, 1., Statnikov, A., Brown, L.E., Aliferis, C.F.: Generating Realistic
Large Bayesian Networks by Tiling. In: 19th International Florida Artificial Intel-
ligence Research Society (FLAIRS) Conference (May 2006)

Verma, T.S., Pearl, J.: Equivalence and synthesis of causal models. In: Bonissone,
P.P., Henrion, M., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intel-
ligence, pp. 255-268. North Holland, Elsevier Science Publishers B.V, Amsterdam
(1991)



	Bayesian Substructure Learning - Approximate Learning of Very Large Network Structures
	Introduction
	Methods
	Background
	Substructure Learning
	Structure Representation
	Time Complexity of Substructure Learning

	Results
	Discussion
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




