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Abstract. Existing relational learning approaches usually work on com-
plete relational data, but real-world data are often incomplete. This pa-
per proposes the MGDA approach to learn structures of probabilistic
relational model (PRM) from incomplete relational data. The missing
values are filled in randomly at first, and a maximum likelihood tree
(MLT) is generated from the complete data sample. Then, Gibbs sam-
pling is combined with MLT to modify the data and regulate MLT it-
eratively for obtaining a well-completed data set. Finally, probabilistic
structure is learned through dependency analysis from the completed
data set. Experiments show that the MGDA approach can learn good
structures from incomplete relational data.

1 Introduction

Most machine learning algorithms work with the attribute-value setting which
only allows the analysis of fairly simple objects described by a single table. To
deal with complex and structured objects, one choice is to employ a relational
structure which involves multiple tables. Thus, each complex object can be de-
scribed by multiple records in multiple tables. To be able to analyze relational
databases containing multiple relations properly, learning algorithms have to be
designed for coping with the structural information in relational databases [8].

Relational learning has a precursor going back over a decade in the field of
inductive logic programming (ILP) [18]. One of the most significant develop-
ments in recent years is the convergence of ILP and probabilistic reasoning and
learning). ILP endows the ability of handling multiple relations; probabilistic
methods endow the ability of handling uncertainty. Many approaches containing
those ingredients have been proposed [19,11,1,15,16,9,21,5].

It is noteworthy that most relational learning algorithms operate on complete
data, while real-world data are often incomplete, i.e., with missing attribute
values. Although learning with incomplete data has been studied in attribute-
value setting [6,12], few techniques can be directly applied to relational setting
since the case of incomplete relational data is substantially more complex. An
attribute-value learning algorithm can be seen as a relational learning algorithm
which only deals with a database containing a single table. It will be compu-
tationally more expensive and the result will be much worse if such algorithms
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are applied to incomplete relational data directly since there exist more poor lo-
cal maxima. Actually, learning from incomplete relational data is a challenging
problem in relational learning.

This paper proposes the MGDA (Maximum likelihood tree and Gibbs sampling-
based Dependency Analysis) approach to learn structures of probabilistic rela-
tional models from incomplete relational data. Firstly, we fill in the incomplete
relational data randomly. Then, we generate a maximum likelihood tree (MLT)
[4] from the completed data sample. After that, Gibbs sampling is combined with
MLT to modify the data and regulate MLT iteratively for obtaining a well-
completed data set. Finally, probabilistic structure is learned through dependency
analysis from the completed data set.

The rest of this paper is organized as follows. Section 2 briefly introduces the
research background. Section 3 describes the proposed method. Section 4 reports
on the experiments. Finally, section 5 concludes.

2 Background

Probabilistic relational model (PRM) [11] is one of the fundamental models in
relational learning, which extends the standard attribute-value-based Bayesian
network representation to incorporate a richer relational structure. Briefly, given
a relational database of a specific schema (or a set of instances and relations
between them), a PRM defines a probability distribution which specifies proba-
bilistic dependencies between related objects (or the attributes of the instances).

Definition. [11] A PRM for a relational schema σ is defined as follows. For each
entity type X and each propositional attribute X.A,
– A set of parents Pa(X.A) = {Pa1, Pa2, · · · , Pan}, where each Pai has the

form X.B or γ(X.τ.B). τ is a chain of relations and γ(·) is an aggregation
function.

– A conditional probability model for P (X.A|Pa (X.A)).

The probability distribution over complete instantiation L of σ represented by
the PRM is given by:

P (L|σ, S, θS ) =
∏

Xi

∏
A∈A(Xi)

∏
x∈Oσ(Xi)

P (Lxi.a|LPa(xi.a))

As indicated by [11], the task of learning a PRM from complete data has
two aspects, i.e., parameter estimation and structure learning. In parameter
estimation, the input consists of the schema and training database, as well as a
qualitative dependency structure. In structure learning, there is only the training
database as input, while the goal is to extract an entire PRM schema from the
training database automatically.

Obviously, structure learning is the key of learning a PRM. There are two
general approaches to graphical probabilistic model learning, i.e., the search &
scoring approaches and the dependency analysis approaches. The main difficulty
in the first kind of approaches is how to find out a good dependency structure
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from the many possible ones, which are potentially infinite. For Bayesian net-
works, the task of finding the highest scoring network is NP-hard [3]. PRM
learning is at least as hard as Bayesian network learning. The second kind of
approaches, i.e. dependency analysis approaches, try to discover the dependency
relationship from the data, and then use these dependencies to infer the struc-
ture. The approach proposed in this paper belongs to this category.

Many applications and extensions of PRM have been described. Getoor and
Sahami [13] applied PRM to collaborative filtering. Getoor et al. [14] applied
PRM to hypertext classification. Taskers et al. [23] proposed a general class
of models for classification and clustering based on PRM. They have considered
incomplete data for parameter estimation, but have not touched structure learn-
ing. Sanghai et al. [22] extended dynamic Bayesian networks where each time
slice is represented by a PRM. To the best of our knowledge, structure learning
of PRM from incomplete relational data has only been studied recently [17],
where an evolutionary algorithm is used and the PRM structure is learned by
filling in the missing data with the best evolved structure in each generation.

In traditional attribute-value setting, learning from incomplete data has been
studied by many researchers. In particular, approaches for learning Bayesian
networks from incomplete data require an approximation for incomplete data.
One kind of approaches is based on Monte-Carlo or sampling [12]. These ap-
proximations can be very accurate, but these approaches are often intractable
when the sample size is very large. Another kind of approaches is based on the
expectation-maximization (EM) algorithm [6]. EM algorithm can be powerful for
parameter estimation in relational learning with missing data, but for structure
learning, since the number of possible structures to be explored is too huge, in
the E step of EM it would be difficult to efficiently determine how to modify the
current structure. It has been noted [10] that such algorithms often get stuck in
local maxima when the search landscape is large and multi-modal.

3 The MGDA Approach

The MGDA approach is summarized in Table 1, which will be introduced step-
by-step in this section.

3.1 Initialization

Incomplete data make the dependency relationship between attributes more dis-
ordered and it is difficult to learn an creditable PRM structure directly. If the
incomplete data can be filled in accurately, then the fittest structure can be
learned. Standard Gibbs sampling conducts sampling from full conditional dis-
tribution. As the conditional set is with high dimensionality, the complexity is
exponential in the number of attributes. It will be computationally expensive
if standard Gibbs sampling is extended to relational learning directly. So, an
improved approach needs to be proposed.



Structure Learning of Probabilistic Relational Models 217

Table 1. The MGDA approach

1. Fill in the incomplete relational data randomly and generate an MLT from the
obtained complete data set (details in Section 3.1);

2. Repeat until the stop criterion is satisfied:
a) Modify the incomplete relational data (details in Section 3.2.1);
b) Modify the corresponding parameter according to the latest modified data set

(details in Section 3.2.2);
c) Regulate the MLT structure according to the completed relational data and

test the stop criterion (details in Section 3.2.3);
3. Regulate the PRM structure learned from the well-completed data set by using

the proposed dependency analysis approach (details in Section 3.3).

Here we combine Gibbs sampling with MLT to modify the incomplete data
and regulate MLT iteratively for obtaining a well-completed data set. The incom-
plete relational data are filled in randomly at first. Then, an MLT is generated
from the completed data set. MLT is the fittest tree-like structure of Bayesian
network, which has a simple structure. Chow and Liu [4] proposed a well-known
method for learning tree-like Bayesian networks, which reduces the problem of
constructing an MLT to the finding of a maximal weighted spanning tree. We
extend this procedure on relational conditions as follows:

1. Compute I(Xi.A; Xj .B) between each pair of attributes (A �= B), where

I(Xi.A; Xj .B)=
∑

Xi,
Xj

∑
A∈A(Xi),
B∈B(Xj)

∑
xi.a,
xj.b

P (xi.a, xj .b) log
P (xi.a, xj .b)

P (xi.a)P (xj .b)
;

2. Build a complete undirected graph where the weight of the edge connecting
Xi.A to Xj .B is I(Xi.A; Xj .B);

3. Choose a root attribute for the tree and set the direction of all edges to be
outward from it.

Then, we use the learned MLT structure to decompose the joint probability.
This process can convert the sampling from n-order full conditional probability
to second-order conditional probability since each attribute of an MLT has only
one parent at most. So, it can not only meet the requirement of full conditional
distribution in standard Gibbs sampling but also reduce the computational cost.
After modifying the incomplete data, a new MLT can be generated.

3.2 Modification and Regulation

There are three tasks in each iteration, i.e., modifying the incomplete relational
data, modifying the parameters, and regulating the MLT structure. The order
of sampling attributes with incomplete data is based on the order of nodes (at-
tributes) of the learned MLT structure and the order of records of the data
set. Assume that Xi.A has a missing entry in the mth record, which is denoted
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by xim.a and the modified value is denoted by x̂im.a. The possible values of
Xi.A are x1

i .a, · · · , xr
i .a. MGDA uses the latest modified data set to modify the

next missing attribute value.

Modifying the Incomplete Relational Data. If P (L|σ, S, θs) contains non-
zero probabilities, MGDA modifies the missing data by Gibbs sampling. For a
random λ, the value of Xi.A is:

x̂im.a =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1
i .a, 0 < λ ≤ p̂

(
Lx1

i.a
|LPa(xim.a)

)

· · · · · ·
xh

i .a,
∑h−1

j=1
p̂
(
Lxj

i.a
|LPa(xim.a)

)
< λ ≤

∑h

j=1
p̂
(
Lxj

i.a
|LPa(xim.a)

)

· · · · · ·
xr

i .a, λ >
∑r−1

j=1
p̂
(
Lxj

i.a
|LPa(xim.a)

)

Modifying the Parameters. If P (L|σ, S, θs) contains zero probabilities, i.e.
p̂
(
Lxu

i.a
|LPa(xim.a)

)
= 0, MGDA modifies the probabilities by using Laplacian-

correction [7]:

p̂
(
Lxu

i.a
|LPa(xim.a)

)
=

1
N‖Pa(xim.a)‖ + ‖xu

i .a‖
where N is the number of records, ‖xu

i .a‖ is the number of the values of attribute
Xi.A, and ‖Pa(xim.a)‖ is the number of the parent combination of Pa(Xi.A).

If xim.a �= x̂im.a, the corresponding parameters are modified as follows:

p̂
(
Lx̂im.a|LPa(xim.a), D̂m

)
= p̂

(
Lx̂im.a|LPa(xim.a), Dm

)
+ 1/N

p̂
(
Lxim.a|LPa(xim.a), D̂m

)
= p̂

(
Lxim.a|LPa(xim.a), Dm

)
− 1/N

where Dm and D̂m are respectively the database before and after modifying
xim.a.

Regulating the MLT Structure. After modifying the incomplete relational
data, MGDA generates a new MLT structure from the completed data set.
The MGDA modifies the incomplete relational data and regulates MLT iter-
atively for obtaining a well-completed data set. The iteration will stop when
the stop criterion is satisfied. For the modification on the incomplete rela-
tional data and parameters, we test the coherence of two consecutive iterations.
xt

1, x
t
2, · · · , xt

k, . . . , xt
n and xt+1

1 , xt+1
2 , · · · , xt+1

k , . . . , xt+1
n (k ∈ {1, · · · , n}) are two

sequences of the incomplete relational data in two consecutive iterations, respec-
tively, then

sig(xt
k, xt+1

k ) =
{

0, xt
k = xt+1

k

1, xt
k �= xt+1

k

For a given threshold η > 0, if 1
n

∑n
k=1 sig(xt

k, xt+1
k ) < η then stop the mod-

ification and generate an MLT structure from the latest modified data set.
Thus, when the above process terminates, a well-completed data set and a well-
regulated MLT are obtained.
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3.3 Structure Learning of PRM

MGDA uses class dependency graph [11] structures as the candidate PRMs.
The MLTs here are also class dependency graphs. In those graphs, an attribute
can depend on any attributes of all the classes except itself. If parents of the
attribute are attributes of other class, they relate with the attribute by chains
of relations. In this way, we can get the class dependency graph which contains
latent relations and also get PRM structure with relations.

There are three basic dependencies [20] between attributes, i.e., transitive de-
pendencies, non-transitive dependencies and induced dependencies, which can be
described by the Bayesian network framework of information channels and
pipelines [2]: (1) Transitive dependencies indicate that information flow can di-
rectly pass two nodes in Bayesian networks and not be blocked by any other nodes.
In other words, the twonodes are conditional dependent. (2)Non-transitive depen-
dencies indicate that information flow can not directly pass two nodes in Bayesian
networks, but can pass through the open path which connects the two nodes and
be blocked by the nodes in cut-set. Namely, the two nodes are conditional inde-
pendent given the nodes in cut-set. (3) Induced dependencies are induced by V-
structure. Information flow can not directly pass two nodes and be induced by
the collider in V-structure [20]. 1 Learning Bayesain network is to keep transitive
dependencies and get rid of other dependencies. As an extension of Bayesian net-
work, PRM can be learned through the new dependency analysis approach from
the well-completed data set.

To measure the conditional independence, we use mutual information and
conditional mutual information. Conditional mutual information is defined as:

I(Xi.A; Xj .B|C) =
∑

Xi,
Xj

∑
A,
B

∑
xi.a,
xj.b

P (xi.a, xj .b|c) log
P (xi.a, xj .b|c)

P (xi.a|c)P (xj .b|c)

where C is a set of nodes. When I(Xi.A, Xj .B|C) is smaller than a certain
small value ε, we say that Xi.A and Xj.B are conditionally independent given
C. Then, we use dependency analysis to regulate the PRM structure from the
well-completed data set.

Transitive Dependencies Regulation. We use the latest regulated MLT
as the initial PRM structure. For each pair of nodes (Xi.A, Xj .B) (Xi.A is in
front of Xj.B in node ordering) without edge connection, compute conditional
mutual information I(Xi.A, Xj .B|Pa), where Pa are the nodes in all the parents
of Xj .B that are on the path linking Xi.A and Xj .B. If I(Xi.A, Xj .B|Pa) > ε,
add an edge Xi.A → Xj .B. This process requires at most (n−1)(n−2)

2 number of
conditional independence (CI) tests. The regulated structure is denoted by G1.

Non-transitive Dependencies Regulation. For G1, compute I(Xi.A, Xj.B|
Pa) for each pair of nodes (Xi.A, Xj .B) with edge connection, where Pa are the
1 For three nodes X, Y and Z, there are only three possible types of V-structures, i.e.

(1) X → Y → Z, (2) X ← Y → Z, and (3) X → Y ← Z. Among them only the third
type makes X and Z depend conditionally on {Y }.
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nodes in all the parents of Xj .B that are on the path linking Xi.A and Xj.B. If
I(Xi.A, Xj .B|Pa) < ε, delete the edge between them. This process requires at
most n(n − 1) number of CI tests. The regulated structure is denoted by G2.

Inductive DependenciesRegulationand EdgesOrienting. For each pair of
nodes, compute I(Xi.A, Xj .B) according to the node ordering. If I(Xi.A, Xj .B) <
ε, test the pairs of nodes by collider identification. Any nodes which can form a V-
structure with Xi.A and Xj .B are denoted as Xm1, · · · , Xmt (Xmh �= Xi.A, Xj.B,
h ∈ {1, · · · , t}). For a given threshold δ > 0, if I(Xi.A,Xj .B|Xmh)

I(Xi.A,Xj .B) > 1+δ, then Xi.A,
Xj .B and Xmh form a V-structure and orient edges Xi.A → Xmh and Xj .B →
Xmh. If there is an edge betweenXi.A and Xj .B, then delete the edge. This process
requires at most n(n−1)(n−2)

2 number of CI tests.
Using collider identification, we can identify all the V-structures of the third

type in a probabilistic model and orient the edges in such structures using tests
on conditional independence. The number of edges which can be oriented by
collider identification is constrained by the network structure. In an extreme
case, when the network does not contain any V-structure of the third type, these
methods could not orient any edges at all. However, this method is popular in
Bayesian network learning owing to its efficiency and reliability.

For edges that could not be oriented by collider identification, we orient
them by computing the joint cross-entropy. For two discrete attributes Xi.A =
{xi1.a, xi2.a, · · · , xiM .a} and Xj .B = {xj1.b, xj2.b, · · · , xjN .b}, suppose the joint
probabilistic distribution of Xi.A and Xj .B is p1(xim.a, xjn.b) under assump-
tion H1; the joint probabilistic distribution of Xi.A and Xj .B is p2(xim.a, xjn.b)
under assumption H2, where m = 1, 2, · · · , M , n = 1, 2, · · · , N . Then the joint
cross-entropy of Xi.A and Xj.B can be defined as:

I(p2, p1; Xi.A, Xj .B) =
∑M

m=1

∑N

n=1
p2(xim.a, xjn.b) · log

p2(xim.a, xjn.b)
p1(xim.a, xjn.b)

Let the assumptions H1 and H2 be Xi.A → Xj .B and Xi.A ← Xj .B, respec-
tively. Compute I(p1, p2; Xi.A, Xj .B) and I(p2, p1; Xi.A, Xj .B):

if I(p1, p2; Xi.A, Xj .B) > I(p2, p1; Xi.A, Xj .B),
then orient edges Xi.A → Xj.B; otherwise, orient edges Xi.A ← Xj .B.

4 Experiments

We begin by evaluating the proposed MGDA approach on a synthetic data set
generated by a school domain whose structure is shown in Fig. 2(a). The learn-
ing approach takes only the data set as input. We generate 4 data sets with
the same size 5,000. Here the size of a data set corresponds to the number of
students involved. These data sets are with 10%, 20%, 30%, and 40% missing
data, respectively. These missing data are generated by randomly removing 10%,
20%, 30%, and 40% attribute-values from the original data sets, respectively.

We compare MGDA with FR, FM and MLTEC. FR and FM are two straight-
forward approaches. FR fills in the incomplete relational data randomly and then
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(a) (b) (c)

Fig. 1. Results on the school domain. (a) Percentage of unstable missing data on
the database with 40% missing data when MGDA is used; (b) Comparison of the
destruction of dependency relations in structures learned from data sets; (c) Average
accuracy of the structures learned by MGDA.

learns the structures of PRMs from the obtained complete data. FM fills in the
incomplete relational data with the mean values of attributes and then learns
the structures of PRMs from the obtained complete data. To the best of our
knowledge, MLTEC [17] is the only approach for learning PRM structure from
incomplete relational data, where an evolutionary algorithm is used and the
PRM structure is learned by filling in the missing data with the best evolved
structure in each generation. We run MLTEC for ten times on each data set and
regard the median PRM structure of the ten runs as the result. This is because
that MLTEC is an approach based on evolutionary computation, whose result
could be very different in different runs. We wish that the median PRM structure
of the ten runs could reflect the median performance of MLTEC.

Fig. 1(a) shows the percentage of unstable missing data, i.e., the portion of
missing data being modified in each iteration of MGDA, on the data set with
40% missing data. It can be found that the missing data to be modified become
fewer and fewer as the iteration proceeds. Moreover, by comparing the filled
values and real values, we found that among the values filled in by MGDA, 93%
are correct; for MLTEC, 90% are correct; while for FR and FM the correctness
is only 61% and 66%, respectively.

Fig. 1(b) presents the comparison between FR, FM, MLTEC and MGDA
on the destruction of dependency relations in the learned structures. It can
be found that the performance of MGDA is apparently better than that of FR.
This is not difficult to understand. When the missing data are filled in randomly,
noises are introduced and thereby the dependency relations between attributes
are corrupted to a great extent. By taking advantage of the information in the
observed data, the noises will be smoothed through refining the missing data
iteratively. Thus the corrupted dependency relations are recovered. The perfor-
mance of MGDA is also apparently better than FM, especially when the level of
missing data is high. This is not difficult to understand either. When the level of
missing data is low, the mean values of attributes filled in the missing data can
represent the distribution of the real data to some degree. With the increasing
of the level of missing data, the mean values of attributes could not represent



222 X.-L. Li and Z.-H. Zhou

(a) (b) (c)

(d) (e)

Fig. 2. The PRM structures on the school domain. (a) True structure. Dotted lines in-
dicate relations between classes while solid arrows indicate probabilistic dependencies;
(b) Result of MGDA; (c) Result of MLTEC; (d) Result of FM; (e) Result of FR.

the distribution of the real data well any more. Therefore, the performance of
FM degenerates seriously. It can also be found that although the performance
of MLTEC is better than FR and FM, it is worse than MGDA.

Fig. 1(c) compares the accuracies of the structures learned by MGDA on
different data sets. Here we define accuracy in the following way. Suppose the
ground-truth structure has a edges, the learned structure added b redundant
edges but missed c edges, then the accuracy of the learned structure is 1 − (b +
c)/a. It is obvious that the accuracy of a perfect model is 1, while the accuracy
of some very poor models could be negative. Since very poor models are useless,
it is not meaningful to distinguish them. Thus, we assign zero accuracy to them.

It can be found from Fig. 1(c) that as the iteration proceeds, the accuracy of
MGDA increases. The accuracies of FR, FM and MLTEC are respectively 57%,
80% and 86% on 10% missing data, 14%, 57% and 80% on 20% missing data, 0,
14% and 71% on 30% missing data, and 0, 0 and 57% on 40% missing data. It
is evident that the accuracy of MGDA is better than them. By inspecting the
structures, we find that MGDA did not produce many redundant edges even in a
high level of missing data. This might owe to the combination of Gibbs sampling
with MLT, which has simple structure to modify the incomplete data and thus
suffers less from overfitting.

The PRM structure learned by MGDA on the data set with 40% missing
data is shown in Fig. 2(b). Comparing it with Fig. 2(a) we can find that it
missed a dependency between the Intelligence of a student and the Grade of
the registration and added a dependency between the Intelligence of a student
and its Ranking. Fig. 2(c) shows the structure learned by MLTEC, which also
missed the dependency between the Intelligence of a student and the Grade of
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(a) (b)

(c) (d)

Fig. 3. The PRM structures learned on the financial domain. (a) By MGDA; (b) By
MLTEC; (c) By FM; (d) By FR.

the registration. Moreover, it reversed the dependency between the Grade of the
registration and the Ranking of a student, and added two redundant dependen-
cies. Figs. 2(d) and (e) show the structures learned by FM and FR, respectively.
Comparing them with Fig. 2(a) we can find that they have many redundant
dependencies and missed many dependencies. In short, the structure learned by
MGDA is more credible than those learned by the compared approaches.

We also evaluate the proposed MGDA approach on a real-world domain. This
domain is a financial database taken from the PKDD2000 Discovery Challenge.
The database contains data from a Czech bank, which describes the operation of
5,369 clients holding 4,500 accounts. The bank wants to improve their services
by finding interesting groups of clients. The eight tables in the database are:
account, client, disposition, permanent, order, transaction, loan, credit card, and
demographic data. We focus on the question of clients’ credit and choose a subset
from the database, which consists of 4 relations, i.e. account, client, loan and
credit. The extraction results in an incomplete data set. Since the data are from
real-world and the ground-truth model is not known, it is not feasible to compare
the proposed approach with other approaches quantitatively. Thus, we adopt the
experimental methodology used by previous research [11,22], i.e., qualitatively
comparing the learned structures.

The PRM structures learned by MGDA, MLTEC, FM and FR are shown
in Figs. 3(a) to (d), respectively. MGDA learned that the Payment of a loan
depends on its Date, Amount and Duration, the Balance of the account, and
the Credit cards owner or not of the client. It also learned a dependency which
can relate the tables: the Rank of Credit depends on the Payment of the loan.
By comparing the structure learned by MLTEC with that learned by MGDA,
we can find that MLTEC missed a dependency relation between the Date and
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the Payment of the loan and reversed the dependency between the Payment
of a loan and the Credit cards owner or not of the client. However, the missed
dependency seems not very important and the reversed dependency looks still
reasonable. From Figs. 3(c) and (d) we can find that FM and FR missed an
important dependency between the Balance of the account and the Payment of
the loan and both generated more redundant dependency relationships.

5 Conclusion

Relational learning algorithms are capable of dealing with multiple tables or
relations which could not be tackled by attribute-value-based methods. How-
ever, although real-world data are often incomplete, learning with incomplete
relational data is largely understudied. In this paper, we propose the MGDA
approach and experiments show that it can learn reasonable structures from
incomplete relational data.

We observed that MGDA did not produce many redundant edges even when
the missing rate was quite high. So, its performance may be improved by incor-
porating some mechanism for dealing with missing edges. This will be studied
in the future. When several values for an attribute are almost equally likely,
the current stopping criterion might encounter some problem. A possible solu-
tion may be to compute the Euclidean distance between the parameters for two
consecutive steps and stop when this distance goes below a threshold. This is
another future issue. Moreover, combining MGDA with collective classification
is also worth studying in the future.
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