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Abstract. In a multiprocessor network, sending a packet typically refers to 
start-up time and transmission time. To optimize these two times, as opposed  
to earlier solutions, a spanning tree and multiple spanning trees are constructed 
to solve four types of broadcasting problems in an (n, k)-star graph: one-to-all 
or all-to-all broadcasting with either one-port or all-port communication model, 
respectively. Since the proposed spanning tree has an optimal height, both one-
to-all and all-to-all broadcasting algorithms achieve nearly optimal start-up time 
and transmission time under all-port model and one-port model, and optimal 
transmission time under one-port model. By using multiple spanning trees, both 
one-to-all and all-to-all algorithms achieve nearly optimal transmission time 
under all-port model and one-port model.  

Keywords: (n, k)-star graph, a spanning tree, multiple spanning trees, one-to-
all broadcasting, all-to-all broadcasting, all-port model, one-port model. 

1   Introduction 

As a new topology of interconnection networks, the (n, k)-star graph has attracted lots 
of attentions: it not only preserves many appealing properties of n-star: scalability, 
maximally fault tolerance, partitionability, node- symmetry, but also overcomes the 

practical drawback with the star graph in that only )!(
!
kn

n
− nodes are involved, compared 

with !n nodes for an n-star. Some works have been done on this graph, such as basic 
properties[1],[2],[3], embeddability[3], broadcasting algorithms[4] ,and so on. 

The tree structure has received much interest as a versatile architecture for a large 
class of parallel processing applications. Spanning trees in particular support 
communications in different networks: hypercube[5], star graph[6], and (n, k)-star 
graph[7], and (n, k)-arrangement graph[8]. 

In this paper, we study one-to-all and all-to-all broadcasting problems in an (n, k)-
star graph using packet-switching technique, one-port and all-port communication 
capabilities are considered. 
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2   Preliminaries 

For simplification, denote the identity node (12…k) as Id and set {1,2,...,n} as >< n . 
 
Definition 1. An (n, k)-star graph, denoted by knS , , is an undirected graph. Any 

node p is denoted by }|...{ 21 >∈< npppp ik and ji pp ≠ for ji ≠ . Two nodes p  and 

q are adjacent if q is obtained by swapping 1p with ip , where ni ≤≤2 , that is, 

kikii ppppppppSq ......)......( 1221 == . 

knS , is a regular graph of degree 1−n and )!(
!
kn

n
−  nodes. The diameter 

is 12 −k for ⎣ ⎦21 nk ≤≤ , and ⎣ ⎦2
1−+ nk  for ⎣ ⎦ nkn <<2 . 3,4S is illustrated in Figure 1. 

                                          

                                        Fig. 1. S4,3                                                          Fig. 2. SP(S4,3) 

Definition 2. If node p has a label of kppp ...21 , we may denote symbol ip by ][ip . 

Given nodes 1p and 2p , ),( 21 ppdif is the smallest 1>i such that ][][ 21 ipip ≠ .  

Steps to correct node kpppp ...21= withα internal cycles and β external cycles are 

computed by the following formulas[1], [2].  
For an internal cycle iC ( α≤≤ i1 ) of im symbols: 
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3   An Optimal Spanning Tree 

Definition 3. Given any node p in knS , , the directed graph )( ,knSSP is defined such 

that )()( ,knSVSPV = ; and for any node }{)( , vSVs kn −∈ , )(SPE contains the directed 

edge >< vs, ,where s is the parent of node v , defined by )(vGs α= , where 
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Theorem 1 [7]. For an (n, k)-star graph, there must be a greedy spanning tree 
)( ,knSSP of height )()( ,knSDSPh = , and the result is optimal. 

 
Corollary 1. Two nodes are adjacent in knS , , if they are at the same level or two 

consecutive levels of )( ,knSSP . 
 
Proof. Suppose that two nodes p and q  are adjacent in knS , , and they aren’t neither at 

the same level nor two consecutive levels of )( ,knSSP . Let q  be at the t , 

)(0 ,knSDt <≤ , level of )( ,knSSP and ),(),( IdqdIdpd ≥ . If 2),(),( ≥− IdqdIdpd , 

i.e. 22),(),( +=+≥ tIdqdIdpd . Since 1),( =qpd , 21),(),( +<+=+ ttqpdIdqd , 

that is, 1),(),( +≠ IdqdIdpd , which is a contradiction.  

So, 1),(),(0 ≤−≤ IdqdIdpd . )( 3,4SSP is given in Figure 2. 
 
Corollary 2. The balance factor of )( ,knSSP is at most 1, i.e. 1)(0 ≤≤ SPBF . 
 
Proof. Suppose that 2)( ≥SPBF .Without generality, assume that p and q are two 

leaves in )( ,knSSP , since )()( ,knSDSPh = , let )(),( ,knSDIdpd = . Thus, node p has to 

satisfy one of following three conditions. We will prove that the proposition 
that p and q are two leaves and 2),(),( =− IdqdIdpd is false under any circumstance. 

Let e be an external symbol, i be an internal symbol, inv  be an invariable symbol 
and || x be the size of x. 

(1) For ⎣ ⎦21 nk ≤≤ , )( pC satisfies one of the following two[2]: 

(1.1) 11 =p , and the other 1−k symbols are external symbols; 

(1.2) 11 ≠p , k symbols are external symbols. 

For (1.1), informally, )...1( 121 −= keeep . From formula (2), stepsMsteps −)',(β  

2)',1( =− Mβ . So if 2),(),( =− IdqdIdpd , q  should satisfy that 11 ≠q , there are 

2−k external symbols and there is an invariant, that is, )......( 1111 −+−= kxxx eeeeeq , 

where }1,...,1{ −∈∃ kx , invex =  and 1|| =xe ; }{}1,...,1{ xky −−∈∀ , 1|| =ye . By 

definition 3, )......( 21112 −+−= kxxx eeeeeeGq α , so q isn’t a leaf.  

For (1.2), informally, )...( 21 keeep = . If 2),(),( =− IdqdIdpd , q  should satisfy 

that 11 =q , there are 1−k external symbols and there is an invariant, i.e. 

)......1( 21121 −+−= kxxx eeeeeeq , where }1,...,1{ −∈∃ kx , invex =  and 1|| =xe ;  ,1{∈∀y   

}{}1..., xk −− , 1|| =ye . By definition 3, )...1...( 21121 −+−= kxxx eeeeeeGq α isn’t a leaf. 

(2) For odd n  and ⎣ ⎦ nkn <<2 , )( pC satisfies the following three[2]: 

11 =p , there are kn − external symbols, and each of them forms a cycle of length 

1, and the rest form internal cycles of length 2.  
Same to (1.1), we have the result that )...1...( 21121 −+−= kxxx eeeeeeGq α isn’t a leaf. 
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(3) For even n  and ⎣ ⎦ nkn <<2 , )( pC satisfies one of the following two[2]: 

(3.1) 11 =p , there are kn −  external symbols, and each of them forms a cycle of 

length 1; three symbols form one cycle of length 3, and the rest form internal cycles 
of length 2;  

(3.2) 11 ≠p , there are kn −  external symbols, and each of them forms a cycle of 

length 1; and the rest form internal cycles of length 2. 
Same to (1), we have the result that )......( 11112 −−+−= knxxx eeieeeGq α for (3.1) and 

)......( 11112 −−+−= knxxx eeieeeGq α  for (3.2) are not leaves. 

Thus, the conditions that 2),(),( ≥− IdqdIdpd and p , q are two leaves can’t be 

satisfied simultaneously. So, the corollary holds. Especially, 0))(( 2,4 =SSPBF . 

4   One-to-All Broadcasting Based on Optimal Spanning Tree 

One-to-all broadcasting refers to the problem of sending a message from one source 
node to all other nodes in the network. In this section, we assume the packet-
switching or store-and-forward model, thus, the latency to transmit a packet of b  
bytes along a link takes cs bTT + time, where sT  is the time to start-up the 

communication link and cT  is the latency to transmit a byte. Under one-port model, a 

node can send and receive at most one packet at a time, while under all-port model, a 
node can send and receive packets along all 1−n ports simultaneously. 
 
Lemma 1. A lower bound for one-to-all broadcasting in a store-and–forward knS , is 

max{ skn TSD )( , , cn
m T1− } under all-port model, and max{ ⎡ ⎤ sTknn ))!/(!log( − , 

skn TSD )( , , cmT } under one-port model, where m  is the size of message M . 

4.1   All-Port Model 

In the proposed algorithm, time will be slotted by fixed length and all nodes perform 
broadcast synchronously. In each time slot each node transmits a packet of size )1( −np

m , 

and p is an integer to be determined later. So each time slot is of length cnp
m

s TT )1( −+ . 

 
Algorithm-Broadcasting(one-to-all, all-port) 

(1) Slice message M evenly into )1( −np  parts, each called a “message segment” 

and of size )1( −np
m ; 

(2) In each time slot, node Id  issues 1−n  message segments to the network. A 
message segment is then propagated along the tree .In each time slot, each node helps 
propagating all message segments it received in the previous time slot to the 
subsequent nodes in the corresponding tree. 
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By theorem 1, )( ,knSDh = , the total times of all-port broadcasting are: 

))(1()( )1()1( cnp
m

scnp
m

s TTpTThT −− +−++= , where the former term is the time for the  

first packet to arrive at the bottom of the tallest tree and the latter term is due to the 
pipelined effect. Let the derivative of T with respect to p equal to 0, 

p
T

∂
∂ = cpnp

hm
s TT )1(

)1(
−
−− ⇒ 0)1(

)1( =− −
−

cpnp
hm

s TT , therefore, p =
Tsn
Tchm

)1(
)1(

−
− = )( )1(

)1(
Tsn
TchmO −

− . 
 

Theorem 2. Under all-port model, one-to-all broadcasting can be performed in 

knS , within time )2)1)((( 1
)1),((

1, −
−

− ++− n
TcTskSnDm

cn
m

skn TTSDO . 

Table 1. Comparison of One-to-All Broadcasting Algorithms 

Model Algorithm Start-up Comp. Trans. Comp. Overall Complexity

optimal ))(( , skn TSDO )( 1 cn
m TO max{ skn TSD )( , , cn

m T1
}

Y.S. Chen ))1)(2(( , skn TSDO )( 1
4

cn
m TO ))1)(2( 1

4
, cn

m
skn TTSDO

a spanning 
tree

))(( , skn TSDO )( 1 cn
m TO

cn
m

skn TTSDO
1, )((

)2 1
)1),((

n
TcTskSnDm

All-
model

multiple 
spanning
trees 

))1)(2(( , skn TSDO ))1((
)!(

!
1 ckn

n
n
m TO

skn TSDO )1)(2(( ,

))1(
1)!(

!
cn

m
kn

n T

optimal
max{ skn TSD )( , ,

sTknn )1)!/(!log( }
)( cmTO

max{ skn TSD )( , , cmT ,

sTknn )1)!/(!log( }

Y.S. Chen ))2(( 2
sTknnkO

cmTO 2(

)
!

)!1)(2(
cn

knknm T
cs mTTknnkO 2)2(( 2

)!
)!1)(2(

cn
knknm T

a spanning 
tree

))(( , skn TSnDO )( cmTO
cskn mTTSDnO ))1)()(1(( ,

))1)()(1(2 , sckn TTSDnm

One-
model

multiple 
spanning
trees 

))1)(2)(1(( , skn TSDnO )( cmTO
cskn mTTSDnO ))1)(2)(1(( ,

))1)(2)(1(2 , sckn TTSDnm
 

4.2   One-Port Model 

A node with one-port communication capability can simulate the communication 
activity of an all-port node in one time slot using 1−n time slots. The simulation can 
be done as follows: in the first time slot, the one-port node simulates the all-port 
nodes activity along dimension 1; in the second time slot, the one-port node simulates 
the all-port nodes activity along dimension 2; etc. By simulation algorithm stated 
above at every one-port node in knS , , the following theorem is seen. 

 

Algorithm-Broadcasting(all-to-all, one-port) 

(1) Slice message M evenly into )1( −np parts, each called a “message segment” 

and of size )1( −np
m ; 
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(2) In each time slot, node Id  issues 1−n message segments to the network. A 
message segment is then propagated along one of trees ))(( IdRSP i , 1...1 −= ni . A 

message segment is then propagated along the tree it is issued. In each time slot, each 
node helps propagating all message segments it received in the previous time slot to 
the subsequent nodes in the corresponding tree; 

(3) Repeatedly perform step 2 until all message segments have been broadcast. 
 

Theorem 3. Under one-port model, one-to-all broadcasting can be performed in knS ,  

within time ))1)()(1(2)1)()(1(( ,, sckncskn TTSDnmmTTSDnO −−++−− . 

Table 2. Comparison of All-to-All Broadcasting Algorithms 

Model Algorithm Start-up Comp. Trans. Comp. Overall Complexity

optimal ))(( , skn TSDO ))1(( )!(
!

1 ckn
n

n
m TO

max{ skn TSD )( , ,

ckn
n

n
m T)1( )!(

!
1

}

a spanning 
tree

))(( , skn TSDO ))1(( )!(
!

1 ckn
n

n
m TO

skn TSDO )(( ,

))1(
1)!(

!
cn

m
kn

n T
All-
port

multiple 
spanning
trees 

))1)(2(( , skn TSDO ))1(( )!(
!

1 ckn
n

n
m TO

skn TSDO )1)(2(( ,

))1(
1)!(

!
cn

m
kn

n T

optimal
max { skn TSD )( , ,

sTknn )1)!/(!log( }
))1((

)!(
!

ckn
n mTO

max{ ))1( )!(
!

ckn
n mT ,

skn TSD )( , ,

sTknn )1)!/(!log( }

a spanning 
tree

))()1(( , skn TSDnnO ))1(( )!(
!

ckn
n mTO

skn TSDnnO )()1(( ,

)))1( )!(
!

ckn
n mT

One-
port

multiple 
spanning
trees

))1)(2)(1(( , skn TSDnO ))1(( )!(
!

ckn
n mTO

)1)(2)(1(( ,knSDnO

)))1( )!(
!

ckn
n

s mTT
 

5   All-to-All Broadcasting Based on Optimal Spanning Tree 

All-to-all broadcasting refers to the problem of sending a message from all source 
nodes to all other nodes in the network, which is 1)!(

! −−kn
n copies of one-to-all 

broadcasting problem. 
 
Lemma 2. A lower bound for all-to-all broadcasting in a store-and–forward knS ,  is 

max{ cn
m

kn
n T1)!(
! )1( −− − , skn TSD )( , } under all-port model, and max { skn TSD )( , , 

⎡ ⎤ sTknn )1)!/(!log( −− , ckn
n mT)1( )!(
! −− } under one-port model. 
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5.1   All-Port Model 

LC and EC schemes proposed by Tseng et al.[6] are used to design our all-to-all 
broadcasting such that each node in knS , can use 1−n spanning trees. 
 
Theorem 4. Under all-port model, all-to-all broadcasting can be performed in 

knS , within time ))1()(( )!(
!

1, ckn
n

n
m

skn TTSDO −+ −− . 

 
Proof. Assume that in each iteration of time slot, all message segments can be 
combined into one packet and send at one time. Therefore, the start-up overhead times 
nearly skn TSD )( , . To propagate a message segment of size 1−n

m along a spanning tree of 

1)!(
! −−kn

n links, network bandwidth of ckn
n

n
m T)1( )!(

!
1 −−−  is required. Totally, there are 

)1)(1( )!(
! −− −kn

nn message segments to be broadcast. Thus, the total network bandwidth 

required is ckn
n Tm 2

)!(
! )1( −− . Since the network is evenly loaded at every time step, the 

bandwidth is evenly distributed to all )1)(1( )!(
! −− −kn

nn links in the network, Therefore, 

the transmission time is obtained. 

5.2   One-Port Model 

Theorem 5. Under one-port model, all-to-all broadcasting can be performed in 

knS , within time ))1()()1(( )!(
!

, ckn
n

skn mTTSDnnO −+− − . 

6   Multiple Spanning Trees 

Node p  can be also described as ]...[...... 121 nkki ppppppp += [4]. The congestion of 

a directed tree is defined to be the maximum number of times the links of these trees 
overlapping on same edges. 
 
Definition 4. Given any node p , )( pRi is the node obtained from p  by cyclically 

shifting the label of p  to the right by i  positions. 
 
Theorem 6. The 1−n  spanning trees ))(( 1 IdRSP , ))(( 2 IdRSP ,… , ))(( IdRSP n  

totally have an edge  congestion of i in knS , , when ]*)1(,*( kikin +∈ , ,...2,1=i . 
 

Proof. The roots of multiple trees can be represented as )(IdRi , }1,...,2,1{ −∈ ni , 

i.e. ]1...[1...1...1)(1 −−−= nkkinIdR , ]2...1[2...2...1)(2 −−−−−= nkkinnIdR ,……, 

]1...[1......23)( kkiIdRn −= .For node ki vvvvv ......21= , consider its in-degrees: 

(1) ]1)[(1 IdRv i=  

Let ]1)[(IdRt i= , then, satisfying the first condition of definition 3 . So there exists 

an edge >< vsi ,  in ))(( IdRT i , where )(vGsi α= and ))(,( IdRvdif i=α . 
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Since }1,...,2,1{ −∈ ni , there are 1−n  edges. For any }1,...,1{, −∈ nji , 

)()( IdRIdR ji ≠  for ji ≠ , so there is no congestion among 1−n  edges. 

(2) ]1)[(1 IdRv i≠  

If ]1)[(1 IdRv i≠ , where ki ≤≤2 , then, satisfying the second condition of definition 

3. So there exists an edge >< vsi , in ))(( IdRT i , where )(vGsi α= and i=α . Thus, 

there are 1−k edges and no congestion. When nik ≤≤+1 , discuss it by cases:  
(2.1) ])[(1 nIdRv i= and 1+= kn  

Since 1+= kn  and ]1[......12 += kkiId , then, satisfying the third condition of 

definition 3. So there exists an edge >< vsi , in ))(( IdRT i , where )(vGsi α=  and 

ki vvtvv ......2= , t is the desired symbol of ])[( nIdRi , so ]))[(( nIdRdt i=  = ]1)[(IdRi . 

Thus, there exists an edge of congestion 1 inevitably. 
(2.2) ])[(1 jIdRv i=  and njk ≤<  

Since the desired symbol of an external symbol corresponds to one symbol 
in >< k , and the fourth condition of definition 3 is satisfied, thus, there are another 

kn −  number of edges. So the congestion is related to kn − , that is, Congestion= i , 
where ]*)1(,*( kikin +∈ , ,...2,1=i . 

Thus, the theorem holds. See figure 3 for example. 

 

Fig. 3. Three Spanning Trees in S4,3 Rooted as (412),(341),(234) 

7   One-to-All Broadcasting Using Multiple Spanning Tree 

Definition 5. Let IdIdRp ii ⇒)(:  be the path in ))(( IdRT i leading from )(IdRi to Id . 

Define ))(( IdRMT i  to be the directed graph obtained from ))(( IdRT i by reversing 

the direction of all edges along the path ip , where }1,...,1{ −∈ ni . 
 
Theorem 7. ))(( IdRMT i , }1,...,2,1{ −∈ ni ,is a spanning tree of height h , where 

)(2)( ,, knkn SDhSDk ≤≤+ . 
 
Proof. Only edges along ip , }1,...,2,1{ −∈ ni , in ))(( IdRT i  have reversed the 

direction, so ))(( IdRMT i has 1)!(
! −−kn

n edges and all nodes are connected directly or 

indirectly, thus ))(( IdRMT i is a spanning tree. The height is )( ,knSD  plus the length 

of ip .Since ip be the path leading from )(IdRi to Id , thus, )()( ,kni SDphk ≤≤ , and 
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Fig. 4. Multiple Spanning Trees in S4,3 Rooted as (123) 

))(( IdRT i is of height )( ,knSD , so the height of ))(( IdRMT i satisfies the condition 

that )(2)( ,, knkn SDhSDk ≤≤+ .See Figure 4 for example. 

7.1   All-Port Model 

As Algorithm-Broadcasting(one-to-all, all-port), similar algorithm under all-port for 
one-to-all broadcasting using multiple spanning trees is available. 
 
Theorem 8. Under all-port model, one-to-all broadcasting can be performed in 

knS , within time )2)1)(2(( 1
)1),(2(

1, −
−

− ++− n
TcTskSnDm

cn
m

skn TTSDO . 

7.2   One-Port Model 

As Algorithm-Broadcasting(one-to-all, one-port), similar algorithm under one-port for 
one-to-all broadcasting using multiple spanning trees is available. 
 
Theorem 9. Under one-port model, one-to-all broadcasting can be performed in 

knS , within time ))1)(2)(1(2)1)(2)(1(( ,, sckncskn TTSDnmmTTSDnO −−++−− . 

8   All-to-All Broadcasting Using Multiple Spanning Trees 

Same to all-to-all broadcasting based on the optimal spanning tree, the following 
theorems are obtained. 
 

Theorem 10. Under all-port model, all-to-all broadcasting can be performed in 

knS , within time ))1()1)(2(( )!(
!

1, ckn
n

n
m

skn TTSDO −+− −− . 
 

Theorem 11. Under one-port model, all-to-all broadcasting can be performed in 

knS , within time ))1()1)(2)(1(( )!(
!

, ckn
n

skn mTTSDnO −+−− − . 

9   Conclusion 

We have shown how to solve various versions of broadcast problems in an (n, k)-star 
graph by using a spanning tree and multiple spanning trees to simultaneously 
optimize both transmission time and start-up time. 
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Finally, we compare our results with other broadcasting algorithms. The numbers 
of start-up time, transmission time, and overall time complexity are presented in 
Table 1 and Table 2, respectively.   

From Table 1, for one-to-all broadcasting, under all-port model, the algorithm 
based on an optimal spanning tree achieves nearly optimal start-up time ))(( , skn TSDO  

and transmission time )( 1 cn
m TO − , far lower than ))1)(2(( , skn TSDO − and )( 1

4
cn

m TO −   

achieved by the Y.S. Chen’s, also ))1)(2(( , skn TSDO − and ))1(( )!(
!

1 ckn
n

n
m TO −−−  by 

using multiple spanning trees. Under one-port model, the algorithm based on an 
optimal spanning tree achieves start-up time ))(( , skn TSnDO and nearly optimal 

transmission time )( cmTO , Y.S. Chen’s algorithm achieves start-up time 

))2(( 2
sTknnkO −− and transmission time )2( !

)!1)(2(
cn

knkn
c mTmTO +−−−+  , the 

algorithm based on multiple spanning trees achieves start-up time  
))1)()(1(( , skn TSDnO −− and nearly optimal transmission time )( cmTO . 

From Table 2, for all-to-all broadcasting, under all-port model, the algorithm based 
on an optimal spanning tree achieves nearly optimal start-up time ))(( , skn TSDO , far 

lower than ))1)(2(( , skn TSDO − achieved by using multiple spanning trees, as for 

transmission time ))1(( )!(
!

1 ckn
n

n
m TO −−− , both are nearly optimal. Under one-port model, 

the algorithm based on an optimal spanning tree achieves start-up time 
))()1(( , skn TSDnnO − , higher than ))1)(2)(1(( , skn TSDnO −− achieved by using 

multiple spanning trees, as for transmission time, both are nearly optimal. 
From Table 1 and Table 2, we can see that it is a hard work to optimize both start-

up time and transmission time simultaneously. So our algorithms based on an optimal 
spanning tree are asymptotically optimal. To the best of our knowledge, this is the 
first work reporting the possibility of embedding multiple ))(( nO spanning trees in an 

(n, k)-star graph, while keeping the edge congestion variable. But no more 
comparative broadcasting algorithms are available in knS , .  
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