
Multi-gigabit GCM-AES Architecture

Optimized for FPGAs

Stefan Lemsitzer, Johannes Wolkerstorfer, Norbert Felber,
and Matthias Braendli

TU Graz, IAIK/ETH Zürich, IIS
stefan@lemsitzer.com

Abstract. This paper presents a design-space exploration of the Ga-
lois/Counter Mode (GCM) algorithm with Advanced Encryption Stan-
dard (AES) as underlying block cipher for high throughput applications
to combine data encryption and message authentication on FPGAs. Four
different degrees of parallelism were implemented, namely a 128-, 64-,
32- and 16-bit wide data path calculating an output block in 1, 2, 4
and 8 clock cycles, respectively. Regarding the AES algorithm different
SubBytes() and round architectures were evaluated against each other.
For the multiplier required for GCM, two bit-parallel, a digit-serial and
a hybrid architecture were evaluated. The different architectures were
designed, implemented and tested on a Xilinx Virtex4-FX100 FPGA.
All architectures support key lengths of 128, 192 and 256 bits and are
equipped with a ready-to-use interface for real-world applications. A
throughput of 15.3 Gb/s was reached. It pointed out that throughput
rates for state-of-the-art communication channels can be achieved using
reasonable hardware resources. The results comparing slice counts, RAM
usage and speed are presented.

Keywords: Galois/Counter Mode (GCM), Advanced Encryption Stan-
dard (AES), Very Large Scale Integration (VLSI), high throughput, Field
Programmable Gate Array (FPGA), digit-serial multiplier, hybrid mul-
tiplier, bit-parallel multiplier.

1 Introduction

The AES algorithm was published by NIST as FIPS-197 standard in 2001 [1].
For this algorithm, several modes of operation were proposed such as ECB,
CBC, CFB, OFB and CTR [2]. These modes provide data encryption but no
data authentication. Therefore, NIST proposed among others GCM as a mode
of operation supporting authenticated encryption [3]. In this work, the GCM al-
gorithm was implemented to be used in a cryptographic system. For this project
the goal was to find an architecture with a reasonable trade off between speed,
area utilization and IO-behavior instead of concentrating on achieving maximum
throughput only.

P. Paillier and I. Verbauwhede (Eds.): CHES 2007, LNCS 4727, pp. 227–238, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

228 S. Lemsitzer et al.

2 Related Work

Regarding AES, several implementations for a broad range of applications are
presented in [4,5,6]. Focusing on GCM, [7] proposes an ASIC implementation
using a 0.13µm CMOS process reaching a throughput of 42.67 Gb/s. Several AES
architectures and optimization criteria, as well as two different GCM multiplier
architectures were implemented. In [8], a GCM core using a 0.18µm process was
designed reaching a throughput of 34.7 Gb/s. Furthermore, there exist a few
implementations from industry [9,10,11].

3 Algorithm Specification

3.1 Notation

Within this paper, a bit stream d0...di is grouped into bytes b0...bj , where the
MSBit is the bit with the lowest index according to Fig. 1. The operation || refers
to the concatenation of two bit streams. The exclusive or operation (XOR) is
denoted as ⊕. The index ∗ as in C∗ denotes a block which might be shorter than
128 bit. MSBi(C) refers to the i most significant bits of a block C.

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14

MSB LSB

d15

MSB LSBb0 b1

...

MSB LSBb15

d120 d121 d122 d123 d124 d125 d126 d127

Fig. 1. Bit/Byte representation

3.2 The Galois/Counter Mode (GCM)

GCM is a mode of operation for block ciphers that provides authenticated en-
cryption by using universal hashing over a binary Galois field as can be seen in
Fig. 2. As inputs, the algorithm expects a secret key K of appropriate length
for the underlying block cipher, a distinct initial vector IV, the plaintext P and
some additional authenticated data AAD. As outputs, a ciphertext C and an
authentication tag T are generated. P, C and AAD are grouped into 128-bit
blocks P = P0 · · ·Pn, C = C0 · · ·Cn, AAD = AAD0 · · ·AADm. The constant H
is obtained by encrypting a zero block under the given secret key. Note, that
for GCM only the encryption algorithm (ENC) of the underlying block cipher is
needed. The authenticated encryption operation is defined the following way:

H = ENC(K, 0128)

Y0 =

{
IV ||0311 if len(IV) = 96

GHASH(H, {}, IV) otherwise

Yi = incr(Yi−1) for i = 1, . . . n

Ci = Pi ⊕ (ENC(K, Yi) for i = 1, . . . , n − 1

C∗
n = P ∗

n ⊕ MSBu(ENC(K, Yn))

T = MSBt(GHASH(H, AAD, C) ⊕ ENC(K, Y0))

(1)

Multi-gigabit GCM-AES Architecture Optimized for FPGAs 229

Y0 Y1 Y2

ENCK ENCK ENCK

Plaintext P1 Plaintext P2

Ciphertext C1 Ciphertext C2

GF(2128)
Multiplier

GF(2128)
Multiplier

GF(2128)
Multiplier

GF(2128)
Multiplier

AAD

length(AAD)
length(P) Tag T

+1 +1

Fig. 2. Authenticated encryption overview (simplified)

The GHASH function, which is mainly responsible for tag creation, is shown as
follows, the indices u, v are denoting the missing bits to a full block of 128 bits:

Xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i = 0

(Xi−1 ⊕ AADi) · H for i = 1, . . . , m − 1

(Xm−1 ⊕ (AAD∗
m||0128−v)) · H for i = m

(Xi−1 ⊕ Ci−m) · H for i = m + 1, . . . , m + n − 1

(Xm+n−1 ⊕ (C∗
m||0128−u)) · H for i = m + n

(Xm+n ⊕ (len(AAD)||len(C))) · H for i = m + n + 1

(2)

For decryption, the ciphertext C and the plaintext P change their position in (1)
except for tag creation.

4 GCM-AES Implementation

The presented hardware implementation of GCM-AES computes the encryp-
tion and the GCM authentication in parallel. The main parts of the combined
encryption and authentication core are shown in Fig. 3. The following restric-
tions have been specified: Input data is 128 bit aligned which is required for the
cryptographic system. The sizes of additional authenticated data (AAD) and
plaintext (P) are counted internally and do not need to be applied externally.
Two status signals indicate whether loading of AAD or P is allowed. The length
of the IV is restricted to 96 bits which is recommended for high throughput im-
plementations [3]. Key changes and GCM-packet starts are possible in the same
clock cycle. At key change, the configuration (Key size, Encryption/Decryption,
AES/GCM-AES) of the core is configured as well.

230 S. Lemsitzer et al.

A
E

S
R

ou
nd

 0

A
E

S
R

ou
nd

 1

A
E

S
R

ou
nd

 2

A
E

S
R

ou
nd

 3

A
E

S
R

ou
nd

 4

A
E

S
R

ou
nd

 5

A
E

S
R

ou
nd

 6

A
E

S
R

ou
nd

 7

A
E

S
R

ou
nd

 8

A
E

S
R

ou
nd

 9

A
E

S
R

ou
nd

 1
0

A
E

S
R

ou
nd

 1
1

A
E

S
R

ou
nd

 1
2

A
E

S
R

ou
nd

 1
3

Key Register

Key Expansion

Ctr.
32 bit

Reg.

96 bit

O
ut

pu
t R

eg
is

te
r

GCM Multiplier

Cipher

Tag
Plaintext/AAD Counter

Data Input

Key InputIV Input

Change Key
Start GCM-packet

Finalize GCM-packet

Load Data
AAD or P

Encrypt or Decrypt
GCM-AES or AES

Key Size

Packet Control

Data Control

Configuration

Ready for Plaintext

Ready for AAD

Cipher or Tag

Valid Output

Control

Unit

Fig. 3. Data path of the whole GCM Core

4.1 Hardware Platform

A PCIe XpressFX [12] evaluation board equipped with a Xilinx Virtex4-FX100
FPGA was used. There are 42176 slices and 376 block RAMs of 18Kb available
on this device. The block RAMs in Xilinx Virtex4 FPGAs are clocked elements
and behave like registers. In the following sections this feature is used extensively.

4.2 AES Round Architectures

An architecture which uses 14 pipelined AES rounds as shown in Fig. 3 was
designed. The rounds operate concurrently without using inner pipelining to
speed up the circuit at cost of latency as done in [4]. This was not necessary
because the GCM multiplication mainly defined the critical path. Due to this
architecture decision, all round keys need to be made available within each cycle
and therefore have to be stored within a large register bank. In order to calculate
one data block consuming the same amount of cycles as the GCM multiplier, four
different implementations using different data path widths have been designed
and evaluated.

128-bit data path. This architecture requires 16 SubBytes() and four Mix-
Columns() blocks as shown in Fig. 4. When block RAMs are used for the Sub-
Bytes() operation, the 128-bit pipeline register at the output can be saved. A
complete AES block is calculated within each cycle.

64-bit data path. This architecture shown in Fig. 5 uses 8 SubBytes() blocks,
two MixColumns() blocks and two independent 32-bit registers to store in-
termediate values. One of them is reloaded in each cycle and stores b0, b3, b4

Multi-gigabit GCM-AES Architecture Optimized for FPGAs 231

S
B
1
5
(
)

S
B
1
(
)

S
B
0
(
)

Mix0()

Mix1()

Mix2()

Mix3()

Round Key 1
2
8

b
i
t

R
e
g
i
s
t
e
r

ShiftRows() rewiring
for next Round

128

Fig. 4. AES round architecture using a 128-bit data path

S
B
7
(
)

S
B
1
(
)

S
B
0
(
)

Mix1()

ShiftRows() rewiring
for next Round

6
4

b
i
t

R
e
g
i
s
t
e
r

3
2

b
i
t

R
e
g

3
2

b
i
t

R
e
g

Mix0()

Round Key

64

Fig. 5. AES round architecture using a 64-bit data path

and b5, and the other one is reloaded in each other cycle storing b1, b2, b6 and
b7. Using such a wiring no multiplexer is needed in front of the two regis-
ter banks. The ShiftRows() operation can easily be performed by the output
multiplexer.

32-bit data path. Figure 6 shows an architecture which uses four SubBytes()
and one MixColumns() block, followed by six shift registers which delay the
incoming bytes according to their usage within ShiftRows(). Note that there is
no multiplexer needed to load the shift registers.

16 bit data path. This architecture is similar to the previous one but only
two SubBytes() blocks are required. Because MixColumns() processes 32-bits of
input data, there is an additional 32-bit input register in front of MixColumns()
to store two outputs of the SubBytes() blocks.

232 S. Lemsitzer et al.

3
2

b
i
t

R
e
g
i
s
t
e
r

S
B
3
(
)

S
B
1
(
)

S
B
0
(
)

S
B
2
(
)

Mix0()

Round Key

32

8

8

8

8

8

8

8
32

Fig. 6. AES round architecture using a 32-bit data path

4.3 SubBytes() Implementation

For AES, the main time and area critical part is the SubBytes() operation.
It performs a byte substitution according to a substitution table called S-box.
This table is created by taking the multiplicative inverse of each byte in the
finite field GF(28), followed by an affine transformation over GF(2) [1]. Three
different architectures for this operation were evaluated.

As a first approach, the substitution table can be precomputed and defined
as a constant array which then is optimized by the synthesizer. In [5] was shown
that the truth table of the S-Box is an almost perfect random number table which
makes it very difficult to optimize its structure when using standard optimization
algorithms.

In [13], Rijmen showed a method to calculate the substitution values online
using operations in the composite field GF((24)2). The detailed architecture is
described in [14]. Using that method, the area utilization could be decreased by
32% compared to lookup tables.

For implementations on a Xilinx Virtex 4 FPGA the SBoxes can be stored
in the dual-port block RAMs which are configured as ROMs. The dual-port
capability halves the hardware requirements. If block RAMs are not a scarce
resource for the given target application, this implementation results in a very
fast circuit using no other FPGA resources. In addition, the output registers of
the AES rounds (Fig. 4, 5, 6) can be removed due to the synchronous behavior
of the block RAMs.

4.4 GCM Multiplier

GCM requires a multiplier for the finite field GF(2128) which needs to be carefully
designed to reach reasonable area utilization and performance. The multiplier
uses the irreducible polynomial p(x) = x128 + x7 + x2 + x + 1 to compute C =
AB mod p(x) . In [15], several implementation options for such a multiplier are
proposed, including bit-parallel, digit-serial and hybrid multipliers.

Multi-gigabit GCM-AES Architecture Optimized for FPGAs 233

Bit-Parallel implementations. An initial architecture was realized by de-
signing a block which multiplies a 128 bit input by x in GF (2128). This partial
product generator was then instantiated 128 times and optimized using the syn-
thesizer.

In a second architecture, the method proposed in [16] was implemented. The
matrices and vectors defined in [16] needed to be precomputed and exported as
VHDL files using MATLAB. The resulting circuit contains bitwise multiplication
(AND Gates) and addition (XOR Gates).

Digit-Serial Implementation. A digit-serial implementation was designed
similar to the architecture proposed in [17] which can be seen in Fig. 7. This
multiplier calculates a multiplication in the field GF (2k) in n = k/m cycles.
A multiplier in GF (2k) multiplies m-bits of the input A with the input B.
The multiplication by xm can be calculated by aligning intermediate results
accordingly.

Hybrid Multiplier. A Galois field GF(2k) can be represented by a composite
field GF((2n)m) where k = mn. Arithmetic calculations can then be performed
using bit-parallel architectures in the subfield GF(2n) and bit-serial structures
in the extension field GF((2n)m). Additionally, the inputs and outputs need to
be mapped between the two field representations. For computations in the com-
posite field, an irreducible polynomial R(x) = xn + rn−1x

n−1 + ... + r0 with
coefficients ri ∈ GF(2) constructing the subfield GF(2n), and an irreducible
polynomial Q(x) = xm + qm−1x

m−1 + ... + q0 with coefficients qi ∈ GF(2n)
constructing the extension field GF((2n)m), need to be found. In [18], a method
to derive the mentioned polynomials and two conversion functions map and
map−1 between the composite field and the field GF(2k) was proposed. Us-
ing this method, a hybrid multiplier was created using eight cycles to create
one output block as shown in Fig. 8. Therefore, the composite field GF((216)8)
was constructed. The structure of the multiplier was proposed in [19]. The in-
put words ui = {u0, u1, ..., u7} = map(A) starting with the most significant
word are multiplied with the input words vi = {v0, v1, ..., v7} = map(B) by a

B

A

k-bit Reg

xm

i
i = 1..n

k-bit

m-bit

k-bit

C

Fig. 7. Digit-serial multiplier

v v710v

Reg Reg Reg

q q710q

u i
i = 7...016 bit

16 bit

16 bit

w w w0 1 7

Fig. 8. Hybrid multiplier

234 S. Lemsitzer et al.

H-Reg

mapDataxDI
H

hybrid
mult

128 bit reg

map-1

Fig. 9. Architecture of the GCM Hybrid multiplier

16-bit multiplier. This multiplication in the subfield GF(216) uses the irreducible
polynomial R(x) = x16 + x15 + x13 + x12 + x11 + x9 + x8 + x7 + x5 + x4 + 1.
The output of the register w7 is multiplied with the coefficients qi ∈ GF(216)
and fed back according to Fig. 8. After eight cycles, the output can be read out
of the registers wi. In GCM, one input of the multiplier is always the value H as
described in (2), which changes only if the secret key changes. Therefore, within
this architecture only one map circuit is needed.

Latency. Depending on the key size and the operation mode, a different num-
ber of cycles has to be waited after key change before the first AAD/P can be
loaded provided that the start GCM-packet signal was applied simultaneously to
the key change. Tab. 1 gives a summary of the number of wait cycles. This delay
is not a real drawback because the key change occurs infrequently compared to
the GCM-packet change. Pipelining of the key change would result in a com-
plex control unit due to the reload of the core configuration at the key change.
If operated correctly, at GCM-packet changes, no plaintext can be loaded for
3 + �length(AAD)/128� cycles in GCM-AES mode. Assuming a GCM-packet
contains 128 data blocks and one AAD block, this results in an overhead of 3 %.
In AES-only mode, the plaintext can be loaded within each cycle.

Table 1. Latency for key change

128 bit keys 192 bit keys 256 bit keys

AES only mode 12 14 16

GCM-AES mode 14 16 18

5 Results

The combined GCM-AES hardware was modeled in VHDL. The HDL modules
were synthesized using Synplify Pro and then placed and routed using Xilinx ISE.
For each architecture the result with the best throughput/slice ratio after P&R is
listed in the tables. A golden model test and a long time test have been performed
on the PCIe XpressFX evaluation board using on-board memory as stimuli and

Multi-gigabit GCM-AES Architecture Optimized for FPGAs 235

response storage. The results for the AES core without authentication are listed
separately.

5.1 AES Core

The AES core implements the Counter mode. Key sizes of 128, 192 and 256 bits
are supported. The architecture using block RAMs is very suitable and compet-
itive for throughputs between 5 and 15 Gb/s at moderate clock frequencies as
can be seen in Tab. 2 and Tab. 3. Nevertheless, the costs for block RAMs must
not be neglected. For all presented architectures, the low latency enables fast
key and counter changes. The slice count for the AES rounds using block RAMs
is almost independent of the width of the data path.

Table 2. Comparison of different architectures of AES Counter mode. (a): RAM, (b):
composite field, (c): LUT.

16-bit data path 32 bit data path 64-bit data path 128-bit data path

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

Slices 4.0k 5.6k 5.8k 3.9k 7.3k 7.5k 3.8k 8.9k 11.1k 3.8k 13.7k 18.4

Clk [MHz] 170 130 160 140 110 130 140 90 140 140 100 140

Block RAMs 15 0 0 30 0 0 58 0 0 114 0 0

Gb/sec 2.7 2.1 2.56 4.5 3.5 4.2 9 5.8 9 17.9 12.8 17.9

kb/slice 676 370 436 1152 479 556 2326 651 804 4719 933.4 975.7

Table 3. Comparison of three AES implementations using block RAMs

Device Slices # RAMs Gb/s kb/slice Key Size Latency

This work Virtex4-FX100 3.8k 114 17.9 4719 128/192/256 12/14/16

Hodjat [4] XC2VP20-7 5.17k 84 21.54 4161 128 31

Standaert [20] Virtex 3200 E 2.78k 100 11.8 4229 128 21

5.2 GCM-AES Core

For the 128-bit data path implementation the multiplier using the shifted poly-
nomial basis led to a faster but larger design compared to the synthesizer opti-
mized architecture. The hybrid multiplier pointed out to be larger and slower on
a FPGA implementation than the digit-serial version. This was mainly caused
by the generated polynomial R(x) used within the subfield multiplier which has
eleven non-zero coefficients. (Note that the pentanomial used within the GCM
algorithm has only five non-zero coefficients). Tab. 4 lists the results for the 128-
bit, Tab. 5 for the 64-bit, Tab. 6 for the 32-bit and Tab. 7 for the 16-bit data
path. Note that single architectures could be further optimized by improving the
attributes and constraints set for synthesis and P&R individually.

236 S. Lemsitzer et al.

Table 4. GCM-AES FPGA core calculating one cipher block within each cycle - 128-bit
data path

Frequency Slices # block RAMs Gb/s kb/slice Limit

Shifted polynomial basis, RAM 110 MHz 13.2k 114 14.1 1062 GCM

Shifted polynomial basis, comp. 90 MHz 23.2k 0 11.5 496 AES

Shifted polynomial basis, LUT 120 MHz 27.8k 0 15.3 552 GCM

Synthesizer optimized, RAM 100 MHz 12k 114 12.8 1065 GCM

Synthesizer optimized, comp. 90 MHz 21.6k 0 11.5 534 AES

Synthesizer optimized, LUT 90 MHz 26.4k 0 11.5 435.9 GCM

Table 5. GCM-AES FPGA core calculating a cipher block every other cycle - 64-bit
data path

Frequency Slices # block RAMs Gb/s kb/slice Limit

Digit serial, RAM 130 MHz 7.7k 58 8.32 1076 GCM

Digit serial, comp. 90 MHz 12.9k 0 5.8 446 AES

Digit serial, LUT 120 MHz 15k 0 7.7 513 GCM

Table 6. GCM-AES FPGA core calculating a cipher block every four cycles - 32-bit
data path

Frequency Slices # block RAMs Gb/s kb/slice Limit

Digit serial, RAM 140 MHz 6.0k 30 4.48 738 GCM

Digit serial, comp. 120 MHz 9.4k 0 3.8 407 AES

Digit serial, LUT 130 MHz 9.8k 0 4.16 422 GCM

Table 7. GCM-AES FPGA core calculating a cipher block every eight cycles - 16-bit
data path

Frequency Slices # block RAMs Gb/s kb/slice Limit

Digit serial, RAM 150 MHz 5.5k 15 2.4 436 GCM

Digit serial, comp. 130 MHz 6.8k 0 2.0 305 AES

Digit serial, LUT 150 MHz 7.4k 0 2.4 322 GCM

Hybrid, RAM 110 MHz 7.3k 15 1.8 240 GCM

Hybrid, comp. 110 MHz 8.4k 0 1.8 211 GCM

Hybrid, LUT 120 MHz 9.3k 0 2.0 212 GCM

Multi-gigabit GCM-AES Architecture Optimized for FPGAs 237

6 Conclusion

Different high-throughput architectures of the GCM-AES algorithm have been
compared for their use in FPGAs. Two bit-parallel, a digit-serial and a hybrid
multiplier were designed to perform multiplications in the field GF (2128). Three
different SubBytes() implementations were evaluated. All cores are equipped
with a ready-to-use interface for real world applications and support 128-, 192-
and 256-bit keys. The FPGA designs were tested on a Xilinx Virtex4-FX100.

An efficient GCM-AES core reached a throughput of 14.1 Gb/s using 13.2 k-
slices (31 % of Xilinx Virtex4-FX100) and 114 block RAMs (30 % of Xilinx
Virtex4-FX100) running at 110 MHz. For fast FPGA implementations, the GCM
multiplier was the limiting factor. The hybrid multiplier using the irreducible
polynomial R(x) created within this work pointed out to perform worse than its
digit-serial competitor.

References

1. NIST: Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication 197 (2001),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

2. Dworkin, M.: Recommendation for Block Cipher Modes of Operation. NIST Special
Publication 800-38A (2001)

3. NIST: CSRC Proposed Modes of Operation (March 2007),
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/index.html

4. Hodjat, A., Verbauwhede, I.: A 21.54 Gbits/s Fully Pipelined AES Processor on
FPGA. In: Field-Programmable Custom Computing Machines, 2004. FCCM 2004.
12th Annual IEEE Symposium on (2004)

5. Moroioka, S., Satoh, A.: A 10 Gbps Full-AES Crypto Design with a Twisted-
BDD S-Box architecture. In: ICCD 02. Proceedings of the 2002 IEEE International
Conference on Computer Design. IEEE Computer Society Press, Los Alamitos
(2002)

6. Hamalainen, P., Alho, T., Hannikainen, M., Hamalainen, T.D.: Design and Imple-
mentation of Low-Area and Low-Power AES Encryption Hardware Core. In: DSD
’06: Proceedings of the 9th EUROMICRO Conference on Digital System Design,
Washington, DC, USA, pp. 577–583. IEEE Computer Society Press, Los Alamitos
(2006)

7. Satoh, A.: High-speed Hardware Architectures for Authenticated Encryption Mode
GCM. In: Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE In-
ternational Symposium ISCAS 2006 (2006)

8. Yang, B., Mishra, S., Karri, R.: A High Speed Architecture for Galois/Counter
Mode of Operation (GCM). Cryptology ePrint Archive, Report 2005/146 (2005),
http://eprint.iacr.org/

9. Helion Technology: AES-GCM Cores (March 2007),
http://www.heliontech.com/aes gcm.htm

10. Algotronics Ltd.: GCM Extension for AES G3 Core (March 2007),
http://www.algotronix.com/engineering/aes gcm.html

11. Elliptic Semiconductor Inc.: High Throughput AES-GCM Core - 5 Gbps (March
2007), http://www.ellipticsemi.com/pdf/CLP-24 60102.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/index.html
http://eprint.iacr.org/
http://www.heliontech.com/aes_gcm.htm
http://www.algotronix.com/engineering/aes_gcm.html
http://www.ellipticsemi.com/pdf/CLP-24_60102.pdf

238 S. Lemsitzer et al.

12. PLD Applications Inc.: PCIe Xilinx-based Prototyping Boards (March 2007),
http://www.plda.com/products/boards xilinx.php

13. Rijmen, V.: Efficient Implementation of the Rijndael S-box http://www.iaik.

tugraz.at/research/krypto/AES/old/ rijmen/rijndael/sbox.pdf

14. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC Implementation of the AES
SBoxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271. Springer, Heidelberg
(2002)

15. Paar, C.: Implementation Options for Finite Field Arithmetic for Elliptic Curve
Cryptosystems. In: The 3rd workshop on Elliptic Curve Cryptography, (October
1999)

16. Reyhani-Masoleh, A., Hasan, M.A.: Low Complexity Bit Parallel Architectures
for Polynomial Basis Multiplication over GF(2m). IEEE Transactions on Comput-
ers 53(8), 945–959 (2004)

17. Wenkai Tang, H.W., Ahmadi, M.: VLSI implementation of bit-parallel word-serial
multiplier in GF (2233). In: IEEE-NEWCAS Conference, 2005. The 3rd Interna-
tional (2005)

18. Sunar, B., Savas, E., Koc, C.K.: Constructing Composite Field Representations for
Efficient Conversion. IEEE Trans. Comput. 52(11), 1391–1398 (2003)

19. Paar, C., Fleischmann, P., Soria-Rodriguez, P.: Fast Arithmetic for Public-Key
Algorithms in Galois Fields with Composite Exponents. IEEE Trans. Com-
put. 48(10), 1025–1034 (1999)

20. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: Efficient Imple-
mentation of Rijndael Encryption in Reconfigurable Hardware: Improvements and
Tradeoff. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 334–350. Springer, Heidelberg (2003)

http://www.plda.com/products/boards_xilinx.php
http://www.iaik.tugraz.at/research/krypto/AES/old/~rijmen/rijndael/sbox.pdf
http://www.iaik.tugraz.at/research/krypto/AES/old/~rijmen/rijndael/sbox.pdf

	Multi-gigabit GCM-AES Architecture Optimized for FPGAs
	Introduction
	Related Work
	Algorithm Specification
	Notation
	The Galois/Counter Mode (GCM)

	GCM-AES Implementation
	Hardware Platform
	AES Round Architectures
	$SubBytes()$ Implementation
	GCM Multiplier

	Results
	AES Core
	GCM-AES Core

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

