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Abstract. We present a feature-based 3D face recognition algorithm
and propose a keypoint identification technique which is repeatable and
identifies keypoints where shape variation is high in 3D faces. Moreover,
a unique 3D coordinate basis can be defined locally at each keypoint
facilitating the extraction of highly descriptive pose invariant features.
A feature is extracted by fitting a surface to the neighbourhood of a
keypoint and sampling it on a uniform grid. Features from a probe and
gallery face are projected to the PCA subspace and matched. Two graphs
are constructed from the set of matching features of the probe and gallery
face. The similarity between these graphs is used to determine the iden-
tity of the probe. The proposed algorithm was tested on the FRGC v2
data and achieved 93.5% identification and 97.4% verifiction rates.

1 Introduction

The human face is a socially acceptable and non-intrusive biometric. It requires
minimal or no cooperation from the subject making it ideal for surveillance. How-
ever, machine recognition of faces is very challenging because the distinctiveness
of facial biometrics is quite low compared to other biometrics [6]. Moreover,
changes caused by expressions, illumination, pose, occlusions and facial makeup
(e.g. beard) impose further challenges on accurate face recognition.

Zhao et al. [18] categorize face recognition algorithms as holistic, feature-based
and hybrid. Holistic algorithms use global features (e.g. Eigenfaces [17]) of the
complete face whereas feature-based algorithms use local features [7] or regions
[11] of the face for recognition. Hybrid matching methods use a combination of
global and local-features for recognition e.g. [4]. A limitation of holistic matching
is that it requires accurate normalization of the faces according to pose, illumi-
nation and scale. Variations in these factors can affect the global features of the
face leading to inaccuracies in the final recognition. Moreover, global features
are also sensitive to facial expressions and occlusions. Feature-based matching
algorithms have the advantage that they are robust to variations in pose, illu-
mination, scale, expressions and occlusions.

Bowyer et al. [2] give a survey of 3D face recognition algorithms and argue
that 3D face recognition has the potential to overcome the limitations of its
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2D counterpart. However, there is a need for better algorithms which are more
tolerant to the above mentioned variations. Many 3D face recognition approaches
are based on the ICP algorithm [1] or its modifications because of two major
advantages. Firstly, perfect normalization of the faces is not required as ICP
iteratively corrects registration errors while matching. Secondly, a partial region
can be matched with a complete face. The latter has been exploited to avoid
facial expressions [11][14] and to handle pose variations [8]. On the downside,
ICP is a computationally expensive algorithm and does not extract any feature
from the face. This rules out any possibility of indexing to speed up the matching
process. Unless another algorithm and/or modality is used to perform indexing or
prior rejection of unlikely faces [12], ICP based algorithms must perform a brute
force matching thereby making the recognition time linear to the gallery size.
Selecting expression insensitive regions of the face for matching is a potentially
useful approach to overcome the sensitivity of ICP to expressions. However,
deciding upon such regions is a problem worth exploring as such regions may
not only vary between different persons but between different expressions as well.

We propose a novel keypoint identification and feature extraction algorithm
for 3D face recognition. The identification of keypoints is repeatable and allows
for the extraction of highly descriptive 3D features. Each feature is extracted by
fitting a surface to the neighbourhood of a keypoint and sampling it on a uniform
grid. Multiple features are extracted from each gallery face and projected to a
PCA subspace. During recognition, features are extracted at keypoints on the
probe and projected to a similar PCA subspace before matching. The set of
matching features from a probe and gallery face are individually meshed to form
two graphs. A spatial constraint is used to remove false matches (nodes) and the
remaining graph is used to calculate the similarity measure between the faces.

Preliminary results of our algorithm have been published [13]. However, a
number of extensions have been done since then including keypoint identification,
local 3D coordinate derivation from single keypoints, projection of the features
to a subspace, use of a more sophisticated graph matching approach and results
from experiments on the complete FRGC v2 data.

2 Keypoint Identification

The input to our algorithm is a point cloud of a face F = [xi yi zi]T (where
i = 1 . . . n) which is sampled at uniform intervals. At each sample point p, a local
region is cropped from the face using a sphere of radius r1 centered at p. The
value of r1 is a trade off between descriptiveness of the feature and its sensitivity
to variations. The smaller the value of r1, the less will be the sensitivity to
variations but this will also decrease the descriptiveness of the feature.

Let L = [xj yj zj]T (where i = 1 . . . nl) be the points in the region cropped
by the sphere of radius r1 centered at p. The mean vector m and the covariance
matrix C of L are given by
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Fig. 1. Illustration of keypoint repeatability. Each column contains three range images
of the same individual. Keypoints are repeatably identified for the same individual.

m =
1
n1

n1∑

j=1

Lj , and (1)

C =
1
n1

n1∑

k=1

LjLT
j − mmT , (2)

where Lj is the jth column of L. Performing PCA on the covariance matrix C
gives the matrix V of eigenvectors such that Eqn. 3 is satisfied (where D is a
diagonal matrix of the eigenvalues of C). The matrix L can be aligned with its
principal axes using Eqn. 4.

CV = DV , (3)
L′ = V(L − m). (4)

δ = max(L′
x) − min(L′

x) − (max(L′
y) − min(L′

y)) (5)

In Eqn. 5, δ is the difference between the first two principal axes of the local
region L′ and L′

x is the vector of the x coordinates of L′. If δ is greater than a
threshold (i.e. δ ≥ t1) p is selected as a keypoint. The total number of keypoints
is determined by t1. As the value of t1 increases the total number of keypoints will
decrease. The values of r1 and t1 are empirically chosen as r1 = 20mm and t1 =
2mm. However, our algorithm is not sensitive to these parameters. Fig. 1 shows
keypoints identified on different range images of four individuals. The keypoints
are repeatably identified for a given individual but vary between individuals
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because they have different facial shapes. The latter also enhances recognition
accuracy. In the first column, the keypoints cluster mostly on the nose. In column
three, some keypoints are also detected on the cheek bones. Experiments showed
that the keypoints have 86% and 75.6% repeatability within the sampling interval
for faces with neutral and non-neutral expressions respectively.

3 3D Feature Extraction

The neighbourhood L′ of each keypoint is used to extract a 3D feature which is
an extension of [10] and [13]. The major difference is that in this paper, the local
coordinate basis for extracting the feature is derived from the principal directions
of the neighbourhood L′ of a single keypoint. This avoids the Cn

2 combinatorial
problem [10] without the knowledge of the nose tip [13]. Since the keypoints are
selected such that there is no ambiguity in the principal directions of the surface
patch, the derived 3D coordinate bases are stable and so are the features.

A surface is fitted to the points in L′ using approximation [3] as opposed to
interpolation so that it is robust to noise and outliers. Each point in L′ pulls
the surface towards itself and a stiffness factor controls the flexibility of the
surface. The surface is sampled on a uniform 20 × 20 lattice (see Fig. 2-a). In
order to avoid the effects of boundaries, a larger region is cropped first using r2
(where r2 > r1) and a surface is fitted to it. This surface is then sampled on a
bigger lattice and only the central 20 × 20 samples covering the r1 region are
concatenated to form a vector of dimension 400.

A constant value of t1 will result in different numbers of keypoints identified
for each face and bias the recognition results in favor of faces with more features.
Therefore, an upper limit of 200 is imposed on the total number of features per
face. The feature vectors are projected to a subspace defined by the eigenvectors
of their largest eigenvalues using PCA. Let � = [f1 . . . f200N ] (where N is the
gallery size) be the 400 × 200N matrix of all the feature vectors in the gallery.
Each column of � contains a feature vector of dimension 400. The mean feature
vector (Eqn. 6) is subtracted from all the feature vectors using Eqn. 7.

f =
1

200N

200N∑

i

fi (6)

f ′i = fi − f (7)

The mean subtracted feature matrix is given by Eqn. 8 and its covariance matrix
by Eqn. 9 (where C is a 400× 400 matrix). The eigenvalues and eigenvectors of
C are calculated using Singular Value Decomposition (SVD) in Eqn. 10.

�
′ = [f ′1 . . . f

′
200N ] (8)

C = �
′(�′)T (9)

USVT = C , (10)
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(a) (b)

Fig. 2. (a) A keypoint displayed (in white colour) on a 3D face and a local surface
fitted to the neighbourhood of the keypoint using a 20 × 20 lattice. (b) A plot of the
ratio ψ as a function of the number of eigenvalues k.

where U is a 400×400 matrix of the eigenvectors and S is a diagonal matrix of the
eigenvalues, both sorted in decreasing order. The dimension of the PCA subspace
is governed by the amount of required accuracy (fidelity) in the projected space.
Plotting the ratio of the first k eigenvalues to the total eigenvalues (i.e. ψ =∑ k

i=1 λi∑ 400
i=1 λi

, where λi is the ith eigenvalue) as a function of the number of eigenvalues
k (Fig. 2-b) shows that 99% accuracy is reached at only k = 11. This means a
compression ratio of (400−11)

400 = 97.3% which is not surprising given that all
human faces have a similar topological structure and are roughly symmetric on
either side of the nose. The first k eigenvectors are taken as Uk = Ui (where
i = 1 . . . k and Uk is a 400 × k matrix of the first k eigenvectors). The mean
subtracted feature matrix is projected to the eigenspace

�
λ = (Uk)T

�
′ , (11)

where �
λ is a k × 200N matrix of the 3D feature vectors of the gallery faces.

�
λ is normalized so that its variance along each of the k dimensions is equal

�
λ
rc =

�
λ
rc

λr
where r = 1 . . . k and c = 1 . . . 200N. (12)

In Eqn. 12, r stands for the dimension or row number and c stands for the
feature or column number. The feature vectors in �

λ (i.e. the columns) are
normalized to unit magnitude and saved in a database along with f and Uk for
online feature-based face recognition. The representation of gallery faces is quite
compact as each face is represented by only 200 vectors of dimensionality 11.

4 Feature Matching

Indexing or hashing can speed up the matching process however, they are not the
focus of this paper. Moreover, matching the probe with every gallery face results
in many impostor scores useful for drawing the Receiver Operating Characteristic
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(a) (b)

Fig. 3. (a) Correct match (b) Incorrect match

(ROC) curves. During recognition, features are extracted from the probe using
the same parameters as the gallery. A probe feature vector fp is first projected
to the PCA subspace (Eqn. 13) and matched with a gallery feature (Eqn. 14).

fλ
p = (Uk)T (fp − f) (13)

e = cos−1(fλ
p (fλ

g )T ) (14)

The value e measures the matching error between the probe and gallery features
(fλ

p and fλ
g ) in the PCA subspace. For a given probe feature, the feature from the

gallery face that has the minimum error with it is taken as its match. Once all
the features are matched, the list of matches is sorted according to e. If a gallery
feature matches more than one probe feature, only the one with the minimum
value of e is considered. This allows for only one-to-one matches and the total
number of matches m is different for every probe-gallery pair.

The keypoints of the matching features on the probe are projected on the
xy-plane, meshed using Delaunay triangulation and projected back to the 3D
space resulting in a 3D graph. The edges of this graph are used to construct
a graph from the corresponding nodes (keypoints) of the gallery face using the
list of matches. If the matches are correct i.e. the matching pairs of features
correspond to the same location on the probe and gallery face, the two graphs
will be similar (Fig. 3). The similarity measure between the graphs is given by

γ =
1
nε

nε∑

i

(εpi − εgi) , (15)

where εpi and εgi are the lengths of the corresponding edges of the probe and
gallery graphs respectively and nε is the total number of edges. Eqn. 15 is an
efficient way of measuring the spatial error between the matching pairs of fea-
tures. The measure γ is pose invariant because the edge lengths of the graphs
remain constant under pose variation. Another similarity measure is the mean
Euclidean distance d between the nodes of the two graphs after least squared
error minimization.
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The matching algorithm results in four measures of similarity between the
two faces i.e. e, the total number of matches m, γ, and d. Excluding m, all
similarity measures have a negative polarity (i.e. a smaller value means a better
similarity). A probe is matched with every gallery face resulting in four vectors
sq of similarity measures (where q corresponds to a similarity measure). Each
vector is normalized on the scale of 0 to 1 using

s′q =
sq − min(sq)

max(sq − min(sq)) − min(sq − min(sq))
, (16)

where s′q contains the normalized similarity measures. The elements of s′m are
subtracted from 1 in order to reverse their polarity. The overall similarity is
calculated using a confidence weighted sum rule

s = κes′e + κm(1 − s′m) + κγs′γ + κds′d , (17)

where κq is the confidence in a similarity measure which can be calculated offline
from training data or dynamically during online recognition as κq = sq−min(sq)

sq−min2(sq)

(where sq is the mean value of sq and the operator min2(sq) produces the second
minimum value of the vector sq). Note that κm is calculated from 1 − s′m. The
gallery face which has the minimum value in s is declared as the probe’s identity.

5 Results and Analysis

The FRGC v2 [16] validation set comprises 4007 3D scans of 466 subjects along
with their texture maps. We only used the 3D shape of the faces and selected
one face per individual under neutral expression to make a gallery of 466. The
remaining faces (4007 − 466) are treated as probes and divided into neutral
expressions (1944) and non-neutral expressions (1597).

(a) (b)

Fig. 4. (a) Identification results. The rank one identification rate for neutral vs. all is
93.5%. (b) ROC curves. The verification rate at 0.001 FAR for neutral vs. all is 97.4%.
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Fig. 4-a shows our identification results. Our algorithm achieved rank one
identification rates of 99.0% and 86.7% for probes with neutral and non-neutral
expressions respectively. Under neutral expressions, only one probe is above rank
17 (100% recognition rate at rank 17). The identification rate drops under non-
neutral expressions. However, it should be kept in mind that 3D face recognition
is generally more sensitive to expressions. For example, the 3D face recognition
rate of Lu et al. [8] dropped by 30%. In our case, the recognition rate drops by
12.3%. Moreover, the steep rise in the identification rate (i.e. 86.7% to 95%) from
rank 1 to rank 5 indicates that the rank one identification rate will significantly
improve by fusing other features e.g. global.

Fig. 4-b shows the ROC curves of our algorithm. At 0.001 FAR, we achieved
verification rates of 99.9% and 92.7% respectively for probes with neutral and non-
neutral expressions. In the neutral expressions case, a 100% verification rate is
achieved at 0.01 FAR. It is not the aim of this paper to report the most accurate
results on the FRGC v2 data and we believe that better results can be obtained by
using a multi-algorithm approach. However, to give some idea of the performance
of our algorithm, we compare our results to others. At 0.001 FAR we achieved a
verification rate of 97.4% (neutral versus all) which can be compared to the results
of Passalis et al. [15], Maurer et al. [9] and Huskën et al. [5] who achieved 85.1%,
86.5% and 89.5% verification rates respectively on the same dataset.

6 Conclusion

We presented a novel keypoint identification and feature extraction algorithm
for 3D face recognition. These keypoints; (1) have 86% repeatability in the range
images of the same individual, (2) vary between individuals, (3) are identified
at locations where the shape variation is high, and (4) provide stable and re-
peatable local 3D coordinate frames for the computation of highly descriptive
features. We also presented a graph based feature matching algorithm and re-
ported experiments on the largest publicly available database of 3D faces. Our
algorithm has an equal error rate (EER) of 0.75%(neutral vs. all) and has the
potential for further improvement in a multi-algorithm setup.
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5. Huskën, M., Brauckmann, M., Gehlen, S., Malsburg, C.: Strategies and Benefits of

Fusion of 2D and 3D Face Recognition. In: IEEE Workshop on FRGC Exp. (2005)
6. Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition.

IEEE TCSVT 14(1), 4–20 (2004)
7. Jones, M., Viola, P.: Face Recognition using Boosted Local Features. IEEE

ICCV (2003)
8. Lu, X., Jain, A.K., Colbry, D.: Matching 2.5D Scans to 3D Models. IEEE

TPAMI 28(1), 31–43 (2006)
9. Maurer, T., Guigonis, D., Maslov, I., Pesenti, B., Tsaregorodtsev, A., West, D.,

Medioni, G.: Performance of Geometrix ActiveIDTM 3D Face Recognition Engine
on the FRGC Data. In: IEEE Workshop on FRGC Exp. (2005)

10. Mian, A.S., Bennamoun, M., Owens, R.A.: A Novel Representation and Fea-
ture Matching Algorithm for Automatic Pairwise Registration of Range Images.
IJCV 66, 19–40 (2006)

11. Mian, A.S., Bennamoun, M., Owens, R.A.: 2D and 3D Multimodal Hybrid Face
Recognition. ECCV 3, 344–355 (2006)

12. Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic 3D Face Detection, Normal-
ization and Recognition. 3DPVT (2006)

13. Mian, A.S., Bennamoun, M., Owens, R.A.: Face Recognition Using 2D and 3D
Multimodal Local Features. ISVC, 860–870 (2006)

14. Mian, A.S., Bennamoun, M., Owens, R.A.: An Efficient Multimodal 2D-3D Hybrid
Approach to Automatic Face Recognition. IEEE TPAMI 2007 (to appear)

15. Passalis, G., Kakadiaris, I., Theoharis, T., Tederici, G., Murtaza, N.: Evaluation
of 3D Face Recognition in the Presence of Facial Expressions: An Annotated De-
formable Model Approach. In: IEEE Workshop on FRGC Experiments. IEEE Com-
puter Society Press, Los Alamitos (2005)

16. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Mar-
ques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge.
IEEE CVPR (2005)

17. Turk, M., Pentland, A.: Eigenfaces for Recognition. JOCN 3 (1991)
18. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition: A Liter-

ature Survey. ACM Computing Survey, 399–458 (2003)


	Keypoint Identification and Feature-Based 3D Face Recognition
	Introduction
	Keypoint Identification
	3D Feature Extraction
	Feature Matching
	Results and Analysis
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




