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Abstract. In this paper, we show how the Demirci-Selcuk-Ture attack,
which is currently the deepest penetrating attack on the IDEA block
cipher, can be improved significantly in performance. The improvements
presented reduce the attack’s plaintext, memory, precomputation time,
and key search time complexities. These improvements also make a prac-
tical implementation of the attack on reduced versions of IDEA possible,
enabling the first experimental verifications of the DST attack.

1 Introduction

International Data Encryption Algorithm (IDEA) is one of the most popular
block ciphers today, commonly used in popular software applications such as
PGP. IDEA is known to be extremely secure too: Despite its relatively long
history and numerous attempts to analyze it [1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 14, 15],
most known attacks on IDEA, which is an 8.5-round cipher, apply to no more
than the cipher reduced to 4 rounds. The most effective attack currently known
is due to Demirci, Selçuk, and Türe (DST) [7], which is a chosen plaintext attack
effective on IDEA up to 5 rounds.

In this paper, we study the ways of enhancing the DST attack and improving
its performance. The improvements discussed include shortening the variable
part of the plaintexts, reducing the sieving set size, and utilizing previously un-
used elimination power of the sieving set. The improvements result in a reduction
in the plaintext, memory, precomputation time, and key search time complexi-
ties of the attack and show that the DST attack can be conducted significantly
more efficiently than it was originally thought.

The rest of this paper is organized as follows: In Section 2, we briefly describe
the IDEA block cipher. In Section 3, we give an overview of the DST attack. In
Section 4, we present several key observations on the DST attack and how to
optimize the attack accordingly. In Section 5, we analyze the success probability
of the attack according to these optimizations. In Section 6, we present our
experimental results and compare them with our theoretical expectations. In
Section 7, we calculate the total complexity of the revised attack. Finally in
Section 8, we conclude with an overall assessment of the work presented.
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p q

u t

P4P3P2P1

C4C3C2C1

K4

K6

K5

K1 K2 K3

MA
box

Fig. 1. One round of IDEA

1.1 Notation

We use the following notation in this paper: For modular addition and modular
subtraction we use the symbols � and � respectively. Bitwise exclusive-or (XOR)
is denoted by ⊕ and the IDEA multiplication is denoted by �. The plaintext
is shown as (P1, P2, P3, P4) which is a concatenation of four 16-bit subblocks.
Similarly the ciphertext is shown as (C1, C2, C3, C4). The superscripts in paren-
thesis denote the round numbers. There are six round-key subblocks for each
round which are denoted by K1, K2, K3, K4, K5, K6. The inputs of the MA-box
are denoted by p and q and the outputs are denoted by u and t.

The least significant bit of a variable x is denoted by lsb(x), the ith least
significant bit is denoted by lsbi(x), and the least significant i bits are denoted
by lsbsi(x). Similarly, the most-significant counterparts of these operators are
respectively denoted by msb(x), msbi(x), and msbsi(x). Concatenation of two
variables x, y is denoted by (x|y). Finally, an inclusive bit interval between the
mth and nth bits of a round-key subblock K

(i)
j is denoted by K

(i)
j [m . . . n].

2 IDEA Block Cipher

The IDEA block cipher is a modified version of the PES block cipher [11, 12].
IDEA has 64-bit blocks and takes 128-bit keys. The blocks are divided into
four 16-bit words and all the operations are on these words. Three different
“incompatible” group operations are performed on these words: Bitwise XOR,
modular addition, and the IDEA multiplication, which is multiplication modulo
216 + 1 where 0 represents 216.
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There are two parts in an IDEA round. The first is the transformation part:

T : (P1, P2, P3, P4) → (P1 � K1, P2 � K2, P3 � K3, P4 � K4).

In the second part, two inputs of the MA-box are calculated as p = (P1 �
K1) ⊕ (P3 � K3) and q = (P2 � K2) ⊕ (P4 � K4). The outputs of the MA-box
are t = ((p � K5) � q) � K6 and u = (p � K5) � t. After these calculations t
is XORed with the first and third output of the transformation part and u is
XORed with the second and fourth. Finally, the ciphertext is formed by taking
the outer blocks directly and exchanging the inner blocks.

C1 = (P1 � K1) ⊕ t,

C2 = (P3 � K3) ⊕ t,

C3 = (P2 � K2) ⊕ u,

C4 = (P4 � K4) ⊕ u.

IDEA consists of eight full rounds and an additional half round, which consists
of one transformation part.

The key schedule creates 16-bit round subkeys from a 128-bit master key by
taking 16 bits for a subkey and shifting the master key 25 bits after every 8th
round key.

Decryption can be done using the encryption algorithm with the multiplicative
and additive inverses of the round key subblocks in the transformation part and
the same key subblocks in the MA-box.

3 The DST Attack

In this section, we give a brief overview of the DST attack with the relevant
properties of the IDEA cipher.

3.1 Some Properties of IDEA

The following are some key observations of Demirci et al. [7] on the IDEA cipher
which are fundamental to the DST attack. Proofs can be found in the original
paper [7].

Theorem 1. Let P = {(P1, P2, P3, P4)} be a set of 256 plaintexts such that

– P1, P3, lsbs8(P2) are fixed,
– msbs8(P2) takes all possible values over 0, 1, . . . , 255,
– P4 varies according to P2 such that q = (P2 � K

(1)
2 ) ⊕ (P4 � K

(1)
4 ) is fixed.

For p(2) denoting the first input of the MA-box in the second round, the following
properties will hold in the encryption of the set P:

– lsbs8(p(2)) is fixed,
– msbs8(p(2)) takes all possible values over 0, 1, . . . , 255.
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Moreover, the p(2) values, when ordered according to the plaintext’s msbs8(P2)
beginning with msbs8(P2) = 0, will be of the form

(y0|z), (y1|z), . . . , (y255|z)

for some fixed, 8-bit z, and yi = (((i�a)⊕ b)� c)⊕d, for 0 ≤ i ≤ 255 and fixed,
8-bit a, b, c, d.

Theorem 2. In the encryption of the plaintext set P defined in Theorem 1,
lsb(K(2)

5 � p(2)) equals either lsb(C(2)
2 ⊕ C

(2)
3 ) or lsb(C(2)

2 ⊕ C
(2)
3 ) ⊕ 1 for all the

256 plaintexts in P.

Lemma 1. In the IDEA round function, the following property is satisfied:

lsb(t ⊕ u) = lsb(p � K5).

Corollary 1. lsb(C(i)
2 ⊕ C

(i)
3 ⊕ (K(i)

5 � (C(i)
1 ⊕ C

(i)
2 ))) = lsb(C(i−1)

2 ⊕ C
(i−1)
3 ⊕

K
(i)
2 ⊕ K

(i)
3 ).

Corollary 2. lsb(C(i)
2 ⊕ C

(i)
3 ⊕ (K(i)

5 � (C(i)
1 ⊕ C

(i)
2 ))) ⊕ (K(i−1)

5 � (C(i−1)
1 ⊕

C
(i−1)
2 ))) = lsb(C(i−2)

2 ⊕ C
(i−2)
3 ⊕ K

(i)
2 ⊕ K

(i)
3 ⊕ K

(i−1)
2 ⊕ K

(i−1)
3 ).

3.2 Attack on 3-Round IDEA

The DST attack starts with a precomputation phase where a “sieving set” is
prepared which consists of 256 elements of 256-bit strings

S = {f(a, b, c, d, z, K
(2)
5 ) : 0 ≤ a, b, c, d, z < 28, 0 ≤ K

(2)
5 < 216}.

computed bitwise as

f(a, b, c, d, z, K
(2)
5 )[i] = lsb(K(2)

5 � (yi|z))

for 0 ≤ i < 255, where yi = (((i � a) ⊕ b) � c) ⊕ d.
Once preparation of the sieving set is completed, the main phase of the attack

follows. Below is a description of the basic attack on the 3-round IDEA:

1. The attacker takes a chosen plaintext set R = {(P1, P2, P3, P4)}, where P1,
P3, and lsbs8(P2) are fixed at an arbitrary value, and msbs8(P2) and P4 take
all possible values. All elements of R are encrypted with the 3-round IDEA.

2. For each value of K
(1)
2 and K

(1)
4 , take a subset P of 256 plaintexts from R

such that msbs8(P2) varies from 0 to 255 and P4 is chosen to make (P2 �
K

(1)
2 ) ⊕ (P4 � K

(1)
4 ) constant.

3. For each value of K
(3)
5 , a 256-bit string is formed by computing

lsb(C(3)
2 ⊕ C

(3)
3 ⊕ (K(3)

5 � (C(3)
1 ⊕ C

(3)
2 )))

for each of the plaintexts in P , ordered bymsbs8(P2). If the current (K(1)
2 , K

(1)
4 ,

K
(3)
5 ) triple is correct, this 256-bit string must be found in the sieving set. If it

cannot be found, the key triple is eliminated.
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4. If many key candidates survive this test, steps 1–3 can be repeated with a
different plaintext set R until a single triple remains. We call one execution
of steps 1–3 an elimination round.

This attack finds K
(1)
2 , K

(1)
4 , K

(3)
5 directly by exhaustive search. We can also

find K
(2)
5 indirectly by storing the corresponding K

(2)
5 value along with each

sieving set entry and returning its value in case of a sieving set hit.

3.3 Attack on 3.5-Round IDEA

The 3.5-round attack works similar to the 3-round attack. To find lsb(C(3)
2 ⊕

C
(3)
3 ⊕ (K(3)

5 � (C(3)
1 ⊕ C

(3)
2 ))) we encrypt P with 3.5-round IDEA and decrypt

C
(3.5)
1 and C

(3.5)
2 for a half-round by exhaustive search on K

(4)
1 and K

(4)
2 . It

is not necessary to find C
(3)
3 since C

(3)
2 ⊕ C

(3)
3 is equal to C

(3.5)
2 ⊕ C

(3.5)
3 or

C
(3.5)
2 ⊕ C

(3.5)
3 ⊕ 1 for all 256 ciphertexts.

3.4 Attacks on Higher Number of Rounds

The attack on higher-round IDEA versions utilizes Corollary 2 to find lsb(C(2)
2 ⊕

C3(2)) or its complement by computing lsb(C(4)
2 ⊕C

(4)
3 ⊕(K(4)

5 �(C(4)
1 ⊕C

(4)
2 )))⊕

(K(3)
5 � (C(3)

1 ⊕ C
(3)
2 )).

In the 4-round attack, it is necessary to try exhaustively all possible values
of K

(4)
1 , K

(4)
2 , K

(4)
5 , and K

(4)
6 to find C

(3)
1 ⊕ C

(3)
2 . For the 4.5-round attack, we

need to search over K
(5)
1 , K

(5)
2 , K

(5)
3 , K

(5)
4 to obtain the 4th round outputs. For

the 5-round attack, K
(5)
5 , and K

(5)
6 are also searched.

3.5 Complexity of the DST Attack

In these attacks, the space complexity and precomputation time are independent
of the number of rounds while the key search time varies depending on the
number of rounds attacked.

Memory required for the attack is determined by the size of the sieving set,
which consists of 256 elements of 256-bit strings.

Precomputation time is the time that is needed to prepare the sieving set. We
need to calculate the f function once for each bit of the sieving set. There are
256 elements of 256-bit strings, therefore the precomputation time complexity is
264 f computations.

Complexity of the main phase of the attack, the key search time, is different
in the 3-, 3.5-, 4-, 4.5- and 5-round attacks depending on the number of key
bits searched. In each of these attacks, a lookup string is computed over 256
ciphertexts for each key candidate, contributing a complexity factor of 28. In
the 3-round attack, the key searched is 34 bits, making the key search time
complexity 242 partial decryptions. The 3.5-round attack searches 32 more bits,
making the time complexity 274. The 4-round attack needs 16 more key bits
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which raises the time complexity to 290. We search 114 key bits for the 4.5-round
attack and 119 bits for the 5-round attack, with the complexities of 2122 and 2127

partial decryptions respectively.

4 The Improved DST Attack

In this section we describe the improvements we have made on the DST attack
which reduce the precomputation time, key search time, space, and plaintext
complexities of the attack.

4.1 Shortening the Variable Parts

The original DST attack partitioned P2 into 8-bit fixed and 8-bit variable parts,
where the variable part took all possible 28 values over the chosen plaintext set P .
One can observe that in fact it is not necessary to have a balanced partition of P2
and the attack works just as fine with an imbalanced partition. Accordingly, one
can obtain significant savings in the attack by reducing the size of the variable
part. For v denoting the number of most significant bits in the variable part of
P2, the sieving set for the attack becomes,

S = {f(a, b, c, d, z, K
(2)
5 ) : 0 ≤ a, b, c, d < 2v, 0 ≤ z < 216−v, 0 ≤ K

(2)
5 < 216}.

Note that shortening the variable part of P2 narrows the sieving set both ver-
tically and horizontally. With a v-bit variable part, the sieving set entries will
be 2v bits each instead of 256 bits. Furthermore, the number of entries in the
sieving set will be reduced by a factor of 23(8−v). This change also decreases the
key search time by 28−v, since for each candidate key, we encrypt 2v plaintexts
to form the bit string to be searched in the sieving set instead of 256. We will see
in Section 5 that having five variable bits is enough for an effective elimination.
Therefore by an imbalanced partition of P2, we obtain an improvement by a
factor of 29 in precomputation time, 23 in key search time and 212 in space.

4.2 Size of the Sieving Set

Another reduction in the size of the sieving set comes from the identical entries
yielded by different (a, b, c, d) quadruples, i.e., the collisions. In the DST attack
all the elements of the sieving set were thought to be distinct [7]. We have
found that actually a significant number of collisions exist among the sieving set
entries. Some of these collisions were found analytically and some were observed
empirically. The analytical findings were obtained according to the yi values:

Definition 1. We call two (a, b, c, d) quadruples, 0 ≤ a, b, c, d < 2v, equivalent
if they give the same yi = (((i � a) ⊕ b) � c) ⊕ d value for all 0 ≤ i < 2v.

Lemma 2. For any quadruple (a, b, c, d), complementing the most significant bit
of any two or four of a, b, c, d yields an equivalent quadruple.
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Proof. We are working in modulo 2v, so there is no carry bit for addition on the
most significant bit. This means changing the most significant bit of a variable
in the addition operation changes only the most significant bit of the result.
Exclusive-or has the same effect on all bits. So, in an expression of addition and
exclusive-or operations, changing one of the variables’ most significant bit flips
the most significant bit of the result. Changing the most significant bit of an
even number of the variables leaves the result unchanged. ��

This property gives
(4
0

)
+

(4
2

)
+

(4
4

)
= 8 equivalent (a, b, c, d) quadruples. Another

equivalence is related to the complement operation:

Lemma 3. (a, b, c, d) is equivalent to (a, b, c � 1, d) for 0 ≤ a, b, c, d < 2v.

Proof.

(((i � a) ⊕ b) � c � 1) ⊕ d = (((i � a) ⊕ b) � c � 1) ⊕ d

= ((2v − 1 − ((i � a) ⊕ b)) � (2v − c)) ⊕ d

= (2v+1 − 1 − (((i � a) ⊕ b) � c)) ⊕ d

= (((i � a) ⊕ b) � c) ⊕ d

= (((i � a) ⊕ b) � c) ⊕ d ��

This relation can be applied to the 8 equivalent quadruples found in Lemma 1
yielding 16 equivalent quadruples.

The third equivalence is related to the second most significant bit:

Lemma 4. (a, b, c, d) is equivalent to (a � 2v−2, b, c � 2v−2, d) if msb2(b) = 1,
and to (a � 2v−2, b, c � 2v−2, d) if msb2(b) = 0.

Proof. Assume msb2(b) = 1 and consider ((((i � a) � 2v−2) ⊕ b) � 2v−2) � c.
Obviously msb2((i � (a � 2v−2)) ⊕ b) = msb2(i � a). As for the most significant
two bits, if there is a carry in the outer addition of (i � a) � 2v−2, there will
also be a carry on the outmost addition of (((i � a) � 2v−2) ⊕ b) � 2v−2 since
msb2(b) = 1. Similarly, if there is no carry in the outer addition of (i�a)�2v−2,
there will also be no carry on the outmost addition of (((i � a) � 2v−2) ⊕ b) �
2v−2. So the most significant bit of the result is not changed. The second most
significant bit is complemented twice, so it also remains same. Hence in both
cases ((i � (a � 2v−2)) ⊕ b) � (c � 2v−2) = ((i � a) ⊕ b) � c.

Now, assume msb2(b) = 0 and consider ((((i � a) � 2v−2) ⊕ b) � 2v−2) � c.
Obviously msb2((i � (a � 2v−2)) ⊕ b) = msb2(i � a). As for the most significant
two bits, if there is a carry in the outer addition of (i�a)�2v−2, then there will be
no carry on the outmost addition of (((i�a)�2v−2)⊕b)�2v−2 since msb2(b) = 0.
Similarly, if there is no carry in the outer addition of (i�a)�2v−2, then there will
be a carry on the outmost addition of (((i � a) � 2v−2) ⊕ b) � 2v−2. So the most
significant bit of the result is changed in the operation ((((i � a) � 2v−2) ⊕ b) �
2v−2). Adding 2v−1 will neutralize this, so the most significant bit of the result
will remain the same. The second most significant bit is complemented twice, so
it will be unchanged. Hence in both cases ((i�(a�2v−2))⊕b)�(c�2v−2 �2v−1)
= ((i � (a � 2v−2)) ⊕ b) � (c � 2v−2) = ((i � a) ⊕ b) � c. ��
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When Lemma 4 is applied to all 16 equivalent quadruples, the size of the equiv-
alence class is doubled, yielding 32 equivalent quadruples.

If we discard the two most significant bits of a and one most significant bit
of b, c, d, we will find exactly one of these 32 equivalent quadruples, since the
equivalent quadruples take all possible values over these five bits. Therefore,
in the sieving set formation phase we do not have to search all combinations of
(a, b, c, d); conducting the search on lsbsv−2(a), lsbsv−1(b), lsbsv−1(c), lsbsv−1(d)
suffices. This reduction decreases both the precomputation time and the sieving
set size by a factor of 25.

The collisions we dealt with in this section are exclusively based on equivalent
(a, b, c, d) quadruples. As the experimental results in Section 6 show, there are
other collisions as well and the actual collision rate can safely be assumed to be
26 or higher.

4.3 Indirect Elimination Power from the Sieving Set

The effectiveness of the DST attack can be improved significantly by using pre-
viously unutilized elimination power from the sieving set. When a lookup string
is matched with a sieving set entry, we can do a further correctness test on the
key by checking whether the key values used in obtaining the set entry matched
are consistent with the round keys used in obtaining the lookup string.

First, we can check the K
(2)
5 found in a sieving set hit for consistency with the

keys used in the partial decryption. The 3-round attack searches K
(1)
2 [17 . . . 32],

K
(1)
4 [49 . . . 64], K

(3)
5 [51 . . . 66], which intersects with K

(2)
5 [58 . . . 73] on 9 bits over

[58 . . .66]. If we store the values of these nine bits of K
(2)
5 for each sieving set

entry and compare them to the corresponding bits of the key candidate used
in the partial decryption in case of a hit, a wrong key’s chances of passing the
sieving test will be reduced by a factor of 29.

The keys found in further round attacks—K
(4)
1 , K

(4)
2 for 3.5-round attack,

K
(4)
5 , K

(4)
6 for 4-round attack, K

(5)
1 , K

(5)
2 , K

(5)
3 , K

(5)
4 for 4.5-round attack and

K
(5)
5 , K

(5)
6 —do not bring us any more bits intersecting with K

(2)
5 .

The seven bits of K
(2)
5 that do not intersect with the searched round keys can

be utilized to deduce the corresponding seven bits of the master key. Moreover,
in attacks that use multiple elimination rounds, a check on these bits can be
carried out to test the consistency of the sieving set hits across different elimi-
nation rounds. Either way, these seven bits can be used to reduce the set of key
candidates by a factor of 27 per elimination round.

A similar consistency check can be applied also on the a values of the sieving
set entries. Note that the 32 equivalent quadruples found in Section 4.2 have
the same lsbsv−2(a) value. Hence, in case of a sieving set hit, the a value of the
sieving set entry matched can be compared on the v − 2 low order bits to the a
value of the partial decryption,

a = msbsv(K
(1)
2 ) + carry(lsbs16−v(P2) � lsbs16−v(K(1)

2 )),
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which is fixed and known over the plaintext set P . This extension brings an extra
elimination power of 2v−2 to the attack while costing v − 2 bits of storage per
sieving set entry.

A similar check can be carried out over the c values. The 32 equivalent quadru-
ples are equal to ±c mod 2v−2 over lsbsv−2(c) while msbs2(c) takes all possi-
ble four values. Moreover, for every value of c there are two possible values of
msbsv(K

(2)
3 ) since

c = msbsv(K
(2)
3 ) +

carry(((lsbs16−v(P2) � lsbs16−v(K(1)
2 )) ⊕ lsbs16−v(u(1))) � lsbs16−v(K

(2)
3 ))

where the carry bit is an unknown. The key bits msbsv(K
(2)
3 ) are covered com-

pletely by K
(1)
2 for v ≤ 7 which is the case in our attacks. Therefore, by conduct-

ing a consistency check between the key candidate tried and the c value of the
sieving set entry matched, we can reduce the number of keys by an additional
factor of 2v−4. As in the case of a, this check on c costs an extra v − 2 bits of
storage per sieving set entry.

5 The Success Probability

As discussed in Section 4, we have found the actual size of the sieving set to be
about 26 times smaller than what was thought previously, due to the collisions
among the set entries. Hence, with a v-bit variable part of P2, the expected size
of the sieving set is about 226+3v. When a wrong key is checked against the
sieving set, the probability of two random 2v-bit strings matching by chance is
2−2v

. With the indirect elimination power from K
(2)
5 , lsbsv−2(a), and lsbsv−2(c),

the probability of a random match between the lookup string and a particular
sieving set entry is further reduced to 2−(2v+2v+3). Hence, the probability of a
wrong key’s passing the test (i.e., matching at least one entry in the sieving set)
is now reduced to

1 −
(

1 − 1
22v+2v+3

)(226+3v)

≈ 2−2v+v+23

for a given v. Accordingly, v = 5 is the smallest value of v that gives a non-
negligible elimination power, where a wrong key’s probability of passing the test
is 2−4. This probability drops substantially by increasing v: For v = 6, it becomes
2−33; for v = 7 it is 2−95, and for v = 8 it is 2−221.

The probability of elimination discussed above is for attacks with one elim-
ination round (i.e., one pass of Steps 1–3 of the attack algorithm). In attacks
that use several elimination rounds, a consistency check on K

(2)
5 [67 . . .73] is also

possible in the elimination rounds after the first one. In this case, the probability
of a wrong key’s having a consistent match with a sieving set entry is further
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Table 1. The actual sieving set sizes for 32-bit IDEA (w = 8) with v = 5. Each
column shows the results for a particular combination of LS, K

(2)
5 , a, c, included in

the set entries. As more information is included, the collision rate approaches to the
theoretical expectation given in the last column.

LS LS, K
(2)
5 LS, K

(2)
5 , a LS, K

(2)
5 , a, c 22w+3v−6

v = 5 222.3 223.6 224.5 224.7 225

reduced to 2−(2v+2v+10). Hence, the probability of a wrong key’s passing such
an elimination round is

1 −
(

1 − 1
22v+2v+10

)(226+3v)

≈ 2−2v+v+16.

The probability of a wrong key’s passing an elimination test with r rounds is
therefore

2(−2v+v+23)+(r−1)(−2v+v+16) = 2r(−2v+v+16)+7.

To successfully conclude an attack, we will need to run as many elimination
rounds as needed to reduce the number of surviving key candidates to one. In
the 3-round attack, 34 key bits are searched giving 234 candidates in total. For
v = 5, the probability of a wrong key’s not being eliminated after r iterations is
2−11r+7. Hence, four elimination rounds would suffice to eliminate virtually all
wrong keys while keeping v = 5 in the 3-round attack. Similarly, two elimination
rounds would suffice for v = 6 and one elimination round for v = 7.

6 Experimental Results

The improvements obtained have made a practical implementation of the DST
attack possible on reduced versions of IDEA. We tested the attack on IDEA
reduced to 3 rounds with a block size of 32 bits (i.e., word size w = 8). The
key size is reduced accordingly to 64 bits; the key schedule rotates the master
key 11 bits after every 8th subkey produced. The attack is tested with v = 5,
since v ≥ 6 is still beyond our limits of feasibility, and v ≤ 4 does not produce
a meaningful attack as the lookup string length, 2v, is too short to give any
significant elimination.

First we tested the size of the sieving set in comparison to our theoretical
expectation 22w+3v−6. The results, summarized in Table 1, show that the actual
sieving set size is somewhat further smaller than our expectation due to unac-
counted collisions, by a factor of 8 to 1.5, depending on the amount of extra
information included—K

(2)
5 , a,or c.1

1 Tests were carried out for other combinations of K
(2)
5 , a, and c not listed in Table 1 as

well. Due to space limitations, only the most essential ones are listed here, according
to their order of significance.
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Table 2. The experimental results for the DST attack with v = 5. The results in the
table are the ratio of wrong keys passing the sieving set test uneliminated, obtained
over 1000 runs of the attack, each containing 218 keys tested. The theoretical results
are the calculations in Section 5 according to the actual sieving set sizes in Table 1.

LS LS, K
(2)
5 LS, K

(2)
5 , a LS,K(2)

5 , a, c

Theoretical 2−9.7 2−13.4 2−15.5 2−16.3

Empirical 2−9.6 2−12.3 2−13.2 2−13.9

We implemented the DST attack with v = 5 to see its actual success. Ta-
ble 2 summarizes the result of these tests, where the wrong keys are eliminated
according to the lookup string (LS), K

(2)
5 , a, and c; and the ratio of the unelim-

inated ones are listed. The test results are compared to the theoretical results
calculated in Section 5.

An analysis of the experimental results reveals several key points. First and
foremost, the DST attack works as expected. Especially when only LS is used in
elimination, the expected and the actual results are almost identical. When K

(2)
5 ,

a, and c are also included in the process, the power of the attack is significantly
boosted. There appears to be a slight deviation from the expectations however,
which probably results from some subtle correlations involved. Accordingly, there
may be a few wrong keys left at the end of the attack, which can easily be removed
by an extra elimination round or by exhaustive search.

7 Complexity of the Attack

The optimizations discussed in this paper provide significant reductions in the
space, precomputation time, and key search time complexities of the DST attack.
Space complexity of the attack is mainly the size of the sieving set. Each sieving
set entry contains a 2v-bit lookup string. Additionally we need to store the K

(2)
5 ,

lsbsv−2(a), and lsbsv−2(c) values to have the extra elimination power, which costs
us an extra 12+2v bits per entry. The number of entries in the set is about 23v+26.
Thus the overall space requirement of the sieving set is 23v+26 · (2v + 2v + 12)
bits. In terms of the IDEA block size, this is less than 241 IDEA blocks for v = 5.

Precomputation time complexity is the time required to calculate the sieving
set. We need to compute the f function 2v times for each sieving set entry.
The number of entries calculated for the sieving set is 23v+32−5 since the most
significant bits of a, b, c, d and the second most significant bit of a need not to be
searched. Hence the precomputation time complexity is 24v+27 f computations
which is roughly equivalent to 24v+26 IDEA rounds. The precomputation time
is the dominant time complexity only for the 3-round attack.

Key search time complexity depends on both the number of rounds attacked
and the number of variable bits in P2. For each candidate key set, we take 2v

values of msbsv(P2) and calculate the lookup string by partial decryptions. This
procedure may need to be repeated several times if the attack requires multiple
elimination rounds.
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Table 3. A comparison of the complexities of the basic DST attack and the optimized
version. The space complexity figures are in terms of one IDEA block (64 bits). The
unit of precomputation time complexity is one computation of the f function. The key
search complexities are compared in terms of the number of partial decryptions to be
executed. The optimized attack figures are given for v = 5, 6, 7 which yield the best
results.

DST v = 5 v = 6 v = 7
Space complexity 258 241 245 249

Precomputation 264 247 251 255

Key search, 3-round 242 239 240 241

3.5-round 274 271 272 273

4-round 290 287 288 289

4.5-round 2122 2119 2120 2121

5-round 2127 2124 2125 2126

Table 4. Plaintext complexities of the DST attack for different v. The improvements
over the original attack (v = 8) in this respect, although non-trivial, is relatively less
significant compared to the other improvements.

Attack v = 5 v = 6 v = 7 v = 8
3-round 223 222 223 224

3.5-round 223.6 223 223 224

4-round 224 223 223 224

4.5-round 224.6 223.6 223 224

5-round 224.6 223.6 223 224

The effect of multiple elimination rounds on the attack’s complexity is two
fold. First, a different plaintext set R would be needed for each elimination
round, making the total plaintext complexity of the attack r·216+v for r denoting
the number of elimination rounds to be applied. Second, the complexity of the
key search phase would increase due to multiple repetitions of the elimination
procedure. However, this increase can be expected to be relatively marginal,
since the extra elimination rounds will be applied only to the keys that have
passed the previous tests. Given that each elimination round will remove the
vast majority of the wrong keys, the additional time complexity from the extra
elimination rounds will be negligible.

The space and time complexities of the optimized DST attack in comparison
to the basic attack are summarized in Table 3; the plaintext complexities are
given in Table 4.

8 Conclusion

In this paper, we described several improvements on the DST attack [7] on
IDEA and showed how the attack can be made significantly more efficient. The
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improvements reduce the plaintext, memory, precomputation, and the time com-
plexity of the attack. The new attack becomes the most efficient attack on all
these four accounts on the 4.5- and 5-round IDEA, and the most efficient in
plaintext complexity on the 4-round cipher along with [10].

With the current improvements, a practical implementation of the attack has
also become feasible and we provided the first experimental verifications of the
DST attack.

An even more significant improvement on the DST attack would be to extend
it beyond 5 rounds of IDEA. Unfortunately, the round keys that need to be tried
exhaustively in the partial decryption phase covers all the 128 key bits in the
5.5-round or higher round versions of the attack. Hence, no matter how much
improvement is achieved on the core section of the attack, the overall attack
cannot be made perform faster than exhaustive search on 5.5 or more rounds.
We leave it as an open research problem to make the fundamental ideas of the
DST attack work effectively on 5.5 or more rounds of the IDEA cipher.
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[10] Junod, P.: New attacks against reduced-round versions of IDEA. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 384–397. Springer, Heidel-
berg (2005)

[11] Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

[12] Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

[13] Meier, W.: On the Security of the IDEA Block Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 371–385. Springer, Heidelberg (1994)

[14] Nakahara Jr., J., Barreto, P.S.L.M., Preneel, B., Vandewalle, J., Kim, H.Y.:
Square Attacks Against Reduced-Round PES and IDEA Block Ciphers. In: 23rd
Symposium on Information Theory in the Benelux. Louvain-la-Neuve, pp. 187–
195 (2002)

[15] Nakahara, J., Preneel, B., Vandewalle, J.: The Biryukov-Demirci attack on
reduced-round versions of IDEA and MESH block ciphers. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 98–109. Springer,
Heidelberg (2004)


	Improved DST Cryptanalysis of IDEA
	Introduction
	Notation

	IDEA Block Cipher
	The DST Attack
	Some Properties of IDEA
	Attack on 3-Round IDEA
	Attack on 3.5-Round IDEA
	Attacks on Higher Number of Rounds
	Complexity of the DST Attack

	The Improved DST Attack
	Shortening the Variable Parts
	Size of the Sieving Set
	Indirect Elimination Power from the Sieving Set

	The Success Probability
	Experimental Results
	Complexity of the Attack
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




