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Abstract. We consider the problem of secure identification: user U
proves to server S that he knows an agreed (possibly low-entropy) pass-
word w, while giving away as little information on w as possible, namely
the adversary can exclude at most one possible password for each exe-
cution of the scheme. We propose a solution in the bounded-quantum-
storage model, where U and S may exchange qubits, and a dishonest
party is assumed to have limited quantum memory. No other restric-
tion is posed upon the adversary. An improved version of the proposed
identification scheme is also secure against a man-in-the-middle attack,
but requires U and S to additionally share a high-entropy key k. How-
ever, security is still guaranteed if one party loses k to the attacker
but notices the loss. In both versions of the scheme, the honest par-
ticipants need no quantum memory, and noise and imperfect quantum
sources can be tolerated. The schemes compose sequentially, and w and
k can securely be re-used. A small modification to the identification
scheme results in a quantum-key-distribution (QKD) scheme, secure in
the bounded-quantum-storage model, with the same re-usability proper-
ties of the keys, and without assuming authenticated channels. This is
in sharp contrast to known QKD schemes (with unbounded adversary)
without authenticated channels, where authentication keys must be up-
dated, and unsuccessful executions can cause the parties to run out of
keys.

1 Introduction

SECURE IDENTIFICATION. Consider two parties, a user U and a server S, which
share a common secret-key (or password or Personal Identification Number
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PIN) w. In order to obtain some service from S, U needs to convince S that
he is the legitimate user U by “proving” that he knows w. In practice—think of
how you prove to the ATM that you know your PIN—such a proof is often done
simply by announcing w to S. This indeed guarantees that a dishonest user U*
who does not know w cannot identify himself as U, but of course incurs the risk
that U might reveal w to a malicious server S* who may now impersonate U.
Thus, from a secure identification scheme we also require that a dishonest server
S* obtains (essentially) no information on w.

There exist various approaches to obtain secure identification schemes, de-
pending on the setting and the exact security requirements. For instance zero-
knowledge proofs (and some weaker versions), as initiated by Feige, Fiat and
Shamir[I2J11], allow for secure identification. In a more sophisticated model,
where we allow the common key w to be of low entropy and additionally con-
sider a man-in-the-middle attack, we can use techniques from password-based
key-agreement (like [I4I13]) to obtain secure identification schemes. Common to
these approaches is that security relies on the assumption that some computa-
tional problem (like factoring or computing discrete logs) is hard and that the
attacker has limited computing power.

OurR CONTRIBUTION. In this work, we take a new approach: we consider
quantum communication, and we develop two identification schemes which are
information-theoretically secure under the sole assumption that the attacker can
only reliably store quantum states of limited size. This model was first consid-
ered in [4]. On the other hand, the honest participants only need to send qubits
and measure them immediately upon arrival, no quantum storage or quantum
computation is required. Furthermore, our identification schemes are robust to
both noisy quantum channels and imperfect quantum sources. Our schemes can
therefore be implemented in practice using off-the-shelf technology.

The first scheme is secure against dishonest users and servers but not against a
man-in-the-middle attack. It allows the common secret-key w to be non-uniform
and of low entropy, like a human-memorizable password. Only a user knowing w
can succeed in convincing the server. In any execution of this scheme, a dishonest
user or server cannot learn more on w than excluding one possibility, which is
unavoidable. This is sometimes referred to as password-based identification. The
second scheme requires in addition to w a uniformly distributed high-entropy
common secret-key k, but is additionally secure against a man-in-the-middle
attack. Furthermore, security against a dishonest user or server holds as for the
first scheme even if the dishonest party knows & (but not w). This implies that
k can for instance be stored on a smartcard, and security of the scheme is still
guaranteed even if the smartcard gets stolen, assuming that the affected party
notices the theft and thus does not engage in the scheme anymore. Both schemes
compose sequentially, and w (and k) may be safely re-used super-polynomially
many times, even if the identification fails (due to an attack, or due to a technical
failure).

A small modification of the second identification scheme results in a quantum-
key-distribution (QKD) scheme secure against bounded-quantum-memory
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adversaries. The advantage of the proposed new QKD scheme is that no authen-
ticated channel is needed and the attacker can not force the parties to run out of
authentication keys. The honest parties merely need to share a password w and
a high-entropy secret-key k, which they can safely re-use (super-polynomially
many times), independent of whether QKD succeeds or fails. Furthermore, like
for the identification scheme, losing k& does not compromise security as long as
the loss is noticed by the corresponding party. One may think of this as a quan-
tum version of password-based authenticated key exchange. The properties of
our solution are in sharp contrast to all known QKD schemes without authen-
ticated channels (which do not pose any restrictions on the attacker). In these
schemes, an attacker can force parties to run out of authentication keys by mak-
ing the QKD execution fail (e.g. by blocking some messages). Worse, even if the
QKD execution fails only due to technical problems, the parties can still run
out of authentication keys after a short while, since they cannot exclude that
an eavesdropper was in fact present. This problem is an important drawback of
QKD implementations, especially of those susceptible to single (or few) point(s)
of failure[9].

OTHER APPROACHES. We briefly discuss how our identification schemes com-
pare with other approaches. We have already given some indication on how
to construct computationally secure identification schemes. This approach typi-
cally allows for very practical schemes, but requires some unproven complexity
assumption. Another interesting difference between the two approaches: whereas
for (known) computationally-secure password-based identification schemes the
underlying computational hardness assumption needs to hold indefinitely, the re-
striction on the attacker’s quantum memory in our approach only needs to hold
during the execution of the identification scheme, actually only at one single point
during the execution. In other words, having a super-quantum-storage-device at
home in the basement only helps you cheat at the ATM if you can communicate
with it on-line quantumly — in contrast to a computational solution, where an
off-line super-computer in the basement can make a crucial difference.
Furthermore, obtaining a satisfactory identification scheme requires some re-
striction on the adversary, even in the quantum setting: considering only passive
attacks, Lo[l5] showed that for an unrestricted adversary, no password-based
quantum identification scheme exists. In fact, Lo’s impossibility result only ap-
plies if the user U is guaranteed not to learn anything about the outcome of the
identification procedure. We can argue, however, that a different impossibility
result holds even without Lo’s restriction: We first show that secure computation
of a classical AND gate (in which both players learn the output) can be reduced
to a password-based identification scheme. The reduction works as follows. Let
wp, w) and w; be three distinct elements from W. If Alice has private input
24 = 0 then she sets wag = wo and if x4 = 1 then she sets wy = wq, and
if Bob has private input zp = 0 then he sets wp = wj and if x5 = 1 then
he sets wp = wy. Then, Alice and Bob run the identification scheme on inputs
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w4 and wp, and if the identification is rejected, the output is set to 0 while if it
is accepted, the output is set to 1. Security of the identification scheme is easily
seen to imply security of the AND computation. Now, the secure computation
of an AND gate—with statistical security and using quantum communication—
can be shown to require a superpolynomial number of rounds if the adversary
is unbounded[I8]. Therefore, the same must hold for a secure password-based
identification schemel[]

Another alternative approach is the classical bounded-storage model[I7I2T].
In contrast to our approach, only classical communication is used, and it is as-
sumed that the attacker’s classical memory is bounded. Unlike in the quantum
case where we do not need to require the honest players to have any quantum
memory, the classical bounded-storage model requires honest parties to have a
certain amount of memory which is related to the allowed memory size of the
adversary: if two legitimate users need n bits of memory in an identification
protocol meeting our security criterion, then an adversary must be bounded in
memory to O(n?) bits. The reason is that given a secure password-based iden-
tification scheme, one can construct (in a black-box manner) a key-distribution
scheme that produces a one-bit key on which the adversary has an (average)
entropy of é On the other hand it is known that in any key-distribution scheme
which requires n bits of memory for legitimate players, an adversary with mem-
ory £2(n?) can obtain the key except for an arbitrarily small amount of remaining
entropy|]]. It follows that password-based identification schemes in the classical
bounded-storage model can only be secure against adversaries with memory at
most O(n?). This holds even for identification schemes with only passive security
and without security against man-in-the-middle attacks. Roughly, the reduction
works as follows. Alice and Bob agree on a public set of two keys {wq, w; }. Alice
picks a €r {0, 1}, Bob picks b € {0, 1}, and they run the identification scheme
with keys w, and wy respectively. The outcome of the identification is then made
public from which Bob determines a. We argue that if the identification fails,
i.e. a # b, then a is a secure bit. Thus, on average, a has entropy (close to) 3
from an eavesdropper’s point of view. Consider w’ & {wq,w; }. By the security
property of the identification scheme, Alice and thus also a passive eavesdropper
Eve cannot distinguish between Bob having used w; or w’. Similarly, we can
then switch Alice’s key w, to wi_, and Bob’s switched key w’ to wy_;, without
changing Eve’s view. Thus, Eve cannot distinguish an execution with a = 0 from
one with a =1 if a # b.

This limitation of the classical bounded-storage model is in sharp contrast
with what we achieve in this paper, the honest players need no quantum memory
at all while our identification scheme remains secure against adversaries with
quantum memory linear in the total number of qubits sent. The same separation
between the two models was shown for OT and bit commitment [4l3].

! In fact, we believe that the proof from [18] can be extended to cover secure computa-
tion of equality of strings, which is equivalent to password-based identification. This
would mean that we could prove the impossibility result directly, without the detour
via a secure AND computation. Details are omitted due to the space limitation.
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Finally, if one settles for the bounded-quantum-storage model, then in princi-
ple one could take a generic construction for general two-party secure-function-
evaluation (SFE) based on OT together with the OT scheme from [4I3] in order
to implement a SFE for string equality and thus password-based identification.
However, this approach leads to a highly impractical solution, as the generic
construction requires many executions of OT, whereas our solution is compa-
rable with one execution of the OT scheme from [Af3]. Furthermore, SFE does
not automatically take care of a man-in-the-middle attack, thus additional work
would need to be done using this approach.

2 Preliminaries

2.1 Notation and Terminology

QUANTUM STATES. The state of a qubit can be described by a vector in the
2-dimensional Hilbert space C? in case of a pure state, and by a density ma-
trix/operator on C? in the general case of a mized state. Similarly, an n-qubit
state is characterized by a vector in the n-fold tensor product (C?)®" in case
of a pure n-qubit state, and by a density matrix/operator on (C?)®" in case
of a mized n-qubit state. The pair {|0),]|1)} denotes the standard basis, also
known as computational or rectilinear or “4+”-basis, for C2. When the context
requires, we also write [0), and [1), instead of |0) respectively |1). The di-
agonal or “x”-basis is defined as {|0),[1), } where |0), = (|0) +|1))/v2 and
1), = (|0) — |1))/v/2. Measuring a qubit in the +-basis (resp. x-basis) means
applying the measurement described by projectors [0)(0] and [1)(1] (resp. pro-
jectors [0), (0], and [1), (1], ). The notation generalizes to n-qubit states: For
r = (z1,...,2,) € {0,1}" and 0 = (01,...,0,) € {4+, x}", we let |z), be the
n-qubit state |r), = [T1)g, - [Tn)y ; and measuring a n-qubit state in basis
0 € {+, x}" means applying the measurement described by projections |z),(z|,
with z € {0, 1}".

The behavior of a (mixed) quantum state in a register E is fully described by
its density matrix pg. In order to simplify language, we tend to be a bit sloppy
and use E as well as pg as “naming” for the quantum state. We often consider
cases where a quantum state E may depend on some classical random variable
X in that the state is described by the density matrix pg if and only if X = z.
For an observer who has only access to the state E but not to X, the behavior
of the state is determined by the density matrix pg:= ) Px(x)pE, whereas the
joint state, consisting of the classical X and the quantum state E, is described by
the density matrix pxe:= ), Px(x)|z)x| ® pE, where we understand {|z)},cx
to be the standard (orthonormal) basis of CI*l. More general, for any event £
(defined by Pg|x(z) = P[E|X =xz] for all x), we write

PXEE = ZPX|£ r)lz)r| @ pg and  pge = trx(pxge) = ZPX|E

We also write px := Y. Px(z)|z)z| for the quantum representation of the
classical random variable X (and similarly for px|¢). This notation extends
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naturally to quantum states that depend on several classical random variables.
Given X and E as above, by saying that there exists a random variable Y such
that pxyre satisfies some condition, we mean that pxg can be understood as
pxE = try (pxvyEe) for some pxyg (with classical Y') and that pxyg satisfies the
required condition.

X is independent of E (in that pE does not depend on z) if and only if pxg =
px ® pg, which in particular implies that no information on X can be learned
by observing only E. Similarly, X is random and independent of E if and only
if pxe= |)1(|]I ® pg, where I/%fl]l is the density matrix of the fully mixed state of
suitable dimension. Finally, if two states like px r and px ® pg are e-close in terms
of their trace distance §(p, o) =} tr(|p — o), which we write as pxg ~ px @ pE,
then the real system pxg “behaves” as the ideal system px ® pg except with
probability € in that for any evolution of the system no observer can distinguish
the real from the ideal one with advantage greater than e [20)].

We also need to express that a random variable X is (close to) independent
of a quantum state E when given a random variable Y. This means that when
given Y, the state E gives no (or little) additional information on X. Formally,
this is expressed by requiring that pxy g is of the form (or close to)

pxve= Y Pxy(@.y)le)el @ lydyl © p |
z,y

where pf = > Px|y—y(z)pg? for all y. As shorthand for the right-hand side
above, we define px—yor = >, Pxv(z,y)|z)z| @ [y)y| ® pg To further
illustrate its meaning, notice that if the Y-register is measured and value y is
obtained, the state px .y collapses to (3, Px|y—y(x)xz)z]) ® pf, so that
indeed no further information on x can be obtained from the E-register. This
notation naturally extends to px..y..ge simply by considering pxyge-

(CONDITIONAL) SMOOTH MIN-ENTROPY. We briefly recall the notion of (con-
ditional) smooth min-entropy[I9)21]. For more details, we refer to the aforemen-
tioned literature. Let X be a random variable over alphabet X with distribution
Px . The notion of min-entropy is given by H__(X) = — log ( max, Px (z)). More
general, for any event £, H (X&) may be defined similarly simply by replacing
Px by Pxg. Note that the “distribution” Pxg¢ is not normalized; H_ (X&) is still
well defined, though. For an arbitrary ¢ > 0, the smooth version HS (X)) is de-
fined as follows. HE (X)) is the mazimum of the standard min-entropy H (X&),
where the maximum is taken over all events £ with Pr(€) > 1 —e. As € can be
interpreted as an error probability, we typically require € to be negligible in the
security parameter n, denoted as € = negl(n).

For a pair of random variables X and Y, the conditional smooth min-entropy
H: (X|Y)is defined as H5 (X|Y') = maxg min, H_ (X E|Y =y), where the quan-
tification over £ is over all events € (defined by Pg|xy) with Pr(€) > 1—¢. The

2 The notation is inspired by the classical setting where the corresponding indepen-
dence of X and Z given Y can be expressed by saying that X < Y < Z forms a
Markov chain.
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following lemma shows that for a small €, smooth min-entropy is essentially as
good as ordinary min-entropy; the proof is given in the full version[5].

Lemma 2.1. If HS (X|Y) = r then there exists an event &' such that P[E'] >
1—2¢ and H(X|E', Y =y) >r—1 for every y with Pye/(y) > 0.

2.2 Tools

A NEwW MIN-ENTROPY-SPLITTING LEMMA. A technical tool, which will come
in handy, is the following new entropy-splitting lemma, which may be of inde-
pendent interest. Informally, it says that if for a list of random variables, every
pair has high (smooth) min-entropy, then all of the random variables except one
must have high (smooth) min-entropy. The version given here follows immedi-
ately from the version given and proven in the full version[d].

Lemma 2.2 (Entropy-Splitting Lemma). Let ¢ > 0. Let X1,...,X,, be a

sequence of random variables over Xy, ..., Xy, such that HS (X;X;) > a for all
i # j. Then there exists a random variable V over {1,...,m} such that for any
independent random variable W over {1,...,m}

H2Y (Xw|[VW,V£W) > /2 — log(m) — log(1/¢)

QUANTUM UNCERTAINTY RELATION. At the very core of our security proofs
lies (a special case of) the quantum uncertainty relation from [3], that lower
bounds the (smooth) min-entropy of the outcome when measuring an arbitrary
n-qubit state in a random basis 6 € {0,1}™.

Theorem 2.3 (Uncertainty Relation[3]). Let E be an arbitrary fized n-qubit
state. Let © be uniformly distributed over {+, x}™ (independent of E), and let
X €{0,1}™ be the random variable for the outcome of measuring E in basis ©.
Then, for any A > 0, the conditional smooth min-entropy is lower bounded by
HE,(X|0) > (5 — A)n with & = negl(n).

Thus, ignoring negligibly small “error probabilities” and linear fractions that
can be chosen arbitrarily small, the outcome of measuring any n-qubit state in
a random basis has n/2 bits of min-entropy, given the basis.

PRrRIvACY AMPLIFICATION. Finally, we recall the quantum-privacy-amplification
theorem of Renner and Konig[20]. We give the simplified version as used in
[4]. Recall that a class F of hash functions from X to ) is called (strongly)
universal-2 if for any x # 2/ € X, and for F' uniformly distributed over F, the
collision probability P[F(x) = F(a’)] is upper bounded by 1/])|, respectively,
for the strong notion, the random variables F(x) and F(z') are uniformly and
independently distributed over ).

Theorem 2.4 (Privacy Amplification[204]). Let X be a random variable
distributed over {0,1}™, and let E be a q-qubit state that may depend on X . Let
F be the random and independent choice of a member of a universal-2 class of
hash functions F from {0,1}" into {0,1}%. Then

1
8(pr(x)rEs 90 1® prE) < ) o=} (Hoe(X)—q—t)
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3 The Identification Scheme

3.1 The Setting

We assume the honest user U and the honest server S to share some key w € W.
We do not require W to be very large (i.e. [W| may not be lower bounded by the
security parameter in any way), and w does not necessarily have to be uniformly
distributed in W. So, we may think of w as a human-memorizable password or
PIN code. The goal of this section is to construct an identification scheme that
allows U to “prove” to S that he knows w. The scheme should have the following
security properties: a dishonest server S* learns essentially no information on w
beyond that he can come up with a guess w’ for w and learns whether w’ = w or
not, and similarly a dishonest user succeeds in convincing the verifier essentially
only if he guesses w correctly, and if his guess is incorrect then the only thing
he learns is that his guess is incorrect. This in particular implies that as long as
there is enough entropy in w, the identification scheme may be safely repeated.

3.2 The Intuition

The scheme we propose is related to the (randomized) 1-2 OT scheme of [3]. In
that scheme, Alice sends |z), to Bob, for random x € {0,1}" and 6 € {+, x}".
Bob then measures everything in basis + or x, depending on his choice bit ¢, so
that he essentially knows half of = (where Alice used the same basis as Bob) and
has no information on the other half (where Alice used the other basis), though,
at this point, he does not know yet which bits he knows and which ones he does
not. Then, Alice sends # and two hash functions to Bob, and outputs the hash
values sg and sy of the two parts of x, whereas Bob outputs the hash value s,
that he is able to compute from the part of x he knows. It is proven in [3] that
no dishonest Alice can learn ¢, and for any quantum-memory-bounded dishonest
Bob, at least one of the two strings sg and s; is random for Bob.

This scheme can be extended by giving Bob more options for measuring the
quantum state. Instead of measuring all qubits in the + or the x basis, he may
measure using m different strings of bases, where any two possible basis-strings
have large Hamming distance. Then Alice computes and outputs m hash values,
one for each possible basis-string that Bob might have used. She reveals 6 and
the hash functions to Bob, so he can compute the hash value corresponding to
the basis that he has used, and no other hash value. Intuitively, such an extended
scheme leads to a randomized 1-m OT.

The scheme can now be transformed into a secure identification scheme as
follows, where we assume (wlog) that W = {1,...,m}. The user U, acting as
Alice, and the server S, acting as Bob, execute the randomized 1-m OT scheme
where S “asks” for the string indexed by his key w, such that U obtains random
strings $1, ..., S, and S obtains s,,. Then, to do the actual identification, U sends
sw to S, who accepts if and only if it coincides with his string s,,. Intuitively,
such a construction is secure against a dishonest server since unless he asks for
the right string (by guessing w correctly) the string U sends him is random and
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thus gives no information on w. On the other hand, a dishonest user does not
know which of the m strings S asked for and wants to see from him. We realize
this intuitive idea in the next section. In the actual protocol, U does not have to
explicitly compute all the s;’s, and also we only need a single hash function (to
compute s,,). We also take care of some subtleties, for instance that the s; are
not necessarily random if Alice (i.e. the user) is dishonest.

3.3 The Basic Scheme

Let ¢ : W — {4+, x}" be the encoding function of a binary code of length n with
m = |[W)| codewords and minimal distance d. ¢ can be chosen such that n is linear
in log(m) or larger, and d is linear in n. Furthermore, let F and G be strongly
universal-2 classes of hash functiondd from {0,1}" to {0,1}* and from W to
{0, 1}*, respectively, for some parameter ¢. For = € {0,1}" and I C {1,...,n},
we define z|; € {0,1}" to be the restriction of  to the coordinates x; with i € I.
If |[I| < n then applying f € F to x| is to be understood as applying f to z|s
padded with sufficiently many 0’s.

-ID:
U picks z €r {0,1}" and 6 €r {+, x}", and sends state |x), to S.
S measures |z), in basis ¢ = ¢(w). Let 2’ be the outcome.
U picks f €r F and sends 6 and f to S. Both compute I, := {i : 6; =c(w);}.
S picks g €r G and sends g to U.
U computes and sends z:= f(x|r,,) ® g(w) to S.
S accepts if and only if z = 2’ where 2’ := f(2'|1,,) ® g(w).

A R S )

Proposition 3.1 (User security). Let the initial state of a dishonest server
S*, whose quantum memory at step [3 is bounded by q qubits, be independent of
the honest user’s key W. Then, the joint state pwe,. after the execution of Q-1D
is such that there exists a random variable W' that is independent of W and
such that

PWW'Esx [W'EW e PW W' Egx |W/ AW 5
where e = negl(d — 4log(m) — 4q — 44).

The proposition guarantees that whatever a dishonest S* does is essentially as
good as trying to guess W by some arbitrary (but independent) W’ and learning
whether the guess was correct or not, but nothing beyond that. Such a property
is obviously the best one can hope for, since S* may always honestly execute the
protocol with a guess for W and observe whether he accepts U.

We would like to point out that the security definition used in Proposition 3]
and in fact any security claim in this paper, guarantees sequential composability,
as the output state is guaranteed to have the same independency property as is
required from the input state (except if the attacker guesses w).

3 Actually, we only need G to be strongly universal-2.
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Proof. For readability, we do not keep track of negligibly small error probabilities
and of linear fractions that can be chosen arbitrarily small, but (sometimes)
merely give some indication of a small error by using the word “essentially”. It
is straightforward but rather tedious to keep rigorous track of these errors.

We consider and analyze a purified version of Q-ID where in step [ in-
stead of sending |z), to S* for a random z, U prepares a fully entangled state
27"/2%" |z)|x) and sends the second register to S* while keeping the first. Then,
in step Bl when the memory bound has applied, he measures his register in the
random basis § €r {+, x}™ in order to obtain x. Standard arguments imply
that this purified version produces exactly the same common state, consisting
of the classical information on U’s side and S*’s quantum state.

Recall that before step Blis executed, the memory bound applies to S*, which
means that S* has to measure all but ¢ of the qubits he holds, which consists of
his initial state and his part of the EPR pairs. Before doing the measurement,
he may append an ancilla register and apply an arbitrary unitary transform. As
a result of S*’s measurement, S* gets some outcome y, and the common state
collapses to a (n + ¢)-qubit state (which depends on y), where the first n qubits
are with U and the remaining ¢ with S*. The following analysis is for a fixed y,
and works no matter what y is.

We use upper case letters W, X, ©, ', G and Z for the random variables that
describe the respective values w, x, 6 etc. in an execution of the purified version
of @-ID. We write X; = X|;, for any j, and we let Es. be S*’s g-qubit state at
step Bl after the memory bound has applied. Note that W is independent of X,
O, F, G and E..

For 1 <i# j < m, fix the value of X, and correspondingly of X; and X, at
the positions where ¢(i) and ¢(j) coincide, and focus on the remaining (at least) d
positions. The uncertainty relation (Theorem 23) implies that the restriction of
X to these positions has essentially d/2 bits of min-entropy given ©. Since every
bit in the restricted X appears in one of X; and X}, the pair X;, X; also has
essentially d/2 bits of min-entropy given ©. Lemma [2:2 implies that there exists
W' (called V' in Lemma [22)) such that if W # W’ then Xy has essentially d/4 —
log(m) bits of min-entropy, given W and W’ (and ©). Privacy amplification then
guarantees that F(Xy ) is ’-close to random and independent of F, W, W', © and
Es., conditioned on W # W', where ¢’ = } - 2~ 2(d/4-log(m)=a=0) Tt follows that
Z = F(Xw) ® G(W) is ¢’~close to random and independent of F,G, W, W' O
and Ej., conditioned on W # W’. Formally, we want to upper bound

6(pWW’ES*|W’7£W7 pW<—>W’<—>E5*|W’7éW) .

Since the output state Es« is, without loss of generality, obtained by applying
some unitary transform to the set of registers (Z, F, G, W', 0, Es.), the distance
above is equal to 6(pww'(2,F,G,0,E.)|W/£W: PW W' —(2,F,G,0,E.)|W'#W)- We
then get:

PWW'(Z,F,G,0,E.) W' £W ~e QleH ® PWW'(F,G,0,E,)|W'#W

sbgx

_ 1 ~
= 2 L@ Pwew o (F.6,0,E.,)|WEW Re/ PW W' or(Z,F,G,0,E..)|[W/£W
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where approximations follow from privacy amplification and the exact equality
comes from the independency of W, which, when conditioned on W' # W,
translates to independency given W’. The claim follows, with & = 2¢’. O

Proposition 3.2 (Server security). Let the initial stalte of an (unbounded)
dishonest user U* be independent of the honest server’s key W, and let H, (W) >
1. Then, there exists W', independent of W, such that if W # W' then S ac-
cepts with probability at most m? /2=t and the common state PWE,- after the
execution of Q-ID satisfies

PWW!Eys |W'£W Nom2/20=1 PW W' —Eyx |W/ AW -

The formal proof is given in the full version[5]. The idea is the following. We let
U* execute Q-ID with a server that is unbounded in quantum memory. Such a
server can obviously obtain z and thus compute s; = f(z|r;) ® g(j) for all j.
Note that s, is the message z that U* is required to send in the last step. Now,
if the s;’s are all distinct, then z uniquely defines w’ such that z = s,,, and thus
S accepts if and only if w’ = w, and U* does not learn anything beyond. The
strong universal-2 property of g guarantees that the s;’s are all distinct except
with probability m?/2°.

We call an identification scheme e-secure against impersonation attacks if user
and sender security are satisfied as in Propositions [3.1] and The following
holds.

Theorem 3.3. If H (W) > 1, then the identification scheme Q-ID (with suit-
able choice of parameters) is e-secure against impersonation attacks for any un-
bounded user and for any server with quantum memory bound q, where £ =
negl (n — 33log(m) — 11q).

Proof. We choose ¢ = }(d 4 4log(m) — 4¢). Then user security holds except
with an “error” negligible in d — 4log(m) — 4qg — 4¢ = d/2 — 6log(m) — 2¢,
and thus negligible in d — 12log(m) — 4¢. And server security holds except
with an “error” negligible in ¢ — 1 — 2log(m) = §(d — 12log(m) — 4q) — 1,
and thus negligible in d — 12log(m) — 4¢. Using a code ¢ which asymptotically
meets the Gilbert-Varshamov bound[22], d may be chosen arbitrarily close to
n-h~(1—log(m)/n), where h~' is the inverse function of the binary entropy
function h : p — —(p -log(p) + (1 —p) - log(1 —p)) restricted to 0 < p < ; For
this d to be larger than 12log(m), clearly n needs to be larger than 24 log(m),
so that h=*(1 —log(m)/n) > h~'(1— ;) which turns out to be larger than .
The claim follows by normalizing |, n — 12log(m) — 4¢ for n. O

3.4 An Error-Tolerant Scheme

We now consider an imperfect quantum channel with “error rate” ¢. The scheme
Q-ID is sensitive to such errors in that they cause z|;, and 2'|7,, to be different
and thus an honest server S is likely to reject an honest user U. This problem
can be overcome by means of error-correcting techniques: U chooses a linear
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error-correcting code that allows to correct a ¢-fraction of errors, and then in
step[2 in addition to 6 and f, U sends a description of the code and the syndrome
s of x|y, to S; this additional information allows S to recover x|y, from its noisy
version a'|7, by standard techniques. However, this technique introduces a new
problem: the syndrome s of z|;, may give information on w to a dishonest
server. Hence, to circumvent this problem, the code chosen by U must have the
additional property that for a dishonest user, who has high min-entropy on x|z, ,
the syndrome s is (close to) independent of w.

This problem has recently been addressed and solved in the classical setting by
Dodis and Smith[7]. They present a family of efficiently decodable linear codes
allowing to correct a constant fraction of errors, and where the syndrome of a
string is close to uniform if the string has enough min-entropy and the code is
chosen at random from the familyﬁ It remains to verify that their analysis can be
translated to our setting where the adversary may have “quantum information”.

Lemma 5 of [7] guarantees that for every 0 < A < 1 and for an infinite
number of n'’s there exists a -biased (as defined in [7]) family C = {C;}jes
of [0/, k', d']2-codes with § < 2-An"/2 and which allows to efficiently correct a
constant fraction of errors. Theorem 3.2 of [I0] (which generalizes Lemma 4 in [7]
to the quantum setting) guarantees that if a string Y has ¢ bits of min-entropy
then for a randomly chosen code C; € C, the syndrome of Y is close to random
and independent of j and any g-qubit state that may depend on Y, where the
closeness is given by ¢ - 2(n'+a=t)/2 Tp our application, Y = Xy, n’ & n/2 and
t = d/4 — log(m) — £, where the additional loss of ¢ bits of entropy comes from
learning the ¢-bit string z. Choosing A = 1— 2;, gives an ensemble of code families
that allow to correct a linear number of errors and the syndrome is e-close to
uniform given the quantum state, where & < 2-7'/2+t/4.9(n"+4-1)/2 — 9—(t-2q)/4
which is exponentially small provided that there is a linear gap between t and
2q. Thus, the syndrome gives essentially no additional information. The error
rate ¢ that can be tolerated this way depends in a rather complicated way on
A, but choosing \ larger, for instance A = 1 — t;rn”,q for a constant v > 0, allows
to tolerate a higher error rate but requires ¢ to be a smaller (but still constant)
fraction of t.

Another imperfection has to be taken into account in current implementations
of the quantum channel: imperfect sources. An imperfect source transmits more
than one qubit in the same state with probability 7 independently each time a
new transmission takes place. To deal with imperfect sources, we freely give away
(24,0;) to the adversary when a multi-qubit transmission occurs in position i. It
is not difficult to see that parameter e in Proposition 3] then becomes essentially
e =negl((1 —n)d — 4log(m) — 4q — 4¢) in this case.

It follows that a quantum channel with error-rate ¢ and multi-pulse rate 7,
called the (¢,n)-weak quantum model in [4], can be tolerated for some small
enough (but constant) ¢ and 7.

4 As a matter of fact, the error correction in [7] is done by sending the string XOR’ed
with a random code word, rather than sending the syndrome, but obviously the latter
is equivalent to the first.
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4 Defeating Man-in-the-Middle Attacks

4.1 The Approach

In the previous section, we “only” proved security against impersonation attacks,
but we did not consider a man-in-the-middle attack, where the attacker sits
between an honest user and an honest server and controls their (quantum and
classical) communication. And indeed, Q-ID is highly insecure against such an
attack: the attacker may measure the first qubit in, say, basis +, and then forward
the collapsed qubit (together with the remaining untouched ones) and observe if
S accepts the session. If not, then the attacker knows that he introduced an error
and hence that the first qubit must have been encoded and measured using the
x-basis, which gives him one bit of information on the key w. The error-tolerant
scheme seems to prevent this particular attack, but it is by no means clear that
it is secure against any man-in-the-middle attack.

To defeat a man-in-the-middle attack that tampers with the quantum com-
munication, we perform a check of correctness on a random subset. The check
allows to detect if the attacker tampers too much with the quantum communi-
cation, and the scheme can be aborted before sensitive information is leaked to
the attacker. In order to protect the classical communication, one might use a
standard information-theoretic authentication code. However, the key for such
a code can only be securely used a limited number of times. A similar prob-
lem occurs in QKD: even though a successful QKD execution produces fresh
key material that can be used in the next execution, the attacker can have the
parties run out of authentication keys by repeatedly enforcing the executions to
fail. In order to overcome this problem, we will use some special authentication
scheme allowing to re-use the key under certain circumstances, as discussed in

Sect.

4.2 The Setting

Similar to before, we assume that the user U and the server S share a not
necessarily uniform, low-entropy key w. In order to handle the stronger security
requirements of this section, we have to assume that U and S in addition share a
uniform high-entropy key k. We require that a man-in-the-middle attacker needs
to guess w correctly in order to break the scheme, and if his guess is incorrect
then he learns no more information on w besides that his guess is wrong, and he
essentially learns no information on k. Furthermore, we require security against
impersonation attacks, as defined in the previous section, even if the dishonest
party knows k. It follows that k can for instance be stored on a smartcard, and
security is still guaranteed even if the smartcard gets stolen, assuming that the
theft is noticed and the corresponding party does/can not execute the scheme
anymore. We would also like to stress that by our security notion, not only w
but also k£ may be safely reused, even if the scheme was under attack.
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4.3 An Additional Tool: Extractor MACs

An important tool used in this section is an authentication scheme, i.e., a Mes-
sage Authentication Code (MAC), that also acts as an extractor, meaning that if
there is high min-entropy in the message, then the key-tag pair cannot be distin-
guished from the key and a random tag. Such a MAC, introduced in [6], is called
an extractor MAC, EXTR-MAC for short. For instance M AC};, 5(v) = [ax] + 3,
where o,z € GF(2"), 8 € GF(2%) and [.], denotes truncation to the £ first bits,
is an EXTR-MAC: impersonation and substitution probability are 1/2¢, and,
for an arbitrary message X, a random key K = (A, B) and the corresponding
tag T = [A- X] + B, the tag-key pair (T, K) is 2~ (H2(X)=0/2_close to (U, K),
where U is the uniform distribution, respectively, prxg is 2UH2(X)==0)/2_¢loge
to 25]1 R pKE = zlg I® pr ® pe if we allow a g-qubit state E that may depend only
on X. A useful feature of an EXTR-MAC is that if an adversary gets to see the
tag of a message on which he has high min-entropy, then the key for the MAC
can be safely re-used (sequentially). Indeed, closeness of the real state, prig, to
the ideal state, 25]1 ® pKE= 212 I® pr ® pe , means that no matter how the state
evolves, the real state behaves like the ideal one (except with small probability),
but of course in the ideal state, K is still “fresh” and can be reused.

4.4 The Scheme

As for Q-ID, let ¢ : W — {+, x}™ be the encoding function of a binary code of
length n with m = |W)| codewords and minimal distance d. For some parameter
£, let F, G and ‘H be strongly universal-2 classes of hash functions from {0,1}"
to {0,1}*, W to {0,1}%, and {0,1}" to {0,1}?*, respectively. Also, let M AC :
{0,132 x {0,1}* — {0,1}* be a standard MAC for a message of arbitrary length
L, with an 2/-bit key and an error probability at most [L/¢]-27¢, and let M AC* :
K x M — {0,1}* be an EXTR-MAC with an arbitrary key space K, a (finite)
message space M that will become clear later, and an error probability 27¢.
Furthermore, let {syn;};cs be the family of syndrome functiona% corresponding
to a family C = {C}};es of linear error correcting codes of size n’ = n/2, as
discussed in Section B4t any C; allows to efficiently correct a é-fraction of errors
for some constant § > 0, and for a random j € J, the syndrome of a string with
t = d/4 —log(m) — 5¢ bits of min-entropy is 2~ (*=29/%_close to uniform (given
j and any g-qubit state). Finally, we let £* < ¢ be a parameter linear in n — £,
whose exact value will be specified in the proof.

Recall, by the set-up assumption, the user U and the server S share a password
w € W as well as a uniform high-entropy key, which we define to be a random
authentication key k € KC. The scheme is given in the box below.

Proposition 4.1 (Security against man-in-the-middle). Let the initial
state of a man-in-the-middle attacker with quantum memory q be independent

5 We agree on the following convention: for a bit string y of arbitrary length, syn;(y)
is to be understood as syn;(y0---0) with enough padded zeros if its bit length is
smaller than n’, and as (syn;(y’),y"), where y' consist of the first n’ and y” of the

remaining bits of y, if its bit length is bigger than n'.
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Q-ID™:

1. U picks z €r {0,1}" and 0 €r {+, x}", and sends the n-qubit state |x), to S.
Write I, := {i : 0;=c(w);}.

2. S picks a random subset T C {1,...,n} of size £*, it computes ¢ = c(w),
replaces every ¢; with i € T by ¢; €r {4, x} and measures |z), in basis c. Let
x’ be the outcome, and let test’ := x'|r.

3. Usends 0, j €r J, s:= syn;(z|r,), f €r F, h €r H and tag™: =
MAC}(0,4,s, f,h,z|1,) to S.

4. S picks g € G, and sends T and g to U.

5. U sends test := z|r, z:= f(z]1,) ® g(w) and tag := M ACly,, )(9,T,test, z)
to S.

6. S recovers x|, from z’|r, with the help of test and s, and it accepts if and
only if (1) both MAC’s verify correctly, (2) test coincides with test’ wherever
the bases coincide, and (3) z = f(z|r,) ® g(w).

of the keys W and K. Then, there exists W', independent of W, such that the
common state pxgwe after the ezecution of Q-ID satisfies

PEKWW E\W'#W e PK Q@ PW oW’ SE|W'#W
where € = negl(d — 4log(m) — 8¢ — 20¢).

Proof. We use capital letters (W, O, etc.) for the values (w, 6, etc.) occurring
in the scheme whenever we view them as random variables, and we write Xy,
and X{;, for the random variables taking values z|7, and 2’|, , respectively. To
simplify the argument, we neglect error probabilities that are of order ¢, as well
as linear fractions that can be chosen arbitrarily small. We merely give indication
of a small error by (sometimes) using the word “essentially”.

First note that due to the security of the MAC and its key, if the attacker
substitutes 6, j, s, f or h in step B or if S recovers an incorrect string as x|z, ,
then S will reject at the end of the protocol. We can define W’ (independent
of W) as in the proof of Proposition Bl such that if W = W’ then Xy has
essentially d/4 — log(m) bits of min-entropy, given W, W’ and ©. Furthermore,
given TAG*, F(Xw ), H(Xw), TEST (as well as K, F, H,T,W,W' and ©), Xy
has still essentially ¢ = d/4 — log(m) — 5¢ bits of min-entropy, if W # W'.
By the property of the code family C, it follows that if ¢ > 2¢ with a linear
gap then the syndrome S = syn (X ) is essentially random and independent
of J,TAG*, F(Xw), H(Xw), TEST, K, F, H,T,W,W’,© and E, conditioned on
W # W’. Furthermore, it follows from the privacy-amplifying property of M AC*
and of f and h that if d/4 — log(m) — 5¢ > ¢ with a linear gap, then the set
of values (TAG*, F(Xw), H(Xw)) is essentially random and independent of
K,F,H,TEST,T,W,W' © and E, conditioned on W # W’. Finally, K is inde-
pendent of the rest, and E is independent of K, F, H,TEST,T,W,®. It follows
that pxww ew 2w ~ prx ® pwow'wew'+w, before he learns S’s decision to
accept or reject.

It remains to argue that S’s decision does not give any additional information
on W. We will make a case distinction, which does not depend on w, and we
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will show for both cases that S’s decision to accept or reject is independent of
w, which proves the claim. But first, we need the following observation. Recall
that outside of the test set T', S measured in the bases dictated by w, but within
T in random bases. Let I/, be the subset of positions ¢ € I, with ¢; = ¢(w);
(and thus also = 6;), and let 77 = T'N I/,. In other words, we remove the
positions where S measured in the “wrong” basis. The size of T” is essentially
0*/4, and given its size, it is a random subset of I/, of size |T”|. It follows from the
theory of random sampling, specifically from Lemma 4 of [16], that v (z|r, ,2'|1,)
essentially equals v(z|7v,2’|7/) (except with probability negligible in the size of
T’), where v(-,-) denotes the fraction of errors between the two input strings.
Due to some technical reason, for the sampling technique to work it is required
that |T"| is upper bounded by « - |I},|, where the constant o > 0 depends on
the allowed tolerance in estimating the error fraction, and as such on 6, the
fraction of errors the code C) is able to correct. We refer to [L6] for more details.
Important for us is that £* can be chosen linear in n—/. Furthermore, since the set
V ={ieT:0; =c;} of positions where U and S compare = and 2’ is a superset
of T" of essentially twice the size, v(z|y,2'|v) is essentially lower bounded by
é V(1'|T/71'/|T/). Putting things together, we get that V(1'|]1/u , m’|11/u) is essentially
upper bounded by 2v(z|y,2'|v). Also note that v(z|y,2’|y) does not depend
on w. We can now do the case distinction: Case 1: If l/(1'|v71'/‘v) < g (minus
an arbitrarily small value), then x|y, and z'[;, differ in at most a é-fraction
of their positions, and thus S correctly recovers x|;, (using test = x|r to get
z|r,\r7, and using s to correct the rest), no matter what w is, and it follows
that S’s decision only depends on the attacker’s behavior, but not on w. Case 2:
Otherwise, either S cannot correctly recover x|7, and thus rejects, or it can
correctly recover z|;, and hence can verify tag with the correct key h(z|r, ). S
is therefore guaranteed to get the correct test = x|p (or else rejects) and thus
rejects as test and test’, restricted to V, differ in more than a g—fraction of their
positions. Hence, S always rejects in case 2. a

For a dishonest user or server who knows k (but not w), breaking Q-ID% is
equivalent to breaking Q-/D, up to a change in the parameters. Doing the maths
on the parameters, it thus follows:

Theorem 4.2. If H (W) > 1, then the identification scheme Q-IDT is e-
secure against a man-in-the-middle attacker with quantum memory bound q,
and, even with a leaked k, Q-IDT is e-secure against impersonation attacks for
any unbounded user and for any server with quantum memory bound q, where
¢ = negl(n — 100log(m) — 19q).

It is easy to see that Q-IDT can tolerate a noisy quantum communication up
to any error rate ¢ < 6. Similar to the discussion in Section B4l tolerating a
higher error rate requires the bound on the adversary’s quantum memory to be
smaller but still linear in the number of qubits transmitted. Imperfect sources
can also be addressed in a similar way as for Q-/D. It follows that Q-/DT can
also be shown secure in the (¢, n)-weak quantum model provided ¢ and 7 are
small enough constants.
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5 Application to QKD

As already pointed out in Section 1], current QKD schemes have the shortcom-
ing that if there is no classical channel available that is authenticated by physical
means, and thus messages need to be authenticated by an information-theoretic
authentication scheme, an attacker can force the parties to run out of authenti-
cation keys simply by making an execution (or several executions if the parties
share more key material) fail. Even worse, even if there is no attacker, but some
execution(s) of the QKD scheme fails due to a technical problem, parties could
run out of authentication keys. This shortcoming could make the technology im-
practical in situations where denial of service attacks or technical interruptions
often occur.

The identification scheme Q-/DT from the previous section immediately gives
a QKD scheme in the bounded-quantum-storage model that allows to re-use the
authentications key(s). Actually, we can inherit the key-setting from Q-ID¥,
where there are two keys, a human-memorizable password and a uniform, high-
entropy key, where security is still guaranteed even if the latter gets stolen and
the theft is noticed. In order to agree on a secret key sk, the two parties execute
Q-IDT, and extract sk from z|;, by applying yet another strongly universal-
2 function, for instance chosen by U in step Bl where n needs to be increased
accordingly to have the additional necessary amount of entropy in z|;,. The
analysis of Q-/DT immediately implies that if honest S accepts, then he is con-
vinced to share sk with the legitimate U which knows w. In order to convince
U, S can then use part of sk to one-time-pad encrypt w, and send it to U. The
rest of sk is then a secure secret key, shared between U and S. In order to have a
better “key rate”, instead of using sk (minus the part used for the one-time-pad
encryption) as secret key, one can also run a standard QKD scheme on top of
Q@-ID* and use sk as a one-time authentication key.
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