
L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 59 – 73, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On the Quality of Navigation Models with
Content-Modification Operations

Jordi Cabot1, Jordi Ceballos1, and Cristina Gómez2

1 Estudis d'Informàtica i Multimèdia, Universitat Oberta de Catalunya
{jcabot,jceballos}@uoc.edu

2 Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
cristina@lsi.upc.edu

Abstract. Initially, web development methods focused on the generation of
read-only web applications for browsing the data stored in relational database
systems. Lately, many have evolved to include content-modification functional-
ities. As a consequence, we believe that existing quality properties for web
model designs must be complemented with new property definitions. In particu-
lar, we propose two new quality properties that take the relationship between
navigation models and the related data models into account. The properties
check if navigation models include all necessary content-modification opera-
tions and whether all possible navigation paths modify the underlying data in a
consistent way. In this paper, we show how to determine if a navigation model
verifies both properties and also how to, given a data model, automatically
generate a preliminary navigation model satisfying them.

1 Introduction

Many web development methods are evolving to cover the definition of full-fledged
web applications, including data processing and manipulation functionalities. As a
consequence, the models involved in the specification of a web application (that is,
the data model to specify the data used by the application, the navigation model to
describe the organization of the front-end interface and the presentation model to
personalize its graphical aspect) have been extended with new modelling primitives.

One of the most relevant evolutions is the extension of navigation models with
content-modification primitives that permit to modify the data managed by the web
application. These primitives may be basic operations (insert/delete/update opera-
tions, as in WebML [4]) or references to more complex operations defined in the data
model (as in OOWS [13]) or in a different model (as in the operational models
proposed in [10]).

These new primitives complicate the definition of web model designs. Even for
small web applications, data and navigation models can become huge and complex.
Consequently, their definition is a time consuming and error prone process. This is a
critical issue since their quality is very important, especially when web designs are
used to automatically derive the implementation of the web application.

Up to now, quality properties for navigation models are based mainly on a pur-
ely syntax consistency analysis of the model structure (for instance, a common

60 J. Cabot, J. Ceballos, and C. Gómez

verification is to check the reachability of all pages or that there are no broken links).
These properties do not consider quality issues involving the new content modifica-
tion operations that may appear in the navigation models. Therefore, existing proper-
ties are not suited to assess the quality of such models.

The main goal of this paper is to complement the existing set of quality properties
defined for navigation models with two new quality properties that focus on the rela-
tionship between the content-management operations appearing in a navigation model
and the data model specified for the same web application. Through these properties
we can check early in the development process the quality of these extended naviga-
tion models. Additionally, we show how these properties help in the automatic
generation of a preliminary navigation model once the related data model has been
specified. This way we speed up the web development process because designers
need not define the navigation model from scratch.

The first property we propose is the completeness of a navigation model with re-
spect to its data model. We say that a navigation model is complete if the user can
manipulate all the data underlying the web application by means of the modification
operations included in the model (except for those parts of the data that the designer
defines as derived or read-only). Incomplete navigation models result in web applica-
tions with data that a user can never modify. As an example, consider the partial data
model shown in Fig. 1. Assuming that all elements of the data model are modifiable, a
navigation model with a single page to modify sale objects is incomplete since users
are unable to enter or modify sale lines.

 S a le
id : N atu ra l
a m o u n t: M o n ey

S a leL in e

q u an tity : N atu ra l 1 ..* 1

C o m p o sed O f

Fig. 1. Example of a data model

The second property is the correctness of a navigation model with respect to its
data model. A navigation model is correct when all navigation paths admit at least one
possible run (i.e. a run-time execution) that leaves the underlying data in a consistent
state. Incorrect navigation models result in web applications with some paths that
always end up in an inconsistent state. Every time the user interacts with the web
application following such paths, an error arises and all user actions carried out until
then must be rolled back (or repaired). Following the previous example, since sales
must be composed of a minimum of one sale line, navigation models containing a
path that permits to insert new sales but where no new sale lines can be created lead to
a state where these sales always violate the minimum multiplicity of the ComposedOf
relationship type. Therefore, such new sales must be discarded.

The rest of the paper is structured as follows. Section 2 reviews some basic con-
cepts of data and navigation models. Section 3 formalizes our quality properties and
characterizes the conditions that navigation models must satisfy in order to verify
them. Then, Section 4 shows how these properties can be used to derive a preliminary
complete and correct navigation model from an initial data model. Section 5 discusses
the related work. Finally, Section 6 presents some conclusions and further work.

 On the Quality of Navigation Models with Content-Modification Operations 61

2 Basic Concepts of Data and Navigation Models

Web modelling languages provide several models to specify a web application. In this
section, we review briefly the basic concepts and terminology of data and navigation
models, which are the focus of this paper.

2.1 Data Model

A data model (also known as content model) defines the knowledge about the domain
that a web application must have to perform its business functions. Fig. 2 shows an
example data model, represented in UML, meant to (partially) model a simple
e-commerce application. It contains information about sales, their sale lines and the
products they contain. Sales may be associated with the customer purchasing them.

 Sale
Purchases *

id : Natural
date: Date
amount: Money

SaleLine

quantity: Natural

0..1
Customer

id: Natural
name : String
nationality: String

Product
id : Natural
name: String
price: Money
description: String

1..*

1
ComposedOf

References

1

*

Fig. 2. The data model for the e-commerce application

The most basic constructors in data models are entity types (i.e. classes), relation-
ship types (i.e. associations) and generalizations. Each entity type ET contains a set of
attributes. For instance, in Fig. 2, Sale is an entity type with the attributes id, date and
amount. Each binary relationship type RT has a name and two participants. A partici-
pant ETi in RT may have a minimum and maximum cardinality, determining the mini-
mum (resp. maximum) number of relationships (i.e. links) of RT in which ETi may
participate. We denote by min(ETi,RT) and max(ETi,RT) these cardinality constraints.
For instance, ComposedOf states that each sale consists of at least one sale line so
min(Sale,ComposedOf)=1. Each generalization, denoted by Gens(ET,ET1,…,ETn),
relate a supertype ET with a set of subtypes ET1,…,ETn. Generalizations may be
disjoint and/or complete.

Additionally, the data model may include the definition of several operations to
modify the state of the data. The basic operations (i.e., content-modification primi-
tives) we consider are: InsertET(x,v1,..,vn) (resp. DeleteET(x)) to perform the addition
(removal) of the entity x into (from) entity type ET (optionally, attributes of x may be
initialized with values v1,..,vn), UpdateAiET(v,x) to set v as the new value for the
attribute Ai of entity x and InsertRT(x1,x2,) (resp. DeleteRT(x1,x2)) to perform the addi-
tion (removal) of the fact that entities x1,x2 participate in an instance of RT. More
complex operations can be defined as a sequence of these basic ones.

2.2 Navigation Model

A navigation model (also known as a hypertext model) specifies the organization of
the front-end interfaces of a web application. Fig. 3 shows an excerpt of a possible

62 J. Cabot, J. Ceballos, and C. Gómez

Fig. 3. A fragment of a navigational model for the e-commerce application

navigation model in WebML [4] for the e-commerce application presented in Fig. 2.
The model shows the interface to create new sales and their related sale lines.

The most basic constructors of navigation models are pages and links. Pages may
include several elements to specify the page contents. For practical purposes, our
navigational models do not show the pages internal structure.

Many web modelling languages permit to define navigation models with content-
modification operations that are executed as a result of browsing a link. As an exam-
ple, Fig. 3 shows that when the user navigates to NewSaleLine from the NewSale
page, the operation InsertSale is executed (using the parameters provided by the user
in NewSale). In some languages these operations are simple create/update/delete op-
erations equivalent to the basic operations defined above. Alternatively, other lan-
guages allow defining that browsing a link triggers the execution of a complex opera-
tion op defined in the data model (or in some other model). Then, the basic operations
executed during the navigation are the ones specified in the definition of op.

Fig. 3 shows the process for creating a new sale. From the home page the user
accesses the NewSale page. From here, the user may move to the NewSaleLine page
or return to the HomePage again. During the navigation to NewSaleLine a new sale
(empty or with the selected customer, not shown in the figure) is created because of
the InsertSale operation attached to the link. In this page, the user selects the prod-
uct to buy and indicates the quantity. Then, the user may either navigate to the
CheckOut page (the new sale line and the connections between the line and the sale
and between the line and the selected product will be created when browsing the
link) or to buy additional products by following the link leading to the NewSaleLine
page again.

3 Complete and Correct Navigation Models

In this section, a navigation model N is formalized as a graph GN (section 3.1) in
order to check whether N satisfies the completeness (section 3.2) and correctness
(section 3.3) properties with respect to its corresponding data model D.

 On the Quality of Navigation Models with Content-Modification Operations 63

3.1 Graph Representation

Given a navigation model N, the graph GN = (VN , AN) is obtained by means of the
following rules:

- Every page in N is a vertex in VN.
- Every link in N from a page X to a page Y is an arc from X (i.e. from the

vertex representing X in GN) to Y in AN.
- The label of an arc a stores the (possibly empty) ordered sequence of ba-

sic operations associated to the link l represented by a in GN.

Note that GN is a directed graph (digraph), since being able to navigate from a page
X to a page Y does not imply that the navigation from Y to X is also possible. Some-
times GN turns out to be a multigraph [3] since it may contain multiple arcs with the
same orientation between a pair of vertices v1 and v2. This happens when the page
corresponding to v1 contains several links targeting the page represented by v2.

Fig. 4 shows the graph corresponding to the navigation model of Fig. 3

InsertSale

New
SaleLine

New
Sale

Home
Page

Check
Out

InsertSaleLine
InsertComposedOf
InsertReferences

InsertSaleLine
InsertComposedOf
InsertReferences

Fig. 4. Graph definition for the navigation model of Fig. 3

3.2 Completeness of a Navigation Model

Intuitively, a navigation model N is complete when the users of the web application
may perform all basic operations1 over the modifiable2 elements of the corresponding
data model D through interacting with the set of pages in N. Incomplete navigation
models result in web applications with parts of the data that users cannot modify.

The set of basic operations that N must contain are the ones explicitly provided
by the designer in D (or in some additional model [10]). If no operations are pro-
vided, this set of necessary basic operations may be automatically generated from D
using a simple set of rules. For instance, we could generate an InsertET operation
for each entity type ET in D, an UpdateAiET operation for each attribute Ai of ET in
D and so forth. We denote by setop the set of operations (either defined or gener-
ated) for D.

Definition 3.2.1. N is complete when, for each operation op in setop, it exists, at least,
an arc a in AN where op ∈ label(a)3.

1 When different user groups or roles are defined, we require that at least one of them can per-

form such an operation.
2 Designers can mark parts of the data model as read-only or derived.
3 Label(a) returns the ordered sequence of operations associated to the arc a.

64 J. Cabot, J. Ceballos, and C. Gómez

As an example, the graph of Fig. 4 is an incomplete navigation model regarding the
data model of Fig. 2 since, for instance, basic operations to create customers and
products are missing (no arc contains those operations).

Definition 3.2.2. N is minimal when it is complete and, for each operation op in setop,
there is a single arc a in AN satisfying that op ∈ label(a).

It is worth noting that non minimal navigation models may be useful. The designer
may decide on purpose to offer several alternatives (i.e. several navigation paths) to
execute the same kind of modification in the web application. However, we believe it
is worth detecting these cases so that the designer can review and validate them.

Given the previous definitions, verification that a given navigation model N is
complete (or minimal) is quite straightforward, we just need to generate the graph GN
for N and check if definition 3.2.1 (or definition 3.2.2) is satisfied by GN.

3.3 Correctness of a Navigational Model

A navigation model defines the possible navigation paths permitted in the web appli-
cation. Each navigation path admits several runs (i.e. run-time executions). Each run
represents a possible interaction scenario between a user and the application. During a
run several modification operations may be applied over the population of the entity
and relationships types defined in the data model.

In some particular executions, these operations may turn the data into an inconsis-
tent state (a state where some integrity constraint defined in the data model is not
satisfied). This may happen, for instance, when the user does not enter appropriate
values in the forms of the pages visited during the navigation. In such cases, all
changes performed during the run must be discarded.

It may happen that all possible runs following the same navigation path fail (i.e.
leave the data in an inconsistent state due to the execution of the basic operations in-
cluded in the path). Clearly, such navigation path is completely useless and should be
disabled in order to improve the performance and the usability of the web application.

As an example, consider the graph of Fig. 5 representing a simple navigation
model consisting of a home page and a page for deleting existing sales. The user se-
lects the sale to be deleted and then browses a link that deletes the sale and returns to
the same page again so that additional sales can be deleted. According to the multi-
plicities of the relationship type ComposedOf (Fig. 2), all sales must be related with at
least one sale line and all sales lines must be related to a sale. Therefore, when, after
deleting a sale, we do not delete the associated sale lines as well (or assign those sale
lines to a different sale) these multiplicity constraints will be violated. Hence, every
single time the user tries to interact with this navigation model, an error will be
raised4, independently of the sale the user selects.

Intuitively, correct navigation models are those that do not include navigation paths
that always (i.e. for all possible runs) lead to an inconsistent data state, regardless of
the parameter values the users provide during the interaction with the pages in the path.

4 Obviously, for this particular example we could define the database so that the sale deletion

removes all related sale lines in cascade. However, since this information is not expressed in
the model, this must be manually done after the initial code-generation.

 On the Quality of Navigation Models with Content-Modification Operations 65

 DeleteSaleDelete
Page

Home
Page

Fig. 5. Graph definition for deleting sales

Definition 3.3.1. A navigation model N is correct iff all navigation paths are correct.

This correctness definition relies on the computation of all navigation paths in N (sec-
tion 3.3.1) and on the formalization of the correctness property for a given navigation
path (section 3.3.2).

3.3.1 Determining the Possible Navigation Paths in a Navigation Model
Definition 3.3.2. Let SNavP be the set of possible navigation paths in N. Then, SNavP =
AllPaths(GN), where AllPaths(GN) returns the set of all paths in GN that do not include
repeated arcs (these kinds of paths are also known as trails [3]).

SNavP considers as valid navigation paths all possible paths. However, in general, not
all possible navigation paths in N are valid, since a user cannot start browsing the web
application choosing an arbitrary page but beginning in some predefined entry page.
Similarly with the exit pages, users are expected to follow the navigation path until
they arrive to some predefined exit page; after that they can quit or start from the
beginning again. For this purpose, some web modelling languages support the concept
of home page, the notion of transaction [4] or the concept of service [11].

When this information is available in the navigation model, we may discard from
SNavP those paths that either do not start in an entry page or do not finish in an exit
page. As an example, given the navigation model of Fig. 3 we could define that
HomePage is the entry page and that the exit pages are HomePage and CheckOut
page. Then, the navigation sequence {HomePage, NewSale, NewSaleLine, CheckOut}
would represent a valid path while {HomePage, NewSale} would not.

Clearly, the user may quit the web application before reaching an exit page. How-
ever, in that case the user is not properly interacting with the web application and thus
the correctness of this partial interaction does not affect the correctness of the navigation
model.

3.3.2 Correctness of a Navigation Path
Correctness of a navigation path depends on the operations associated to the arcs
contained in the path. The basic idea is that some operations require the presence of
other operations in a precedent or subsequent arc in the path in order to leave the data
in a consistent state. For instance, a path including an InsertSale operation on an arc ai

requires that at least an operation InsertComposedOf appears further in the path (that
is, it must exist an arc aj, j>=i, where InsertComposedOf ∈ label(aj)). Otherwise,
every run on this navigation path will end up in an inconsistent state due to the inser-
tion of a sale not related with any sale line, thus violating the minimum multiplicity
constraint of Sale in ComposedOf.

When an operation op1 requires the presence of another operation op2 in the same
path we say that op1 depends on op2. Dependencies for an operation depend on the

66 J. Cabot, J. Ceballos, and C. Gómez

type of the operation (insert, update,…) and on the integrity constraints defined in the
data model. We just consider graphical constraints (as the cardinality, disjoint and
complete constraints) since most web modelling languages do not permit the defini-
tion of textual integrity constraints.

A navigation path must satisfy all dependencies of all operations included in the
path to have a chance of finishing successfully. We denote by SeqOpnav the ordered
sequence of all operations associated to the arcs contained in the path. Given a naviga-
tion path nav consisting of the sequence of arcs a1…an, the first operation in SeqOpnav
is the first operation in label(a1) and the last operation is the last operation in label(an).

Note that the satisfaction of all dependencies is a necessary condition but not a suf-
ficient one to ensure that all runs following the navigation path end successfully (this
will depend on the exact parameter values provided by the user at run-time); this just
guarantees that a successful run exists at least (i.e. a navigation path including the
creation of a sale and the creation of a link between the sale and a sale line may fail if
the parameters for the operations are not the appropriate ones; a navigation path not
including the link creation after the sale creation will always fail).

Definition 3.3.3. A navigation path nav is correct when, for each operation opi in
SeqOpnav, the set of dependencies depopi for opi is satisfied in SeqOpnav

It may happen that an operation opi requires N (N>1) operations of type opj. This
dependency is satisfied in SeqOpnav when the N opj operations explicitly appear in it.
Alternatively, it is also satisfied if the navigation path nav consists of the arcs a1…an,
opi is associated to an arc ai, opj to an arc aj and there is a cycle in the graph including
aj but not ai. Iterating through the cycle N times, the user could generate the required
N opj operations when running the application.

In the following we define how to compute the exact set of dependencies depop for
an operation op. A dependency for an operation op is defined as a tuple <direction,
operation, number> where operation is the name of the operation required by op and
direction indicates if operation must be executed before op (symbol ←), after5 op
(symbol →) or if the exact position of op is irrelevant (symbol ↑). Number informs
about how many operations of type operation are required by op. More complex de-
pendencies are expressed as a sequence of simple ones joined with the logical AND
and OR operators (as an example, op may require the existence of the operations op1
and op2 or, alternatively, the existence of the operation op3).

Definition 3.3.4. Let ET be an entity type and op be an operation defined over ET.
Depop is computed as follows:
- If op = InsertET, there is a dependency depRT = <→, InsertRT, min(ET,RT)> for

each RT where min(ET,RT)≥1. Additionally, if ET is the supertype of a complete
generalization Gens(ET,ET1,…,ETn) there is a dependency depGensSup = <→, In-
sertETi, 1> for at least one ETi. If ET is a subtype of a disjoint and complete gen-
eralization Gens(ET’,ET,…) we need a dependency depGensSub = <←, InsertET’,
1>. Depop is the union of the depRT, depGensSup and depGensSub dependencies.

- If op = DeleteET, there is a dependency depRT = <←, DeleteRT, min(ET,RT)>
for each RT where min(ET,RT)≥1.. Additionally, if ET is a subtype of a disjoint

5 But not necessarily immediately before or after.

 On the Quality of Navigation Models with Content-Modification Operations 67

and complete generalization Gens(ET’, ET,…) there is a dependency depGensSub =
<→, DeleteET’, 1>. If ET is the supertype of a complete generalization
Gens(ET,ET1,…,ETn) there is a dependency depGensSup = <→, DeleteETi, 1> for at
least an ETi. Depop is the union of the depRT, depGensSup and depGensSub
dependencies.

Note that no dependencies are needed for the UpdateAiET operation since changes on
attribute values do not either violate cardinality, complete or disjoint constraints.

Definition 3.3.5. Let RT be a relationship type with two participants ET1 and ET2. Let
op be an operation defined over RT. Depop is computed as follows6:

- If op = InsertRT, there is a dependency depop = <↑, DeleteRT, 1> (if min(ETi,RT)
= max(ETi,RT) for just one participant ETi) OR <←, InsertETi, 1> for each ETi
such that min(ETi,RT) = max(ETi,RT) ≥1.

- If op = DeleteRT, there is a dependency depop = <↑, InsertRT, 1> (if min(ETi,RT)
= max(ETi,RT) for just one participant ETi) OR <←, DeleteETi, 1> for each ETi
such that min(ETi,RT) = max(ETi,RT) ≥1.

Consider the navigation path nav for the graph of Fig. 4 consisting of the navigation
sequence: {HomePage, NewSale, NewSaleLine, CheckOut}. For this path, SeqOpnav =
{InsertSale, InsertSaleLine, InsertComposedOf, InsertReferences}. To check the
correctness of nav we must consider the dependencies for all operations in SeqOpnav.
According to the previous rules, the dependencies are:

depInsertSale = <→, InsertComposedOf, 1>
depInsertSaleLine = <→, InsertComposedOf, 1> AND <→, InsertReferences, 1> depIn-

sertComposedOf = <←, InsertSaleLine, 1> OR <↑, DeleteComposedOf, 1>
depInsertReferences = <←, InsertSaleLine, 1> OR <↑, DeleteReferences, 1>

SeqOpnav satisfies the dependency for InsertSale since there is an InsertCompose-
dOf operation after the InsertSale operation in the sequence. Dependencies for Insert-
SaleLine are satisfied as well because SeqOpnav includes the InsertComposedOf and
InsertReferences operations after InsertSaleLine. Dependencies for InsertCompose-
dOf require that before this operation we find in SeqOpnav an InsertSaleLine operation
or (anywhere) a DeleteComposedOf. Since SeqOpnav contains the InsertSaleLine op-
eration before the InsertComposedOf operation, this OR-dependency is also satisfied.
This is likewise with the dependencies for InsertReferences. Therefore, all dependen-
cies for the operations in the path are satisfied and we may conclude that this naviga-
tion path is correct.

Given all these previous definitions, the verification that a navigation model N is
correct can be summarized in the following steps: 1 – Generation of the graph
GN, 2– computation of the function AllPaths, 3 – Computation of SeqOpnav for each
navigation path, 4 – Determining the dependencies for all operations in SeqOpnav with
the rules presented above and 5 – Checking that all paths satisfy the correctness
definition 3.3.3.

6 For some (unusual) cardinality combinations additional (longer) sets of dependencies could be

defined.

68 J. Cabot, J. Ceballos, and C. Gómez

4 Generating a Complete and Correct Navigational Model

Given a data model D, we show in this section how to automatically derive a prelimi-
nary navigation model that is guaranteed to be complete and correct with respect to D
(idea of correctness-by-construction [9]). Designers may complement this initial
navigation model (for instance, adding all details on the internal page structure) to
obtain the full navigation model for the web application.

Clearly, such automatic generation offers three main benefits. Firstly, designers
save time and effort by not defining the navigation model from scratch. Secondly, it
minimizes costly design errors since designers depart from an already complete and
correct model. Finally, the generated model may present several alternative naviga-
tion designs that go beyond the one/s the designer had in mind and that may be worth
exploiting in the final navigation model.

The construction of this initial model is split in several phases:

1. Generation of basic pages and links to ensure the completeness of the
navigation model

2. Combining basic pages to create correct navigation paths
3. Refactorings to improve the structure of the generated navigation model

As a result of the process, we obtain a graph GN representing the new navigation
model. Then, this graph can be translated into the actual navigation model by means
of reversing the rules introduced in section 3.1.

Each of the steps is described as follows.

4.1 Generation of a Complete Navigation Model

To be complete, the navigation model must contain all necessary data manipulation
operations to modify the underlying web application data. Thus, for each required
operation op, the graph GN must include at least an arc a verifying that op ∈ label(a).

Additionally, for each created arc a we define a new vertex v1 in the graph repre-
senting the page where the user can select/enter all the parameters required by op. The
link represented by a is anchored in that page, that is, v1 is the origin vertex for a. At
this stage of the process, we could use as a target page any other page of the model.
The easiest option is to assume that either the target page is the same page (so that the
user can apply again the same operation) or the home page.

 InsertSale

New
SaleLine

Home
Page

New
Sale

New
ComposedOf

InsertSaleLine

New
References

Remove
ComposedOf

InsertComposedOf

InsertReferences

DeleteComposedOf

Fig. 6. Graph corresponding to a complete navigation model

 On the Quality of Navigation Models with Content-Modification Operations 69

Assuming that the only operations that can be executed over the data model of
Fig. 2 are: InsertSale, InsertSaleLine, InsertComposedOf, InsertReferences and De-
leteComposedOf, a complete navigation model could be the one corresponding to the
graph shown in Fig. 6 From the home page, the user can access five different pages.
Each page permits to enter the necessary information to execute the operation at-
tached to the single exit link in the page. The exit link leads to the home page again.

4.2 Generation of a Complete and Correct Navigation Model

The previous graph corresponds to a complete navigation model but not a correct one
since, for instance, the user can insert a new sale without inserting the corresponding
sale lines thus leaving the data in an inconsistent state. In this section we extend this
initial graph to ensure its correctness. Due to space limitations, we focus on the
correctness of the subgraph including the home page and the new sale page.

As seen in section 3.3, correctness depends on the dependencies among the opera-
tions contained in the navigation paths of the graph. For instance, the occurrence of an
InsertSale operation in a navigation path nav requires that, to be correct, nav includes
an InsertComposedOf operation as well.

Therefore, a first step to ensure the correctness of the graph of Fig. 6 is to extend
the graph by adding a new vertex and a new arc with the InsertComposedOf operation
after the NewSale vertex (see Fig. 7). Now after inserting a new sale the user is redi-
rected to a page to create a ComposedOf link.

InsertSale New

ComposedOf
New
Sale

Home
Page

InsertComposedOf

Fig. 7. Graph corresponding to a partially correct navigation model

However, this navigation path is not yet correct. The addition of the InsertCom-
posedOf operation forces us to consider also the dependencies of this new operation.
InsertComposedOf requires a previous operation InsertSaleLine or, alternatively, the
existence of a DeleteComposedOf operation. None of them already appear in the path
so we need to add one of them as well. Since we have two different alternatives to
satisfy the correctness (either to add a new vertex and link for the InsertSaleLine or
for the DeleteComposedOf operation), we duplicate the path created up to now. Each
path takes one of the possible options so that we can cover all possible scenarios.
After, we continue the process with each path separately.

In the path with the InsertSaleLine operation we need to further add a new
InsertReferences operation. Dependencies for this latter operation are already satisfied
by the path so we can stop the process for this path. The path with the DeleteCom-
posedOf operation does not need new extensions (dependencies for DeleteCompose-
dOf are satisfied if earlier in the path we find a DeleteSale or a InsertComposedBy as
it is the case).

70 J. Cabot, J. Ceballos, and C. Gómez

Fig. 8 shows the final aspect for this part of the graph. From the home page, we can
insert a new sale in two different ways. We can either insert the sale and the related
sale line or, alternatively, we can insert the sale and assign an existing sale line (pre-
viously related to a different sale) to the sale. The designer may decide if this second
alternative makes sense in this particular domain. The decision cannot be automated.

 InsertReferences

InsertSale New
SaleLine

New
Sale Home

Page

InsertSaleLine New
ComposedOf

InsertComposedOf New
References

New
Sale

New
ComposedOf

InsertComposedOf Remove
ComposedOf

InsertSale

DeleteComposedOf

Fig. 8. Graph corresponding to a correct and complete navigation model

The generation process may add some extra arcs to create cycles in the graph. Cy-
cles are created when the multiplicities of relationship types modified in the path are
greater than one. In the previous example the graph should offer the option of adding
several sale lines for the same sale as permitted by the multiplicities of ComposedOf.

More formally, the generation of a correct navigation model can be summarized in
the following steps:

1. Compute the function AllPaths (see section 3.3.1) for the complete graph ob-
tained in the previous section. AllPaths in this case just needs to consider the
arcs between the home page and each specific page created for the required
operations.

2. For each path compute the transitive closure of the dependencies of the opera-
tions in the path. The transitive closure can be computed by means of recur-
sively applying the dependency rules of section 3.3.2 over the new operations
added to the path until no more operations are added. When finding alternative
dependencies (none of them already satisfied in the path) we create an addi-
tional path for each alternative.

3. Extending the graph with the new vertices and arcs that are necessary to sat-
isfy all dependencies appearing in the transitive closure.

4.3 Refactorings for Navigation Models

Refactorings were initially proposed at the code level [8] as a disciplined technique
for improving the structure of existing code (using simple transformations) without
changing the external observable behavior. More recently, some work has been car-
ried out to apply this technique on software models instead of on source code [12].

In this section we propose three simple refactorings to automatically improve the
structure of the navigation model obtained at the end of the previous step. In our case,
“without changing the external observable behavior” means without turning the
model into an incomplete or incorrect model, that is, refactorings are transformations
of the graph GN representing a navigation model N that keep the completeness and
correctness properties of N.

 On the Quality of Navigation Models with Content-Modification Operations 71

Refactoring 1. Removal of redundant navigation paths. Given two navigation paths
n1 and n2, we say that paths n1 and n2 are equivalent when SeqOpn1 = SeqOpn2, where
SeqOpni represents the ordered sequence of operations associated to the arcs of ni. If
two navigation paths are equivalent they are also redundant since the removal of one
of them does not affect the completeness or the correctness of the navigation model.
This refactoring removes all redundant navigation paths. The removal of a path con-
sists in the removal of all arcs and nodes in the path not appearing in any other (non-
redundant) path.

Refactoring 2. Head-Merging of navigation paths. Given two navigation paths
n1={<v1,a1,v2>,<v2,a2,v3>,…,<vx-1,ax-1,vx>} and n2={<v’1,a’1,v’2>, <v’2,a’2,v’3>,
….,<v’y-1,a’y-1,v’y>} we can merge the beginning of the two paths when there is an
interval 1..i where for all k, 1<=k<=i, label(ak)=label(a’k) (that is when the first part
of the path coincides in n1 and n2). After applying the refactoring, n2 becomes
n2={<v1,a1,v2>, <v2,a2,v3>, …, <vi-1,ai-1,vi>,<vi,a’i,v’i+1>, ….,<v’y-1,a’y-1,v’y>}

Refactoring 3. Tail-Merging of navigation paths. Given two navigation paths
n1={<v1,a1,v2>, <v2,a2,v3>,….,<vx-1,ax-1,vx>} and n2={<v’1,a’1,v’2>, <v’2,a’2,v’3>,
….,<v’y-1,a’y-1,v’y>} we can merge the end of the two paths when there is an interval
1..i where for all k, 1<=k<=i, label(ax-k)=label(a’y-k) (that is when the last part of the
path coincides in n1 and n2). After applying the refactoring, n2 becomes
n2={<v’1,a’1,v’2>, <v’2,a’2,v’3>,…, <v’y-i,ay-i,vx-i+1>,….,<vx-1,ax-1,vx>}

The application of the second refactoring over the graph of Fig. 8 results in the new
graph shown in Fig. 9.

 InsertReferences

InsertSale New
SaleLineNew

Sale
Home
Page

InsertSaleLine New
ComposedOf

InsertComposedOf New
References

New
ComposedOf

InsertComposedOf Remove
ComposedOfInsertSale

DeleteComposedOf

Fig. 9. Graph after applying the second refactoring

Apart from these automatic refactorings we could also provide several manual
refactorings (i.e. refactorings that the designer must decide where and when to apply
them). For instance, we could merge the nodes NewSaleLine, NewComposedOf and
NewReferences in a single page with an outgoing link including the (ordered) se-
quence of operations included in the outgoing links for the three pages.

5 Related Work

Two kinds of related research are relevant to this paper: methods proposing properties
to determine the quality of navigation models and methods devoted to the automatic
generation of navigation models from data models.

72 J. Cabot, J. Ceballos, and C. Gómez

Regarding quality aspects of navigation models, current proposals are rather
limited. CASE tools provide limited verification facilities, mainly purely syntactic
analysis of the correctness of the models regarding the syntax and semantics of the
modelling languages. Other common supported properties include basic verifications
of the navigation structure, as the reachability of all pages from the home page [4],
[5]. [11] accepts the definition of a route for each conceptual user service. A route
represents the sequence of steps that the user must follow to complete the service.
Then, it checks that the structure of the navigation model is consistent with the de-
fined routes. A few powerful formal verifiers also exist (see [6] as an example)
though they are not yet fully integrated with current web development methods,
which hamper their practical usability. Moreover, none of these proposals consider
the specificities of navigation models with content-modification operations or the
relationship between navigation models and their related data models as the quality
properties we have defined in this paper.

With respect to the automatic generation of navigation models, existing approaches
(as [1], [7] and [2]) derive the structure of the navigation model based on the relation-
ships among the entity types in the data model (outside the web community, we find
similar proposals, devoted to the automatic generation of the application graphical-
user interface, see [14] as an example). Nevertheless, the generated models are just
read-only navigation models for browsing the data; they do not include data modifica-
tion functionalities.

Other important kinds of quality properties, as usability and accessibility of web
applications [16] are outside the scope of this paper.

6 Conclusions and Further Work

We have presented two new quality properties (completeness and correctness of navi-
gation models) that focus on the relationship between navigation and data models
defined for the same web application. With these properties we can check whether a
navigation model conforms to its data model so that inconsistencies between them can
be detected in the early stages of the web application development process.

Our properties complement current quality checks for navigation models, which do
not consider the data modification operations that may appear in those models. We
believe that our properties are relevant to current web development methods address-
ing the definition and generation of fully-fledged web applications.

Also, we have shown how these properties can be used to automatically generate a
preliminary version of a navigation model once the data model has been specified.
This initial navigation model can then be refined by the designer in order to obtain the
final navigation model for the web application.

Regarding further work, we would like to extend our quality assessment by detect-
ing not only errors in the navigation model but also other kinds of problematic situa-
tions (“warnings”) that should be revised and by exploring the applicability of our
graph-based representation to check additional properties (some properties may be
reduced to path problems over our graph [15]) Besides, we also plan to improve our

 On the Quality of Navigation Models with Content-Modification Operations 73

current generation method for navigation models to include additional patterns and
refactorings that make the model closer to the final one expected by the designer.
Finally, we plan to validate our approach using an industrial case study.

Acknowledgments

We would like to thank the people of the GMC group and the anonymous reviewers
for their many useful comments in the preparation of this paper. This work has been
partially supported by the Ministerio de Ciencia y Tecnología under the project
TIN2005-06053 and the integrated action HI2006-0208.

References

1. Albert, M., Pelechano, V., Fons, J., Rojas, G., Pastor, O.: Extracting Knowledge from As-
sociation Relationships to Build Navigational Models. LA-WEB’03, pp. 2–10 (2003)

2. Assossou, D., Wack, M.: Transformation Rules from Conceptual Model to Navigational
Model in Hypermedia Applications. WEBIST’06 (1) pp. 428-434 (2006)

3. Bollobás, B.: Modern Graph Theory, p. 394. Springer-Verlag, Heidelberg (1998)
4. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling lan-

guage for designing Web sites. Computer Networks 33(1-6), 137–157 (2000)
5. Comai, S., Matera, M., Maurino, A.: A Model and an XSL Framework for Analyzing the

Quality of WebML Conceptual Schemas. In: Spaccapietra, S., March, S.T., Kambayashi,
Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 339–350. Springer, Heidelberg (2002)

6. Deutsch, A., Marcus, M., Sui, L., Vianu, V., Zhou, D.: A Verifier for Interactive, Data-
driven Web Applications, SIGMOD’05, pp. 539–550 (2005)

7. Falquet, G., Guyot, J., Nerima, L., Park, S.: Design and analysis of active hypertext views
on databases, Information Modeling for Internet Applications, pp. 40–58. Idea Group Pub-
lishing (2003)

8. Fowler, M.: Refactoring: Improving the design of existing code, p. 464. Addison-Wesley,
London, UK (1998)

9. Hall, A., Chapman, R.: Correctness by construction. IEEE Software 19(1), 18–25 (2002)
10. Jakob, M., Schwarz, H., Kaiser, F., Mitschang, B.: Modeling and Generating Application

Logic for Data-Intensive Web Applications, ICWE’06, pp. 77–84 (2006)
11. Lucas, F.J., Molina, F., Toval, A., de Castro, M.V., Cáceres, P., Marcos, E.: Precise WIS

Development. ICWE’06, pp. 71–76 (2006)
12. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Software

Eng. 30(2), 126–139 (2004)
13. Pastor, O., Fons, J., Pelechano, V., Abrahao, S.: Conceptual Modelling of Web Applica-

tions: The OOWS approach. In: Web Engineering, pp. 277–302. Springer-Verlag, Heidel-
berg (2006)

14. Pizano, A., Shirota, Y., Iizawa, A.: Automatic Generation of Graphical User Interfaces for
Interactive Database Applications. CIKM’93, pp. 344–355 (1993)

15. Tarjan, R.E.: Fast algorithms for solving path problems. Journal of the ACM 28(3),
594–614 (1981)

16. Vanderdonckt, J., Beirekdar, A.: Automated Web Evaluation by Guideline Review, Jour-
nal of Web Engineering 4(2), 102–117 (2005)

	Introduction
	Basic Concepts of Data and Navigation Models
	Data Model
	Navigation Model

	Complete and Correct Navigation Models
	Graph Representation
	Completeness of a Navigation Model
	Correctness of a Navigational Model

	Generating a Complete and Correct Navigational Model
	Generation of a Complete Navigation Model
	Generation of a Complete and Correct Navigation Model
	Refactorings for Navigation Models

	Related Work
	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

