
Building Semantic Web Portals with WebML

Marco Brambilla and Federico M. Facca

Dipartimento di Elettronica e Informazione
Politecnico di Milano

P.za Leonardo da Vinci 32, I-20133 Milano, Italy
{marco.brambilla,federico.facca}@polimi.it

Abstract. Current conceptual models and methodologies for Web ap-
plications concentrate on content, navigation, and service modeling. Al-
though some of them are meant to address semantic web applications
too, they do not fully exploit the whole potential deriving from interac-
tion with ontological data sources and and from Semantic annotations.
This paper proposes an extension to Web application conceptual models
toward Semantic Web. We devise an extension of the WebML modeling
framework that fulfills most of the design requirements emerging for the
new area of Semantic Web. We generalize the development process to
cover Semantic Web and we devise a set of new primitives for ontology
importing and querying. Finally, an implementation prototype of the
proposed concepts is proposed within the commercial tool WebRatio.

1 Introduction

Evolution of Web applications toward complex Web-based Information Systems
dramatically increases the complexity of the requirements and of the technolog-
ical issues associated to the design and development phases. Modern Web ap-
plications comprise distributed data integration, remote service interaction, and
workflow management of activities, possibly spawned on different peers. In this
scenario, a wider attention to semantics of data and applications is mandatory
to allow effective design and evolution of complex systems, that can be possibly
set up and manipulated by different organizations. Indeed, if semantics of data
and applications is known, their integration becomes more feasible. Moreover,
explicit semantic annotation of Web applications can facilitate content search
and access and foster a future generation of Web client that exploit the semantic
information to provide better browsing capabilities to customers.

The Semantic Web is an evolution of the World Wide Web, promoted by Tim
Berners-Lee to bring “semantics” to the human-readable information so as to
make them machine-readable and allow better and easier automatic integration
between different Web applications. To address this challenge many semantic
description languages arose, like RDF, OWL and WSML; some of them are
currently W3C Recommendations. All these languages allow to formally model
knowledge by means of ontologies: the resulting formal models are the starting
point to enable easy information exchange and integration between machines.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 312–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Building Semantic Web Portals with WebML 313

These languages are suitable for reasoning and inferencing, i.e., to deduct more
informations from the model by applying logic expressions. This makes the mod-
eling task easier since not all the knowledge has to be modeled. This languages
are supported by a wide range of tools and APIs, that support design of knowl-
edge (e.g. Protégé, OntoEdit), provide storing facilities (e.g. Sesame and Jena),
and offer reasoning on the data (e.g., Racer and Pellet). Based on these modeling
languages, a set of querying languages have been devised too; among them, we
can mention SPARQL, a W3C recommendation.

Unfortunately, although the theoretical bases and some technological solutions
are already in place for Semantic Web support, the techniques and methodologies
for Semantic Web application design are still rather rough. This leads to high
costs of implementation for Semantic Web features, even if embedded within
traditional Web applications. These extra costs are related not only to the design
of the architecture and deployment of the Semantic platforms, but only to the
repetitive and continuous task of semantic annotation of contents and application
pages.

We claim that conceptual modeling can increase dramatically the efficiency
and efficacy of the design and implementation of such applications, by offering
tools and methodologies to the designer for specifying semantically-rich Web
applications. In [1] we presented our vision on the needs and the opportunity
of applying Web Engineering methods to the development of Semantic Web
Services in the context of the WSMO framework [2]. In particular we showed
how, starting from a rich and annotated model of a Web Service, it is possible to
automatically generate both the implementation of the Web Service and a large
part of its semantic description. Now we focus on the extension of WebML as a
Model Driven method to model and develop Semantic Portals. A Web Portal is
a Web site providing personalized capabilities to its visitors and is designed to
use distributed and different sources. A Semantic Web Portal adopts semantic
Web technologies to better integrate distributed data sources and to provide
semantic descriptions of its contents so as to make them machine-readable.

The introduction of Semantic Web applications brought a new set of require-
ments, to be fulfilled by methodologies and tools for such applications: e.g. easy
reuse of existing ontological models, support for semantic web languages, ad-
vanced ontology query paradigms, easy specification of semantically rich descrip-
tions of services, contents, and interfaces. Some of these requirements have been
addressed by existing modeling methodologies for semantic Web applications
and Semantic Portals [3,4,5,6,7].

The paper is organized as follows: Section 2 specifies the new requirements
of Semantic Web; Section 3 presents the case study used throughout the paper;
Section 4 briefly summarizes the principles of the WebML language; Section 5
presents the extensions to the language for supporting Semantic Web features, in
terms of extensions to development process, content model, and hypertext model;
Section 6 exemplifies the approach on the running case; Section 7 describes the
implementation experiments; Section 8 discusses the related work; and finally
Section 9 draws some conclusions.

314 M. Brambilla and F.M. Facca

2 Requirements for Semantic Web Engineering

To collect the requirements that a Semantic Web application should comply
with, we analyzed some current online Semantic Web Portals (e.g., [8,9,10]) and
we extracted the following set of needs:

– Support of semantic languages. Semantic Web applications should be
aware of and support (i.e., be able to query and manage) different Semantic
Languages and metamodels (RDFS [11], OWL[], WSML [2], . . .).

– Semantic application models. Semantic Web applications should be de-
signed and specified by means conceptual models that include and support
semantic descriptions.

– Flexible integration. Semantic Web applications should embrace the phi-
losophy of flexibility and heterogeneity integration of Semantic Web.

– Classes and instances access and queries. Both domain ontology classes
and instances should be easily and seamlessly accessible by Semantic Web
applications, through appropriate querying primitives. Notice that, while
queries in data-driven Web applications are only on data instances, a Se-
mantic Web application may exploit structure querying too.

– Inference and verification. Ontology-based web applications should ex-
ploit available inferencing systems on ontological data, both for semantic
queries and verification of data.

– Semantic data sources. A Semantic Web application relies on semantic
data (e.g., ontologies) that offer a machine understandable data description
that may be not only used to populate and generate Web pages, but also to
automatically enrich such Web pages with semantic annotations.

– Importing and reuse of ontologies. Semantic Web applications shall
allow to: (i) import new (possibly distributed) data conforming to the Web
application ontology; (ii) to seamlessly integrate new ontologies, not fitting
the default ontology; and (iii) to reuse existing and shared ontologies.

From the previous set of requirements, we derived the following requirements
for the conceptual metamodels pursuing the design of Semantic Web applications:

– Metamodels should be aware of and support semantic languages.
– Metamodels themselves should be “semantic”, i.e., grant self-annotation and

explicit semantic extraction.
– Metamodels should allow flexible integration of heterogeneous sources and

applications.
– Metamodels should allow transformations towards a query language able to

capture all the aspects of ontologies, including inference, verification, query
on instances, and query on classes.

– Metamodels should easily allow: to specify semantic data sources as under-
lying level of the application; to exploit these sources for populating Web
pages, and for (automatically) annotating such Web pages.

– Metamodels shall be able to import and reference distributed data and on-
tologies, aiming at the reuse and sharing of the knowledge.

Building Semantic Web Portals with WebML 315

name

genre

name

Artist

Track Album

pla
ye
dB

y

play
s

containedIn

contains

authored
hasAuthor

Fig. 1. A fragment of the MusicBrainz ontology representing Artist, Album, Track and
their relationships

3 A Semantic Web Portal for the Music Domain

To discuss our approach, a running example will be used throughout the paper.
To implement a realistic scenario, we will consider the reuse of one of the exist-
ing ontologies available on the Internet that can be easily used and integrated to
create new Semantic Web Portals. We integrate two ontologies for the musical
domain to build a Web application offering access to this kind of contents, con-
sidering also users profile information. In particular, we exploit the MusicBrainz
ontology [12] for the music domain information; the MusicMoz [13] hierarchy to
classify music genres; the RDF Site Summary [14] for music news; and the Friend
Of A Friend (Foaf) ontology [15], a widely used formalism to describe for user’s
profiles and relationships among them. A fragment of the MusicBrainz ontology
is reported in Figure 1. This application is similar to other existing Semantic
Web applications (e.g., [9]), that provide personalized access to the contents ex-
ploiting distributed semantic information. The presented application, although
rather simple because of space reasons, can be considered a Semantic Web Portal
since it aggregates different sources of information spanned across the Intenet. In
Section 6 we will show how to model such application with the extended version
of WebML.

4 WebML: An Overview

Our approach to Semantic Portals specification is based on the WebML language.
WebML (Web Modeling Language) is a methodology for Web application design
that comprises the definition of a development process and of a modeling lan-
guage (composed by several metamodels for describing orthogonal aspects of a
Web application) [16]. WebML offers a set of visual primitives for defining con-
ceptual schemas that represent the organization of the application contents and
of the hypertext interface. The WebML primitives are also provided with an
XML-based textual representation, which allows specifying additional detailed
properties, not conveniently expressible in the visual notation.

316 M. Brambilla and F.M. Facca

For specifying the data underlying the application, WebML exploits the Entity-
Relationship model, which consists of entities (classes of data elements), and rela-
tionships (semantic connections between entities).

WebML also allows designers to describe hypertexts, called site views, for
publishing and managing content. A site view is a piece of hypertext, which can
be browsed by a particular class of users. Multiple site views can be defined for
the same application. Site views are then composed of pages, and they in turn
include containers of elementary pieces of content, called content unit, typically
publishing data retrieved from the database, whose schema is expressed through
the E-R model. WebML offers a set of predefined units for extracting data from
the datasource, submitting data to the application, and specifying the navigation
behaviors. Finally, WebML models the execution of arbitrary business actions,
by means of operation units. An operation unit can be linked to other operations
or content units. WebML incorporates some predefined operations for creating,
modifying and deleting the instances of entities and relationships, and allows
designers to extend this set with their own operations.

Units may be connected through links, represented as oriented arcs between
source and destination units. The aim of links is twofold: defining the navigation
(possibly displaying a new page or a piece of content in the same page) and the
data parameters passing from the source to the destination unit.

WebML-based development is supported by the WebRatio CASE tool [17],
which offers a visual environment for designing the WebML conceptual schemas,
storing them in XML format, and automatically generates the running code
(through XSLT model transformations), which is deployed as pure J2EE code.

5 Extending WebML Towards Semantic Web Portals

This section discusses the extensions to the WebML metamodels that are needed
for complying with the new requirements of semantic web applications, according
to the specifications of Section 2. The extensions apply to any aspect of the
WebML methodology:

– Development process: extensions to describe the tasks related to the de-
sign of ontologies and semantic aspects of the web applications/services;

– Data model: extensions to support semantic data sources (i.e., ontologies);
– Hypertext model: extensions to support querying on ontologies, with par-

ticular attention to advanced and inferencing queries;
– Presentation model: extensions to support semantic annotations of the

applications.

5.1 Extensions to the Development Process

The methodology adopted in the development of “traditional” Web applications
needs to be extended with additional tasks that formalize the new design steps
required by the injection of semantics within Web applications. Figure 2 depicts

Building Semantic Web Portals with WebML 317

Data Design

Presentation Design

Hypertext Design

Ontology Import

Annotation Design

Business Requirements

Requirements Specification

Architecture Design

ImplementationTesting and Evaluation

Maintenance and Evolution

Fig. 2. The extended development process for Semantic Web applications

the extended version of the development process for Web applications. The orig-
inal version was proposed in [16] and is adopted with slight variations by most
of the existing Web Engineering approaches. The gray blocks represent the new
tasks we introduced to fulfill Semantic Web application requirements:

– Ontology Import. This task addresses the selection and the importing of
existing domain ontologies that may be exploited for the domain of the Web
application under development. The imported ontologies can be possibly
modified or merged to better suite the Web application purposes.

– Hypertext Design. This step, which already existed in the original ap-
proach, needs to be extended to specify how to query ontologies by means
of proper primitives. Notice that the design of interactions with relational
data remains unchanged.

– Design Annotation. In this phase the Web engineer specifies how the
hypertext pages will be annotated using existing ontological knowledge. This
step enriches the Hypertext Design and relies on the Presentation Design for
deciding the actual position and display style of annotations.

Notice that the waterfall representation may be adjusted for some design expe-
riences, considering that in some cases some steps are not needed at all (e.g.,
if only imported ontologies are necessary, the data design step can be skipped).
We did not depict all the variants for sake of clarity.

5.2 Extensions to the Data Model

The existing metamodels for Semantic Web applications either evolved from
existing ones by extending their data source coverage to ontologies , or have
born with native support of semantic data sources.

Although ontology support is obviously necessary for semantic Web applica-
tion design, we think that relational data sources can still provide great added

318 M. Brambilla and F.M. Facca

value to Web applications, since the representation of every piece of information
as a semantic concept is not realistic in short/medium terms. Indeed, relational
databases are still effective to describe substantial parts of web applications.
Therefore, allowing seamless interaction between ontologies and databases is a
desiderata of current Semantic Web applications (see Section 2 too). Notice that
now we do not aim at extending the data model of WebML so as to model
ontologies (see [18]), but at allowing Web Portals to query imported semantic
knowledge together with relational sources. By adopting a model-based paradigm
like WebML, interaction between ontology instances and database instances can
be quite straightforward and will be exploited within the hypertext model.

5.3 Extensions to the Hypertext Model

Ontological Queries Within WebML Hypertext Primitives. The main
asset of WebML is the ability of effectively capturing the parameters passed be-
tween the different components (units) of the Web application. We believe that
this added value is still valid even when we are considering Semantic Web Ap-
plications. Indeed, no matter if the underlying data are ontologies or databases,
the basic hypertext primitives (units) and the parameter passing mechanism re-
main the same. Thus, parameters on the links become the actual contact point
between traditional and semantic data and provide the mechanism for orthogo-
nalizing data issues and hypertext issues.

The basic WebML primitives for data access (e.g., Index unit, Multidata
unit, the Data unit) have a general purpose meaning and are perfectly fitting
in the role of query and navigation primitives for both relational and ontology
sources. They only need a few simple extensions for supporting the additional
expressive power and the different data model of the ontological sources.

Let us consider the Index unit: besides extracting lists of relational instances,
we want to use it to produce lists of instances of a particular class within an
ontology model. Some requirements were highlighted about this kind of queries:
(i) the possibility to show only direct instances or also inferred instances; (ii) the
need for querying both instances and classes, thus mixing instances and classes
in the results too. The same discussion applies to Multidata unit and Data
unit. Another primitive already introduced by WebML is the Hierarchical
Index unit. This unit acquires a first class role in the context of Semantic Web
applications, because it provides a mechanism to browse and publish a portion
of an ontology in a hierarchical tree representation; for instance, given a class, it
allows to publish the hierarchical tree underlying it, comprising subclasses and
instances.

Although the basic primitives remain valid, they require some extensions to
cover the new kind of datasources. Indeed, queries on ontological data require
a much wider expressive power and some different modeling rules for the in-
formation with respect to relational data. This affects the notations that the
primitives must use for defining the conditions and the selection of the data.
Typical examples of new features and queries of the ontological models are:

Building Semantic Web Portals with WebML 319

Table 1. Summary of new WebML inference units

Name Symbol Input Output

subClassOf

[ClassName1=?]

[ClassName2=?]

SubclassOf
c1, c2 true if c1 is subclass of the class c2

c1, ? the list of superclasses of the class c1

?, c2 the list of subclasses of the class c2

instanceOf

[ClassName=?]

[Instance=?]

InstanceOf
i, c true if i is an instance of the class c

i, ? the list of classes to which the instance i belongs

?, c the list of instances of the class c

hasProperty

[ClassName=?]

[Property=?]

HasProperty
c, p true if the class c has the property p

c, ? the list of properties of the class c

?, p the list of classes having the property p

hasPropertyValue

[Property=?]

[Value=?]

Has

PropertyValue

p, v the list of URIs where property p has value v

p, ? the list of possible values for the property p

?, v the list of properties with value v

subPropertyOf

[Property1=?]

[Property2=?]

Subproperty
p1, p2 true if the property p1 is subproperty of p2

p1, ? the list of superproperties of the property p1

?, p2 the list of subproperties of the property p2

– there is no distinction between relationships and attributes within the set
of properties of a class. E-R style relationships might be considered as on-
tological properties having an URI as value, and attributes to ontological
properties having a literal as value.

– several Semantic Web framework (e.g., OWL, RDF) assume that any in-
stance of a class may have an arbitrary number (zero or more) of values for
a particular property.

– Cardinality constraints and classes can be defined when specifying proper-
ties. In this case, it is possible to publish as values also structured objects
and not only atomic attributes.

In general, while in a E-R model the selection of attributes to be published is
straightforward, in the ontology model some navigation over the model may be
required to publish the data. The extensions to the existing WebML primitives

320 M. Brambilla and F.M. Facca

Fig. 3. Symbols of the new WebML semantics management units

provide these advantages. By means of the extended WebML primitives we can
express visual queries over an ontology.

Advanced Data Access Primitives. The evolution of the basic data access
primitives, introduced in the previous paragraph, is still not enough to exploit
the rich set of possible queries over semantic instances and classes. Therefore, we
introduce a new set of operational primitives to describe advanced queries over
ontological data. We introduced these new units largely inspired by SPARQL
[19] and RDF Schema syntax [11].

A first set of new units allow advanced ontological queries. The units are
aggregated primitives that, depending on the type of parameters, execute differ-
ently. The complete summary of the behavior of these units is available in Ta-
ble 1. These units (SubClassOf, InstanceOf, HasProperty, HasPropertyValue,
PropertyValue, SubPropertyOf) aim at providing explicit support to advanced
ontological queries. They allow to extract classes, instances, properties, values;
to check existence of specific concepts; and to verify whether a relationship holds
between two objects.

Besides the units for ontological data query, we introduce also three new
units depicted in Figure 3. The Set Composition operation unit, is able to
perform classic set operations (i.e., union, intersection, difference) over two in-
put sets of URIs, considering the hierarchy of the URIs involved. E.g. sup-
pose we have two set of classes: A = {ProgressiveRock, Jazz, Metal} and
B = {Rock, JazzFusion} In this case, the set operation will give the follow-
ing results: A ∩ B = {ProgressiveRock, Metal, JazzFusion} and A ∪ B =
{Rock, Jazz} since Rock is superclass of ProgressiveRock, and Jazz is super-
class of JazzFusion.

The Import Ontology unit imports at run time an ontological data source
that must be consistent with one or more of the ontology models used at design
time of the web application (it’s validated against them before being added):
according to the designer choice, it is possible to store only the url of the newly
imported ontology (i.e., it will be accessed remotely for each query) or to import
the ontology in the local OWL/RDF repository (i.e., it will be accessed locally,
but modifications to the original data will not be propagated to the application).
Notice that the navigational model of the Web application does not change at
runtime, thus if the imported ontology contains new pieces (e.g., a new class un-
related with already existing classes) that were not considered in the hypertext,
these pieces of knowledge will not be reachable.

Building Semantic Web Portals with WebML 321

Fig. 4. A piece of Semantic Web application described by the new WebML units

The Describe unit returns the RDF description of an URI, thus enabling data
exporting and semantic annotation of pages.

The above mentioned querying units can be used to compose reasoning tasks
over ontological data: e.g., suppose that we want to find the set of common
properties between two classes (e.g., Track and Song), first we can use two
HasProperty units to extract the two set of properties characterizing the two
classes; and finally we can find the common set of properties by means of the
SetComposition unit, that will be in charge of calculating the intersection be-
tween the two sets.

Figure 4 reports a fragment of the portal that allows to retrieve artists or al-
bums whose names sound in a similar way to the name specified by the user. The
value submitted in the form is passed to the HasPropertyValue unit that ex-
tracts a set of URIs of instances (albums or artists) that have value as value of
the mm:soundsLike property. The set of URIs is then passed to the InstanceOf
unit that checks if they are instances of the class Artist. In this case, the URIs are
passed over through the OK link to an Index unit showing list of Artists, otherwise
theURIs are passed on the KO to publish a list ofAlbums (not shown in the figure).

6 Modeling the Semantic Web Portal for Music Domain

Thanks to the extensions introduced so far, we are now able to model a Semantic
Web Portal scenario like the one proposed in Section 3 for the music domain.
Figure 5 reports a fragment of the WebML model (including the semantic exten-
sions) for that application. The publication units with the RDF symbol () rely on
ontological data sources (e.g., Artists index unit), while the other units publish
data from the a relational database (e.g., User Data data unit). The integration
between the two kinds of content happen at the parameter level: once the results
are transferred as parameters through links, they become homogeneous pieces
of contents. The user starts his navigation from the User Home Page, where he
can find his Foaf Profile; he can import a profile if it is not available yet. This
part of the application actually shows how integration between ontological data
sources and relational data can be achieved using parameters transported over
links: when the user imports his Foaf profile, he actually stores the uri of the
profile in the User relational entity; this uri is later used to publish his Foaf
profile from the ontology repository according to the database schema.

322 M. Brambilla and F.M. Facca

Fig. 5. A portion of a WebML diagram for a Semantic Music Portal

Navigating the outgoing link from Foaf Profile, the user can access the Sug-
gestion page showing an index of Artists corresponding to his preferences. From
here the user can navigate to the Artist details page, where detailed informa-
tions about the selected Artist and his Tracks are presented. The user can ask
for the exporting of the RDF description of the artist he is currently browsing.
Finally, the Search by genre page provides a hierarchical representation of the
class Genre, and then displays all the artists that are related to the selected
genre. The SubClassOf unit extracts indirect sub-genres of the chosen one, thus
allowing to display associated artists.

7 Implementation and Architectural Issues

This section discusses the implementation and architectural issues related to
the proposed extensions to the WebML metamodel. These issues are discussed
with respect to the reference implementation of the Webratio toolsuite. For our
prototype implementation we adopted the Jena framework [20] to interact with
OWL/RDF ontologies. We provided reasoning support by means of the Jena
integrated reasoner, and by means of the integration of Pellet [21] with the Jena
framework. The design environment offered by Webratio has been extended ex-
ploiting the plug-in mechanism of the toolsuite: we devised a general purpose

Building Semantic Web Portals with WebML 323

<SWINDEXUNIT class="mf:Track" id="swinu1"
name="Tracks" ontology="onto1">
<DisplayedProperties
property="mf:title"/>

<DisplayedProperties
property="mf:descriptor"/>

<SortProperties order="ascending"
property="mf:title"/>

<Filter boolean="or">
<FilterCondition id="fselector1"
property="mf:playedBy"
predicate="eq" name="Artist"/>

</Filter>
</SWINDEXUNIT>

<descriptor service="org.webml.onto.
SWIndexUnitService">
<onto>onto1</onto> ...
<input-params>

<input-param type="mf:Artist"
name="swdau3.Artist" />

</input-params>
<query type="SELECT">
DISTINCT ?instance ?p1 ?p2
WHERE {?instance rdf:type mf:Track .

?instance mf:title ?p1 .
?instance mf:descriptor ?p2 .
?instance mf:playedBy ?fs1 .
FILTER (?fs1 = $swdau2.Artist$)}

ORDER BY DESC(?p1)
</query>

</descriptor>

Fig. 6. Design time (left) and runtime (right) descriptors for a semantic index unit

ontology data access layer to be exploited by every unit; moreover, we developed
a runtime Java component and an XML descriptor for each unit.

Ontological Units implementation Each unit is implemented by means of
a generic class representing the runtime component that is executed for every
instance of that kind of unit. Then, for each new unit (including the revisited
traditional units that access ontologies) we developed an XML descriptor specify-
ing its parameters, its properties, and the binding to the implementation classes,
and so on. To better clarify the structure of the descriptor, we show an example
of an ontological index unit descriptor (see left part of Figure 6). By mean of
an associated XSLT transformation, design time descriptors are translated to
runtime descriptors that include automatically generated template of SPARQL
queries (right part of Figure 6). Units are implemented by Java components
that behave according to the logics specified in the runtime descriptors, defined
for each instance of the unit.

Ontology Data Access Layer. To handle interaction with ontologies we de-
fined a new data access layer, comprising a set of general purpose Java classes to
be reused by all the new units for querying the ontology repositories. These classes
provide facilities to import ontologies and to select OWL/RDF classes, properties,
and instances (possibly filtered by one ormore conditions). The main aspects of the
class structure are represented in Figure 7. The OntologyModelService enables
connections to local and remote ontologies specified at design time or imported at
runtime by mean of the Import Ontological Source unit. Three abstract classes
offer the query services corresponding to the query methods offered by SPARQL
on the ontology contents: the AbstractSelectQueryService class perform selec-
tion over data (SPARQL SELECT query); the AbstractDescribeQueryService
retrieves the RDF describing a given URI (DESCRIBE query), the AbstractAsk-
QueryService verifies simple predicates (ASK query). The AbstractAskQuery-
Service is extended by the AskQueryServicethat is used by some of the advanced
querying units to verify predicates (e.g., to check whether a class is subclass of an-
other). In general, unit services use or implement these services.

324 M. Brambilla and F.M. Facca

Fig. 7. A UML class diagram that shows part the of class hierarchy of the new imple-
mented units

8 Related Works

While design methodologies for traditional Web applications offer rather mature
and established solutions, Semantic Web application methodologies are still in a
development phase. Realizing the benefits of the Semantic Web platform (e.g.,
interoperability, inference capabilities, in-creased reuse of the design artifacts,
etc.) traditional design methodologies are now focusing on designing Semantic
Web applications: e.g., OOHD evolved in SHDM [5]. New methodologies like
XWMF [3], OntoWebber [4] and Hera [6] were specifically designed by consid-
ering the Semantic Web peculiarities.

Table 2 reports a summary that compares the features of the previously cited
models for Semantic Web Portals and the WebML extensions presented in this
paper. All the models, except XWMF, have a complete development methodol-
ogy that covers all the needed aspects to create a Semantic Web applications.
They also offer a wide support for ontology languages: basically all the models
support both RDF and OWL (except for XWMF).

However, our extension is the only one that leverages on Semantic Web query
languages to offer advanced query primitives that allows both query on schema
and instances, together with simple reasoning patterns over data. The others
models, in some cases (e.g., Hera) offers query on data schema and instances.
Hera and OntoWebber offer direct to support to integration by mean of an
integration model that can be used to query different data schema using the
same query, while our proposal offers only a basic integration of different data
sources thanks to the parameter flow between the different units in the hypertext.
WebML offers the chance to integrate relational, XML and ontology data sources,
while other methodologies seems to support explicitly only ontologies (off course,
this issue can be solved adopting extraction techniques to import other data
sources within ontologies). SHDM does not allow to import ontologies but only
to create them from UML diagrams. Then, it offers a tricky way to link these
ontologies to the external ones. Even if all the analyzed models are based on an
ontology representation, only our proposal and a WSDM extension [22] provide
an approach to annotate pages so as to make them machine readable.

Most of the new methodologies offer runtime frameworks that include or allow
integration of reasoners, while some of them do not clarify if the reasoning is sup-
ported also at design time. An important factor to assure the success of a Web in-
formation System design methodology is the existence of CASE tool support, since

Building Semantic Web Portals with WebML 325

Table 2. Comparison of methodologies for modeling Semantic Web Portals

Requirement XWMF OntoWebber SHDM Hera WebML+Sem.
Methodology Partial Yes Yes Yes Yes
Semantic Model Description Yes Yes Yes Yes Partial
Advanced query support No Partial Partial Partial Yes
Flexible integration No Partial Yes Yes Partial
Heterogeneous data sources No No Partial Partial Yes
Distributed data sources No No No Yes Yes
Reuse of ontologies Yes Yes Partial Yes Yes
(Automatic) Annotation No No No No Yes
Reasoning Support No No Yes Yes Yes

a powerful methodology that is not accompanied by adequate tools will make the
designer tasks very difficult to fulfill. While most of the traditional design method-
ologies have powerful CASE tools, no established tool support is provided for Se-
mantic Web design, although all the cited methodologies offer some basic tools.
Among them, the most complete are Hera and SHDM. Our methodology is com-
pletely supported by a commercial tool, Webratio [17] that we extended with the
new components to enable design of Semantic Web applications.

9 Conclusions

In this paper we presented an extension to the WebML methodology and models
for supporting the design and the specification of Semantic Web applications.
The described solution provides a full coverage of the development process, and
allow the designer to specify basic and advanced queries on ontological data
sources, to import existing sources, and to annotate Web pages with semantic
descriptions of the contents and of the models. Our approach provide substantial
added value with respect to the existing frameworks for Semantic Web appli-
cation design, although some of them offer more advanced solutions on some
aspects (e.g., seamless integration of different ontologies). We support our pro-
posal with a prototype implementation within the CASE tool WebRatio. Finally
we showed how the proposal can be adopted to develop a Semantic Web Portal
for the musical domain reusing existing knowledge.

Future work includes providing a integration layer to allow for seamless in-
tegration of different ontologies, extended testing of the new framework and
integration of existing Eclipse based solutions for ontology editing with in the
CASE tool.

Acknowledgments

We would like to thank Emanuele Della Valle and Irene Celino for the useful
discussions on the engineering of Semantic Web Portals and their support in the
definition of the case study.

326 M. Brambilla and F.M. Facca

References

1. Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M.: A
Software Engineering Approach to Design and Development of Semantic Web Ser-
vice Applications. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer,
Heidelberg (2006)

2. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J.: Enabling Semantic Web Services: The Web Service Modeling On-
tology. Springer-Verlag, New York, Inc., Secaucus, NJ, USA (2006)

3. Klapsing, R., Neumann, G., Conen, W.: Semantics in Web Engineering: Applying
the Resource Description Framework. IEEE MultiMedia 8(2), 62–68 (2001)

4. Jin, Y., Decker, S., Wiederhold, G.: OntoWebber: Model-Driven Ontology-Based
Web Site Management. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L.
(eds.) The first Semantic Web Working Symposium. Proceedings of SWWS’01,
Stanford University, California, USA, July 30 - August 1 (2001), pp. 529–547
(2001)

5. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. In: 1st
Latin American Web Congress (LA-WEB 2003), Empowering Our Web, Sanitago,
Chile, 10-12 November 2003, pp. 93–102. IEEE Computer Society, Los Alamitos
(2003)

6. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. J. Web Eng. 2(1-2), 3–26 (2003)

7. Maedche, A., Staab, S., Stojanovic, N., Studer, R., Sure, Y.: Semantic portal - the
seal approach. In: Fensel, D., Hendler, J., Lieberman, H., W.W. (eds.) Spinning
the Semantic Web, pp. 317–359. MIT Press, Cambridge, MA (2003)

8. MIND LAB: Mindswap - Maryland Information and Network Dynamics Lab Se-
mantic Web Agents Project (2007) http://www.mindswap.org

9. Music Technology Group, Universitat Pompeu Fabra: Foafing the music (2007)
http://foafing-the-music.iua.upf.edu

10. AIFB, University of Karlsruhe: ontoworld.org (2007) http://ontoworld.org

11. W3C: Rdf vocabulary description language 1.0: Rdf schema (2007)
http://www.w3.org/TR/rdf-sparql-query

12. MusicBrainz: Musicbrainz project (2007) http://musicbrainz.org

13. MusicMoz: Musicmoz - open music project (2007) http://musicmoz.org/

14. RSS-DEV Working Group: Rdf site summary (rss) 1.0 (2000) http://
web.resource.org/rss/1.0/

15. Miller, L., Brickley, D.: Foaf project (2007) http://www.foaf-project.org

16. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kauffmann, Seattle, Washington, USA
(2002)

17. WebModels s.r.l.: Webratio tool. (2007) http://www.webratio.com

18. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.: Cre-
ating Semantic Web contents with protege-2000. IEEE Intelligent Systems 16(2),
60–71 (2001)

19. W3C: Sparql query language for rdf (2007) http://www.w3.org/TR/rdf-sparql-
query

http://www.mindswap.org
http://foafing-the-music.iua.upf.edu
http://ontoworld.org
http://www.w3.org/TR/rdf-sparql-query
http://musicbrainz.org
http://musicmoz.org/
http://web.resource.org/rss/1.0/
http://web.resource.org/rss/1.0/
http://www.foaf-project.org
http://www.webratio.com
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-sparql-query

Building Semantic Web Portals with WebML 327

20. Jena Team: Jena a semantic web framework for java (2007)
http://jena.sourceforge.net

21. Parsia, B., Sirin, E., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: An owl dl reasoner
(Technical report)

22. Casteleyn, S., Plessers, P., Troyer, O.D.: Generating semantic annotations during
the web design process. In: ICWE ’06. Proceedings of the 6th international confer-
ence on Web engineering, New York, NY, USA, pp. 91–92. ACM Press, New York
(2006)

http://jena.sourceforge.net

	Introduction
	Requirements for Semantic Web Engineering
	A Semantic Web Portal for the Music Domain
	WebML: An Overview
	Extending WebML Towards Semantic Web Portals
	Extensions to the Development Process
	Extensions to the Data Model
	Extensions to the Hypertext Model

	Modeling the Semantic Web Portal for Music Domain
	Implementation and Architectural Issues
	Related Works
	Conclusions

