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Abstract. In this paper, we present a verification framework for security poli-
cies of Web designs. The framework is based on the transformation of the models
that conform the system design into a formalism where further analysis can be
performed. The transformation is specified as a triple graph transformation sys-
tem, which in addition creates mappings between the elements in the source and
target models. This allows the back-annotation of the analysis results to the orig-
inal model by means of triple graphical patterns. The verification mechanisms
are provided by the designer of the Web design language, together with the lan-
guage specification. However, the complexities of the formalisms are hidden to
the developer who uses the language.

As case study, we apply these ideas to Labyrinth, a domain specific language
oriented to the design of Web applications. The analysis is done by a transfor-
mation into the Petri nets formalism, and then performing model checking on
the coverability graph. The framework is supported by the meta-modelling tool
AToM®.

1 Introduction

Domain Specific Languages (DSLs) are becoming popular due to its capability to cap-
ture high-level, powerful abstractions of well-studied application domains, and have the
potential to increase the user productivity for modelling tasks. Since they are close to
the application domain, they are less error-prone than other general-purpose languages
and easier to learn, also because the semantic gap between the user’s mental model and
the design model is smaller. The Web is a typical domain where the use of DSLs is
successful [8I5IT3]], as there are domain specific terms (e.g. node, link) not provided by
general-purpose languages.

Due to the fact that Web systems provide specialized services that cannot be per-
formed by all the system users, correctness of access control policy for Web becomes
a crucial issue. Access control is used extensively in information systems as a security
mechanism for protecting sensitive information and resources from unauthorized ac-
cess. The access policy requires to be expressed during the design stage, using the same
abstraction level as the one used to capture the system description, instead of delaying
access control to the implementation phase. In addition, this integrated, abstract expres-
sion allows to validate the access policy at design time, so that inconsistencies can be
detected and corrected.
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In order to validate system designs, a common approach is transforming the models
into semantic domains (e.g. Petri nets, process algebra or logic) for analysis. Formal
methods are techniques based on mathematics or logics that help to specify and
verify systems. They are usually applied on the early phases of the development, when
the cost of fixing errors is lower [4]. Although they offer significant benefits in terms
of improved quality, they are not broadly used due to several reasons, among them
their high cost and the need of expert personnel in a certain formal method. This expert
knowledge is seldom found among the average software engineers.

In this paper, we follow a transformation-based approach for the verification of se-
curity policies in Web designs that hides the complexities of the underlying formal
methods from the developers, who specify the Web system in a well-known DSL. In-
ternally, these models are transformed into a semantic domain for further analysis, and
feedback is given back to them. The verification process is responsibility of the DSL
designer. He specifies the DSL by using meta-modelling, and for the verification, he
defines triple graph transformation systems that perform the transformation into the se-
mantic domain and create mappings between the elements in both models. Besides, he
can define graphical triple patterns in order to specify how the results of the analysis
are shown back to the user in the original notation, that is the Web DSL.

The paper follows an example-driven approach by applying the verification frame-
work to Labyrinth [[7]], a DSL oriented to the design of hypermedia and Web systems.
In particular, we have designed a transformation from Labyrinth into Petri nets
in order to analyse system properties, such as the availability of navigational paths or
hypermedia objects, taking into account the applied role-based access control (RBAC)
model [2]. The approach can be adapted to other Web-oriented notations, as it lies on a
meta-modelling framework that does not depend on the DSL.

The paper is organized as follows. Section Pl introduces Labyrinth, which is used as
case study throughout the paper. Its use is illustrated through the modelling of ARCE,
a Web system for emergency management. Section 3] presents our approach to the ver-
ification of security policies with back-annotation of results, and how these ideas have
been implemented and applied to ARCE. Section @] compares with related research.
Finally, section[8lends with the conclusions and future work.

2 Security Modelling in Web Systems. A Case Study: Labyrinth

For the purposes of this work we use the Ariadne Development Method (ADM) [8]], a
Web engineering method that provides a set of meta-models to specify the information
structure, navigation paths, interaction mechanisms, presentation features and access
control policies. The method comprises three phases: Conceptual Design, that is con-
cerned with the identification of abstract types of components, relationships and func-
tions; Detailed Design, where system features, processes and behaviours are specified
in detail; and Evaluation, where a set of criteria are used to assess system usability from
the evaluation of prototypes. Our work focuses on those meta-models of the Conceptual
Design related with the definition of the access control policy.

The ADM lies on a meta-model called Labyrinth that defines the hypermedia
abstractions used in the different diagrams of the ADM. A simplified version of its
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Fig. 1. Labyrinth Meta-model

meta-model with its most salient features is shown in Fig.[Il A complete description of
Labyrinth and its contributions can be found in [[7]. Here we give a brief description.

Structural features are specified through nodes and contents. A node is an abstract
container where information contents are placed by means of the location function,
which promotes separation of structure and content. Nodes and contents support com-
position mechanisms that allow to create complex information structures by using ag-
gregation and generalization. Navigation features are expressed through anchors and
links. An anchor is a link endpoint (whether source or target), and can refer to a content
or a node and be shared between links. User modelling is based on the RBAC paradigm
[2], and includes users, roles and teams. A role represents a job function within an or-
ganization, gathering a set of permissions, and a set of users allowed to exercise them.
Roles decouple privileges from users, facilitating the management of authorizations due
to the fact that roles are more stable than users in terms of responsibilities. Relation-
ship assumes relates users with the roles that are allowed to hold, while the permission
assignment (relationship PA) relates subjects to the nodes and contents that the role is
allowed to visit. Changes in user privileges are managed through role memberships. As
some roles can be more general than others, we define a generalization relation that im-
plies inheritance: permissions assigned to the more general roles are inherited by more
specific roles. A team represents a collection of heterogeneous roles and/or teams, and
captures groups of interest or collaborative teams. Users cannot be assigned to teams,
but instead participate in a team through role membership. A permission assigned to a
team is propagated to all team components. Note that it is not necessary to explicitly
define all permissions in the system, as they are propagated throughout the roles and
teams structure as described in [1I]. Anchors get the permission of the node or content
to which are tied, while links are available for a role if at least one anchor of each end
is available, that is, the role has access to the source and target link ends.
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2.1 Modelling Example: The ARCE System

This section presents an example that will be used to illustrate the features of the ver-
ification framework. The ARCE system is aimed at resource management for interna-
tional cooperation in case of disaste]. When an emergency happens, the Civil Protec-
tion Department of the affected country uses ARCE to create an emergency report. If
international cooperation is needed, the affected country can ask for resources to other
countries, which in their turn may offer a contribution. Here we will focus on emergency
report management, resource requests and resource contributions.

2.2 ARCE System Design

Part of the nodes making the Web application, as well as their structural relationships,
are specified in the structural diagram shown in Fig. 2l Composite node Home acts
as root of the system, while abstract nodes Requests and Contributions group
nodes related to each activity respectively. Each leaf node corresponds to a Web page
that includes the contents required to do a particular function in ARCE.
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Fig. 2. Excerpt of the ARCE Structural Diagram in ADM

The navigation diagram in Fig. 3| captures the navigation paths by means of nodes
and links. To request a resource, the user navigates from Home to Resource
Request. To add a resource, the user goes to the ResourceSelection node,
picks the desired resource and indicates the quantity, and finally returns back to the
ResourceRequest node, where an editable list of resources is shown. When the
request is ready, the user confirms it and returns Home. Optionally, the user may see
or modify the emergency report during the request. To make a contribution, the user
navigates from Home to NewContribution, where some details of the offer are
filled and the list of resources is prepared. To add a resource to the offer, the users goes
to node ResourceSelection, which in this case shows the contributor’s available
resources, picks one, selects the quantity and returns to the NewContribution node.

For each node, an internal diagram describes its internal structure made by the con-
tents and spatial-temporal relationships that define the presentation aesthetics. For ex-
ample, the internal diagram for the SeeReport node is shown in the window to the

! http://arce.dei.inf.uc3m.es
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Fig. 3. ARCE Navigation Diagram in ADM

left of Fig. 8l This node includes three contents: ReportHeader, GeneralData
and TechnicalData. The contents are available according to the role that accesses
the node, which is defined by the access policy.

Fig. @ shows the user diagram of ARCE. The team ARCE User aggregates teams
Requester and Contributor. Role ROperator can request resources, but can-
not confirm them. He can see all the report contents. Role RExpert is an expert op-
erator who can do the same as a ROperator and, in addition, modify the report.
Emergency Manager is a directive role that confirms the requests and only can see
the general data of the report. Role COperator can make a contribution but not con-
firm it. He can access the general data of the report, but not modify it. Role CExpert
does the same as COperator, but he also can read the technical data of the record.
Finally, Contributor Manager is a directive role that can see the contributions,
confirm them and read the general data of the report.

Access policy, expressed as permissions on nodes and contents, is depicted in Ta-
ble [l The e symbol denotes the assignment of a permission to a role/team for ac-
cessing a node/content, and the V symbol represents an inherited permission. The
Web designer only specifies the direct assignments, and the inherited ones are derived.

Tearn
Con uibar

Fale Fale Rale

Emergency Manager | ROperator Caontributor tanager
i

Fale Faole

RExpert CExpert

Fig.4. ARCE User Diagram in ADM
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Table 1. Access Policy for ARCE System Nodes and Contents

Subjects
ARCEUsr Requ ROp RExp EMgr Contr CExp CMgr COp

Home ° vV v v v v v v v

ResourceSelection ° v

ResourceRequest ° v v v

SeeRequest ° v v v v v v v

Nodes ConfirmRequest °

SeeReport ° v v v v v v v v

ModifyReport °

NewContribution ° v v v

ConfirmContribution °

ReportHeader ° v v v v v v v v
Contents GeneralData ° vV v v v v v v v

TechnicalData ° °

With this access policy, for example, role Emergency Manager can access to con-
tents ReportHeader and GeneralData (permissions inherited from team ARCE
User) but not to TechnicalData.

3 A Transformation-Driven Approach to Security Analysis

When modelling security for software systems, there is a need in verifying the cor-
rectness of the access policy in terms of the availability of different system entities. In
the case of Web systems incorporating RBAC policies (e.g. Labyrinth), we are partic-
ularly interested in verifying the availability of navigation paths, nodes and contents
for different subjects, the absence of nodes or contents that are not available to any
subject, which contents are shown to each subject, and checking if it is possible for a
subject to reach a node from which no link to any other node is available (i.e. there is a
deadlock).

In order to be able to answer these questions, we have used a common technique
that consists of expressing the operational semantics of the model(s) to be analysed
by using a formalism [14UT9123I24]. The used formalism must provide the necessary
tools to answer such questions. In this case, we transform the Labyrinth designs into
Petri nets [20], which provide analysis techniques to investigate system properties such
as deadlock, reachability of states and invariants, which are the kind of properties
we are interested in. The transformation is performed by a triple graph transforma-
tion system (TGTS) that builds, from a Labyrinth model, the equivalent Petri net
for a system subject. Once the net is obtained, we use analysis techniques based on
the reachability/coverability graph, as well as model checking, in order to verify sys-
tem properties. Finally, the results are back-annotated and shown to the user in the
original notation, which is the one he knows. Next subsections explain this process
in detail.
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3.1 Transformation from Labyrinth into Petri Nets

Graph transformation [9] is an abstract, declarative, visual, formal and high-level tech-
nique to express computations on graphs (and therefore on models). Roughly, graph
transformation systems are made of rules having graphs in their left and right hand
sides (LHS and RHS respectively). In order to apply a rule to a host graph, a morphism
(an occurrence or match) of the LHS has to be found in it. Then, the rule is applied by
substituting the match by the rule’s RHS. The execution of a graph grammar consists of
a non-deterministic application of its rules to an initial graph, until no rule is applicable.
In addition, rules can be equipped with application conditions that restrict their applica-
bility. One of the more used is the so-called Negative Application Condition (NAC).
This is a graph that, if found in the host graph, forbids the rule application. Finally, we
can combine meta-modelling and graph transformation allowing abstract graph nodes
to appear in rules [10]. In this way, nodes can be matched to instances of any subclass,
greatly improving the expressive power of rules.

In model-to-model transformation, it can be useful to manipulate triple graphs in-
stead of the usual ones. Triple graphs are made of three different graphs: the source
graph (of the transformation), the target one, and a correspondence graph that relates
the elements in the other two graphs. Similarly to graph grammars, TGTSs are
used in order to manipulate triple graphs.

In this paper, we have defined a TGTS that builds a Petri net from a Labyrinth model.
By using a TGTS we create correspondences between the Labyrinth and the resulting
Petri net elements that facilitate the back-annotation of the analysis results in terms of
the Labyrinth notation. Fig.[3]shows some rules of this TGTS. The source graph (shown
in the upper part of the rules) corresponds to Labyrinth, while the target graph (lower
part of the rules) is the Petri nets formalism. We use a compact notation for the rules,
in which the LHS and the RHS are presented together. The elements to be added by the
rule application (i.e. those that belong to the RHS but not to the LHS) are shown in a
gray area and labelled as “new”. NACs are omitted for clarity, and in all the rules are
equal to the RHS. The general idea of the transformation is creating a net that simulates
the behaviour of a subject (i.e. a role or team). For this purpose, a Petri net place is
created for each node and content for which the subject is granted, and links between
them are transformed into Petri net transitions. The subject is represented as a token;
therefore, if a token is in a certain place, that means that the subject is accessing to the
node or content(s) that the place represents. Note that visiting a node implies visiting
all authorized contents for the subject, and thus, the Petri net marking gives the set of
nodes and contents accessed in a given moment by the subject.

The three rules to the left in Fig. Bl perform the flattening of the subject’s hierarchy.
Rule Flatteningl creates a correspondence element CElem with a morphism to the sub-
ject for which the Petri net is calculated. The rule receives such subject as parameter.
This is an abstract rule: therefore, the rule is applicable to any subclass of subject (i.e.
classes Team and Role). Then, rules Flattening? and Flattening3 traverse the subject’s
hierarchy creating correspondence elements with morphisms to each subject’s ancestor.

Rule HMObject2Place in Fig. [l creates a place for each hypermedia object (i.e.
node or content) to which the subject or its ancestors have permission to access (i.e.
a correspondence element to the subject was created by the execution of the flattening
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Fig. 5. Some Triple Rules of the Transformation from Labyrinth to Petri Nets

rules). Similarly, rule Link2Transition creates a Petri net transition for each link. We
only transform those links between hypermedia objects for which the subject has ac-
cess, that is, objects that have a correspondence element created by previous executions
of rule HMObject2Place. Another similar rule is used for the case in which the source
of the link is a content component instead of a node component. Rule Anchor2Arc cre-
ates an incoming arc from a place to a transition if the corresponding node is source
of the corresponding link. Two similar rules create an arc when the source is a content
component, or when the node is target of the link (creating in that case an outgoing
arc from the transition). Rule Subject2Token creates an extra place with a token (the
subject) and a transition from it to the place related to the home page. This transition
models the first access of the subject to the system. Finally, each time a transition is
fired (i.e. each time a link is traversed), a token must be placed not only in the target
node, but also in the target node contents for which the subject is granted. For this pur-
pose, rule Location2Arc creates the appropriate arcs to such contents. Similarly, leav-
ing a node implies leaving its contents. Again, two similar rules create the necessary
arcs.

Note that some system information is lost in the proposed transformation (e.g. the
position of anchors), however, such information is useless for our analysis purposes.
Thus, we require from the transformation to preserve the properties under investigation
(availability of navigation paths depending on the security policy), as we do in this case.

Fig. 6l shows the Petri net resulting from applying the presented TGTS to the role
Emergency Manager in the ARCE Web example.
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3.2 Analysis and Back-Annotation

In order to verify a property, we first apply to the Labyrinth model the presented TGTS
and create the Petri net for a certain subject. Then, we obtain the net’s coverability
graph (an approximation of the possibly infinite net state space), and apply model
checking [20] on the graph in order to verify the property. Properties are expressed
in Computational Tree Logic (CTL). CTL formulae are made of atomic propositions,
the names of the places of the Petri net, which are true for a given net state if the place
contains at least one token. Propositions can be combined with boolean connectors (A,
V, =), path quantifier operators that express if predicates are fulfilled starting from a
certain state, and temporal quantifier operators that describe the properties of a branch
in the computation tree. Valid path quantifiers are E' (exists a path) and A (for all the
paths). Valid temporal quantifiers are X (in next state) and U (until). Other quantifiers,
such as F' (in some state in the future) and G (always), can be expressed in terms of X
and U. The result of checking a property on a model is the set of states satisfying the
given property.
In the case of Labyrinth, we are interested in verifying the following properties:

1. A specific navigational path is allowed for a given subject. Let s be a subject, and
Np =< nodey,nodes, ...,noden > a navigational path where subindex ¢ spec-
ifies the order in which nodes are visited. Np can be expressed as the recursive
function next(i) = node; N EX ( next(i+1) ) if i < N, and next(i) = node; if
1 = N. Thus, this property can be written as the CTL expression E True U (next(1)),
which is evaluated on the coverability graph of the Petri net obtained for subject s.
This property allows checking if a subject can perform a task that implies travers-
ing certain navigation path. For example, in order to validate a contribution, the
role Contributor Manager should be able to go from node Home to node
ConfirmContribution and then return Home.

2. A specific node or content is never shown to a given subject. Let s be a subject and
hmo a node or content. Then, this property can be expressed as — (E True U hmo),
which allows detecting elements that should be available for a subject but are not,
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as well as checking if a subject has more permissions than required. For example,
as no other role than RExpert can modify a report, the node Modifyreport
must not be shown to any other subject.

3. A specific node or content is never shown. Let S be the set of system subjects, and
hmo a node or content. Then, this property can be expressed as A\, g = (E True U
hmo). This is an extension of property number 2 to the set of subjects of the system.

4. A specific node or content is shown in each navigational path for a given subject.
Let s be a subject, and hmo a node or content. Then, this property can be expressed
with the CTL expression A True U hmo, which checks that all the possible naviga-
tion paths followed by a subject will show the specified object. For example, node
Home should be accessed in any possible path.

5. A subject does not reach a deadlock state. In other words, all nodes define at least
one outgoing link. Let s be a subject, then the property can be written as — (E True
U deadlock), where predicate deadlock becomes true in states with no successor.

6. A specific node shows at least one content for a subject. Let s be a subject and n a
node. Then the expression n gives the Petri net markings that satisfy the expression.
Note that if the node has a token, then its contents for which the subject is granted
have also one and belong to the marking. This property allows detecting nodes that
are empty for certain subjects due to a bad design of the access policy.

In order to hide the analysis process to the Web designer (who is proficient in the Web
domain and the used DSL) we back-annotate the results to the Labyrinth model. This is
possible since we maintain in the correspondence graph the relations between the ele-
ments in the source and target models. The elements to back-annotate can be specified
as a triple pattern that receives as parameters the Petri net states or transitions to back-
annotate, and as output the Labyrinth elements resulting from the back-annotation. For
example, Fig.[Zlshows to the left the triple pattern used to specify how results are shown
to the user in the case of property type number 6. The pattern is executed for each place
(the input) obtained as result of the analysis. The output is the set of contents related
to those places. Similarly, the pattern to the right in the same figure is used for the
back-annotation of properties number 2, 3 and 4. The analysis method used for these
properties returns the sequence of firing transitions that leads from the system initial
state to the analysed node or content. These transitions are the input of the pattern. The
output is the set of links related to the transitions, together with their sources, targets
and corresponding anchors. Thus, in the Labyrinth model will be shown each possible
navigational path leading to the hypermedia object under study.

3.3 Tool Support

The whole verification framework has been implemented in the AToM? tool [[17], which
allows the specification of visual languages by means of meta-modelling, and the ma-
nipulation of graphs by means of graph transformation. Recently, the tool has been en-
hanced with the possibility of expressing multi-view visual languages [12], which are
languages made of different diagram types, such as the presented ADM (or the general
purpose UML). Thus, we have defined the whole Labyrinth meta-model in AToM?, and
then the different diagrams types as subsets of it. The tool provides syntactic and static
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semantics consistency between diagrams by means of automatically generated TGTSs
that build a repository made of the gluing of the different diagrams. For the analysis
of the dynamics, it is possible to define semantic views to be generated by means of
TGTSs from the models. In the case of Labyrinth, we have defined the presented TGTS
to transform the repository into Petri nets. In addition, each property to be verified in
the semantic view can be specified with: (i) a pre-process method where the request of
data required for the analysis (e.g. the name of the subject for which the property is
checked) is specified; (ii) an analysis method call; and (iii) a back-annotation mecha-
nism specified either procedurally or by triple patterns. For the analysis of properties in
Labyrinth, method calls use analysis functions that calculate the coverability graph in
AToM? and use a model checker implemented in the tool as well. It is up to future work
the use of external Petri net tools to perform the analysis.

Starting from this definition, AToM? generated a modelling environment that allows
specifying instances of the different diagram types. This environment is shown to the
left of Fig. [8l where the different diagrams of ARCE have been defined. The figure
shows to the right the editing of the internal diagram of node SeeReport.

The environment automatically creates a repository with the gluing of the system
diagrams. In the repository interface (background window in Fig.[9), a button is gener-
ated for each Labyrinth concrete class and for each analysis property. Buttons derived
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from classes allow adding new entities to the repository. Buttons derived from proper-
ties allow checking properties, and the result is shown according to the defined back-
annotation mechanism, hiding the internals of the analysis process. If the back-
annotation is specified by a pattern, the output elements obtained from its application
are highlighted in the original model, as well as summarized in a dialog window. Fig.
shows the checking of a property in the Labyrinth repository and the back-annotation of
the results. In addition, a button is generated that allows showing the result of executing
the TGTS. This can be used for simulation purposes.

3.4 Verifying ARCE Access Policy

The generated environment has been used for the modelling of ARCE. The verification
of the availability of navigation paths for different roles (property of type number 1 in
subsection B.2)) implied just clicking on the button Check NavigationPath in the repos-
itory interface, which is shown in Fig.[9 The name of the subject and the sequence of
nodes in the navigation path to be checked are requested to the Web designer. Then, the
environment internally builds the corresponding CTL expression, performs the analysis,
and the result is shown in a dialog window.

Similarly, checking to which contents of a node a subject could access (property
number 6) was done by clicking on the button Check Node Contents. The name of the
subject and node are requested to the user. Then, the node contents are shown high-
lighted (by the execution of the left pattern in Fig.[7] to the analysis result), as well as
summarized in a dialog window. Fig. 9 shows the result obtained after checking the
property for role Emergency Manager and node SeeReport. Note how content
TechnicalData, although was specified in the internal diagram of the node, is not
accessible for this role due to the specified access policy.
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Fig. 9. Back-annotation of Property Checking. The result is highlighted in the model and summa-
rized in a dialog window.
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Table 2. Some Properties Verified in ARCE

Prop. Verified Property Expected Observed
Type Subject CTL Expression Result Result
E True U (Home N EX (ResourceRequest \ EX (ResourceSelection \ EX
ROp (ResourceRequest \ EX Home)))) true true
E True U (Home N EX (SeeReport N\ EX (SeeRequest N\ EX (ConfirmRe-
1 EMgr quest \ EX Home)))) true false
E True U (Home N EX (NewContribution N\ EX (SeeReport N EX (Modi-
COp fyReport N\ EX (SeeReport A\ EX (NewContribution N\ EX (ResourceSelec- false false
tion \ EX (NewContribution \ EX Home))))))))
CMgr E True U (Home A EX (ConfirmContribution A EX Home)) true false
CEXp = (E True U ModifyReport) no no
) REXp = (E True U ModifyReport) yes yes
COp — (E True U SeeReport) yes yes
CMgr = (E True U NewContribution) no no
3 - Nse {ARCEUS«Requ, ContsROp,RExp, EMgrCOp,CEp,chng } — (E True U SeeReport) no no
4 ROp A True U ModifyReport no no
ROp A True U Home yes yes
5 ROp neg (E True U deadlock) true true
CMgr neg (E True U deadlock) true true
6  EMgr SeeReport yes yes

Table2lsummarizes some properties that were checked in the ARCE design by using
the presented approach and environment. For each kind of property described in section
we provide some example concrete CTL formulae, together with the expected and
observed results. Results for properties 2, 3, 4 and 6 are back-annotated to the original
model. For the rest of properties, the result is given as a true/false dialog window.

4 Related Work

The use of Petri nets for the formal specification, simulation and analysis of software
systems (among them Web and security systems) is spread. For example, in [[[1] naviga-
tional paths are modelled by using Petri nets, where temporal links are also considered.
[3] presents a formal XML firewall security model using RBAC based on Petri nets.
In [22]] security analysis of extended role based access control systems is modelled by
using coloured Petri nets. In all these cases, the designer models the system directly as a
Petri net, where verification is performed. In this paper we also use Petri nets for system
verification, but propose the use of DSLs that include concepts especially suitable for
the domain to be modelled (e.g. node, link, anchor), which makes system specification
easier for the Web designer. Verification is provided by translating the specific domain
models into Petri nets and then performing model checking on the net’s coverability
graphs. However, the transformation and analysis are hidden to the Web designer, as
the results are back-annotated and shown in the original notation.
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Approaches to model transformation for the analysis of systems by its translation
into a semantic domain are frequent, mainly oriented to the validation of UML models
[14U19123124]), some of them providing support for back-annotations as well. Quite sim-
ilar to ours is the approach followed in [23], where reference models are used to in-
terrelate the elements of the source and target models in a single graph, allowing the
back-annotation of analysis results. The reference model is similar to the notion of cor-
respondence graph in triple graphs that we are using in this work, though our approach
maintains the two graphs cleanly separated (i.e. we have separate models and meta-
models for Labyrinth and Petri nets). In addition, triple graphs are more flexible as no
additional structure is needed in the models in order to maintain the correspondences.

Validation techniques have been also applied to RBAC in works like in order
to check inconsistencies in terms of (non-)existence of permissions or verification of
the RBAC model itself. These approaches are general or domain-independent, in the
sense that the RBAC and system meta-models are separated. On the contrary, we base
on a DSL that includes elements for the modelling of access policies in its meta-model.
These elements are specially suite for the Web domain. Other works, such as [25121]],
also allow to include domain-dependent modelling entities in the verification process.
However, these inclusions seem to be done by hand, without an automatic mechanism
able to transform a system model to the chosen formalism, so that back-annotations are
hard to implement.

5 Conclusions and Future Work

In this paper we have presented a formal verification framework for security policies
on Web systems that hides the complexity of the formalisms from the Web designer.
The framework has been illustrated by its application to Labyrinth, a DSL oriented to
the design of Web applications. We have designed a transformation from Labyrinth
into the Petri nets formalism, which allows checking model properties such as reacha-
bility or deadlocks. The analysis of properties is made by performing model-checking
of the coverability graph by using temporal logic formulae. Analysis results are back-
annotated by using triple patterns.

The present work uses a simplified version of the complete Labyrinth meta-model.
It is up to future work the extension to the complete meta-model, which includes for
example categorization of permissions. We are also studying the transformation into
Timed Petri nets that include temporal constraints (e.g. temporal anchors and security
constraints). The transformation into coloured Petri nets would possibly allow to gen-
erate a single net for the whole system instead of for each subject.
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