
L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 188 – 193, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Enriching Hypermedia Application Interfaces

André T. S. Fialho and Daniel Schwabe

Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio) – Caixa Postal 38.097 – 22.453-900 – Rio de Janeiro – RJ – Brazil

atfialho@inf.puc-rio.br, dschwabe@inf.puc-rio.br

Abstract. This paper presents a systematic approach for the authoring of
animated multimedia transitions in Web applications, following the current
trend of rich interfaces. The transitions are defined based on an abstract inter-
face specification, over which a rhetorical structure is overlaid. This structure is
then rendered over concrete interfaces by applying rhetorical style sheets, which
define concrete animation schemes. The resulting applications has different
transition animations defined according the type of navigation being carried out,
always emphasizing the semantically important information. Preliminary
evaluation indicates better user experience in using these interfaces.

1 Introduction

Current web applications have become increasingly more complex, and their inter-
faces correspondingly more sophisticated. A noticeable tendency is the introduction
of animation as an integral part of Web application interfaces, after the advent of
AJAX technologies (see, for instance, the Yahoo Design Patterns Library for transi-
tions [7]). In hypermedia applications a more complex kind of animation is involved
when considering entire interface changes that occur during navigation, where there is
a transition as a result of a navigational operation. As such, this type of interface
change is a prime candidate for the application of animation techniques.

This paper presents an approach for systematically enriching hypermedia applica-
tions by extending the SHDM approach [3]. In particular, attention is paid on how to
relate animations to the application semantics expressed in the SHDM models.

The remainder of this paper is organized as follows. Section 2 gives some back-
ground on the use of animation, and on the representation of interfaces in SHDM.
Section 3 presents the proposed approach, and Section 4 presents a discussion about
the results and conclusions.

2 Background

The common definition of animation is the result of several static images that, when
exhibited in sequence, creates an illusion of continuity and movement. Nowadays
there are several systems that use animation with the purpose of enriching the interac-
tion process and the ser experience or even provide smooth transitions the prime
examples being the MacOS, and more recently Windows Vista. Some experiments

 Enriching Hypermedia Application Interfaces 189

indicate that animations can be of help [1]. Furthermore, film editing knowledge has
been applied to the design of human-computer interfaces [5].

Since animations will be expressed in terms of interface elements, we first summa-
rize how the interface is specified in SHDM through Abstract and Concrete Interface
Models [6]. The abstract interface model is built by defining the perceptible interface
widgets. Interface widgets are defined as aggregations of primitive widget (such as
text fields and buttons) and recursively of interface widgets. Navigational objects are
mapped onto abstract interface widgets. This mapping gives them a perceptive ap-
pearance and also defines which objects will activate navigation.

The Abstract Interface is specified using the Abstract Widget Ontology, which es-
tablishes the vocabulary. According to it, an abstract interface widget is can be a Sim-
ple Activator, which is capable of reacting to external events, such as mouse clicks;
an Element Exhibitor, which is able to exhibit some type of content, such as text or
images; or a Capturer, which allows input of data, including widgets like input text
fields, and selection widgets such as pull-down menus and checkboxes, etc... Finally,
it can also be a CompositeInterfaceElement, which is a composition of any of the
above.

Once the Abstract Interface has been defined, each element must be mapped onto
both a navigation element, which will provide its contents, and a concrete interface
widget, which will actually implement it in a given runtime environment.

3 Introducing Animations in Hypermedia Applications

The process for the insertion of animations during the design of the application is
composed of four stages illustrated in Fig. 1, in which each of the stages produces a
specific output used by the next stage.

Animated
Interface

Description of the
Abstract Interface

Identification of the
interface pairs

Definition of the
animations for
each transition

Interpretation of
the

Specification

Fig. 1. Steps to produce an animated interface

The animations proposed in this work are displayed to the user during interactions
that define a change in the navigational state. Each change is relative to a pair of dis-
tinct source/destination interfaces that represent these corresponding navigation states.
We call this process a transition, which can be represented as an intermediate ani-
mated interface between two interfaces. This intermediate interface is only representa-
tional, and is described as a list of animations.

Each interface is a composition of widgets. A transition animation between inter-
faces is the process of visual transformation that transforms the source interface into
the destination interface. Therefore, the transformation to be applied to each widget
has to be specified.

To set up an interface animation it is necessary to identify the abstract widgets that
compose each interface, and then specify which pairs of interfaces will define
the source and destination of the transition. This is determined by the navigational

190 A.T.S. Fialho and D. Schwabe

structure of the application and associated abstract interfaces, as specified in the
SHDM model of the application.

For each defined transition we need to identify widgets (in the source and destina-
tion interfaces) that are mapped to the same or related element in the model. As a
result, we identify which widgets remain unchanged, which disappear, which appear,
and define which widgets are related. The first three behaviors are straightforward;
the last one will depend on which relationship the designer whishes to expose. A
common example of this last widget relation is when widgets in the source and desti-
nation interfaces are mapped to different attributes of the same element in the model
(e.g., a name and a picture).

After pairing the widgets, we must provide the transition specification for the navi-
gational change. The transition specification is made considering a pre-defined set of
animation functions, identified considering that only three basic actions can be ap-
plied to a widget: a removal, an insertion or a transformation, which can be a

• Match – For widgets that are identified as remaining in the destination interface
(i.e. they are present in both the source and the destination interfaces), it is neces-
sary to match their appearance parameters such as position, size and color. This
transformation animation responsible for matching these parameters.

• Trade – A transformation animation responsible for exposing the relation between
two distinct related widgets during the transition, for example as a morph.

• Replace – When the same widget exists in the source and destination interfaces,
but the associated elements in the model are different, this transformation anima-
tion replaces the information contained within a widget.

• Emphasize – A transformation animation that alters certain parameters such as size
or color of a widget to emphasize an element.

Each of these functions will also have properties that describe the point in time it
should occur within the transition, and which effect should be used (fade, push, grow,
etc). These properties are specified according their role in the transition, described
next.

3.1 Rhetorical Animation Structure

When we define the transition specification we must describe not only the list of the
animation actions that will occur, but in which order in the timeline they will be exe-
cuted, animation effect and the duration of each action. This sequence in which the
animations are presented has great importance since it influences how the transition
will be interpreted by the user.

In order to determine the best sequence and which effects should be used in each
animation we propose the use of a rhetorical animation structure. This approach is
inspired by the use of Rhetorical Structure Theory (RST) [4], as it has been used for
generating animation plans ([2]). With this structure we can define the communicative
role of each animation during the transition, and so identify which animations are
more important and how they should be presented to better inform the user of the
transformations that occur.

The rhetorical structure is specified in terms of rhetorical categories, which classify
the various possible animation structures, as follows:

 Enriching Hypermedia Application Interfaces 191

• Removal – Set of all animations that achieve an element removal (widgets that
disappears). Rhetorically, these animations clean up the screen to set the stage for
the upcoming transition;

• Widget Feedback – Any kind of transformation that represents an immediate feed-
back of the triggered widget. Rhetorically, these animations emphasize that the re-
quest made has been received, and the application is about to act on it.

• Layout animations – Set of animations that change (insert or transform) interface
widgets that are independent of the contents being exhibited. These widgets are
typically labels, borders, background images, etc…

• Secondary animations – Set of animations that transform interface widgets associ-
ated to secondary (satellite in terms of RST) elements

• Main animations – Set of animations that transform interface widgets associated to
main (nucleus in terms of RST) elements.

Once the structures are chosen the designer must categorize the animation func-
tions that have been identified in the previous step. We can partially aid this classifi-
cation by observing the navigational model, identifying which relations are more
important to describe. For example, transitions between objects of different classes
should help identify the relation and the contexts associated with the navigation step
being carried out in the transition.

The next step after the functions have been allocated to the rhetorical categories is
to determine a rhetorical structure in which the animations will be presented. Differ-
ent sequences can be arranged for each type of navigation. For example, Fig. 2 shows
one possible sequence using these rhetorical categories.

Remove Transitions Layout Transitions Main Transitions Insert Transitions

Widget Feedback Secondary Transitions

Timeline

Fig. 2. Rhetorical animation structure

This sequence follows the rationale that first the screen should be cleared of ele-
ments that will disappear, simultaneously with a feedback of the activated widget.
Next, the screen layout is changed to reflect the destination interface, in parallel with
the secondary transitions (i.e., those that are judged as accessory to the main transi-
tion) are made. Then the main transition is carried out, as the most important part,
followed by the insertion of new element.

After defining the rhetorical animation structure we need to map the categories
into concrete transitions that describe which are the effects, duration and the sequence
of the actions within the structure. The specification is done through a set of styles
defined as a Rhetorical Style Sheet which reflects the designer preferences, and can
be guided by the use of specific patterns that gather solutions to common transition
problems within a specific context.

192 A.T.S. Fialho and D. Schwabe

3.2 Implementation

The next step once the specification is done is to interpret this specification so the
animations are presented to the user during the interaction. In this work we use an
environment for supporting animation on web documents, in which HTML web pages
represent the different types of interfaces, and JavaScript technology using dynamic
HTML for the animations. Fig. 3 shows a diagram with the sequence of events in the
implemented environment.

TTrraannssiittiioonn SSppeecciiffiiccaattiioonn

Interacts with widget

IInniittiiaall..hhttmmll FFiinnaall..hhttmmll

Request destination Interface

Set of animations that
describe the transition

specification

Redirect to destination

Document that
describes the

destination interface

Renders animations

Renders final interface

User

Document that
describes the

originating interface

Request specification

Fig. 3. Diagram representing the environment

Given the reduced space available, and the nature of this work, we have developed a
demo flash application of an hypermedia movie database application using the approach
described in this document, with step-through functionality to help understand the rhe-
torical animation structure being followed.. This example can be accessed at http://
www.inf.puc-rio.br/~atfialho/hmdb/hmdb.html (requires a flash plug-in to execute).

4 Conclusions

This paper presented an approach for adding animation to hypermedia applications,
enriching a set of existing models in SHDM. Although several initiatives exist to add
animation to web pages, we are not aware of any published description of approaches
dealing with entire web page transitions.

We have so far made only informal evaluations of the resulting interfaces obtained
through this approach. Users have given positive feedback about the so-called “user
experience”, and seem to prefer animated interfaces over equivalent non-animated
interfaces. However, a more systematic evaluation will still be carried out.

 Enriching Hypermedia Application Interfaces 193

While based on models and being more structured, the present approach still poses
authoring difficulties, since they require manual insertion and choice of animation
effects for each interface widget. We are currently investigating the use of wizards
and the construction of a Rhetorical Style Sheet library to aid designers for the more
common tasks routinely encountered in designing hypermedia applications.

Acknowledgement. Daniel Schwabe was partially supported by a grant from CNPq.

References

1. Bederson, B.B., Boltman, A.: Does Animation Help Users Build Mental Maps of Spatial
Information? In: InfoVis ‘99. Proceedings of IEEE Symposium on Information Visualiza-
tion ’99, pp. 28–35. IEEE Computer Society Press, Los Alamitos (1999)

2. Kennedy, K., Mercer, R.E.: Using Communicative Acts to Plan the Cinematographic Struc-
ture of Animations. In: Cohen, R., Spencer, B. (eds.) LNCS (LNAI), vol. 2338, pp. 132–
146. Springer, Heidelberg (2002)

3. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. In: Proceedings of
LA-Web, Santiago, Chile, Nov. 2003, pp. 93–102, IEEE Press,ISBN (2003), available at
http://www.la-web.org

4. Mann, W.S., Thompson, S.: Rhetorical Structure Theory: Toward a Functional Theory of
Text Organization. Text, 8(13), 243–281 (1988)

5. May, J., Dean, M.P., e Barnard, P.J.: Using Film Cutting Techniques in Interface Design. In:
Human-Computer Interaction, vol. 18, pp. 325–372. Lawrence Erlbaum Associates, Inc.,
Mahwah, NJ (2003)

6. Moura, S.S., Schwabe, D.: Interface Development for Hypermedia Applications in the
Semantic Web. Proc. of LA Web, Ribeirão Preto, Brasil, pp. 106–113. IEEE CS Press, Los
Alamito (2004)

7. Yahoo Design Patterns Library (transitions), available at http://developer.yahoo.com/
ypatterns/parent.php?pattern=transition

	Introduction
	Background
	Introducing Animations in Hypermedia Applications
	Rhetorical Animation Structure
	Implementation

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

