
L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 182 – 187, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Authoring Multi-device Web Applications with
Database Access

Giulio Mori, Fabio Paternò, and Carmen Santoro

ISTI-CNR, Via Moruzzi 1,
56126 Pisa, Italy

{Giulio.Mori, Fabio.Paterno, Carmen.Santoro}@isti.cnr.it

Abstract. In this paper we present an environment for authoring Web sites
through a model-based approach for user interface design. In particular, we
focus on how it supports the access to remote databases and the dynamic gen-
eration of the Web pages presenting the corresponding query results. The envi-
ronment is able to support development of applications implemented in many
Web mark-up languages (XHTML, XHTML MP, X+V, VoiceXML) adapted to
various interaction platforms (vocal, mobile, desktop, …).

Keywords: Dynamic Web Applications, Multi-device Environments, Interfaces
Adapting to the Platform.

1 Introduction

The increasing availability of interaction devices poses a number of challenges to
Web designers and developers to obtain usable interactive applications. There is an
increasing number of Web applications that would benefit from the possibility of
accessing them through many interaction platforms that can even vary in terms of the
modalities supported (graphical, vocal, gestural, …). To address such issues the W3C
consortium started various activities in the area of Ubiquitous Applications [3] and
Multimodal Interfaces [5] and a number of mark-up languages have been developed,
including XHTML, XHTML Mobile Profile (MP), VoiceXML, X+V.

In this context, model-based approaches have shown to be useful because they
provide logical descriptions independent of the implementation languages and allow
designers to better manage such increasing complexity. Many types of model-based
approaches have been proposed: in the software engineering area there are several
tools based on UML; for data-intensive Web applications there are approaches such
as WebML [2]; examples of model-based approaches in the user interface area are
UsiXML [7] and TERESA XML[4]. In the latter community, there is a general con-
sensus regarding the useful logical descriptions [1][6] supporting user interface
design: the task and object level, which reflects the user view of the interactive system
in terms of logical activities and objects manipulated; the abstract user interface,
which provides a modality-independent description of the user interface; the concrete
user interface, which provides a modality-dependent but implementation language-
independent description of the user interface; The final implementation, in an

 Authoring Multi-device Web Applications with Database Access 183

implementation language for UIs. In particular, when designing multi-device user
interfaces, this framework has the additional advantage that the task and the abstract
level can be described through device-independent languages: it means that it is pos-
sible to use the same languages for whatever platform we aim to address.

In this paper, we present how an approach for model-based user interface design is
able to support access to remote databases and the dynamic generation of the Web
pages presenting the corresponding query. We discuss the solution proposed at both
conceptual and implementation level. An example application is also presented, fol-
lowed by empirical feedback collected from some Web designers and developers.

2 Design of Multi-device Applications with Database Access

Our approach is based on a tool, TERESA [4], which applies transformations and
logical descriptions to generate interactive applications for different devices starting
with different abstract models. Here we present an extension of the approach able to
overcome the two main limitations of the original environment: generation of only
static Web pages, and need for providing designers with greater control over the UI
generated. In order to enhance the environment with features able to support access to
remote databases, we provided support through different abstraction levels and suit-
able transformations among the different levels indicated in the introduction, includ-
ing the generation of the appropriate code of the final user interfaces for various target
platforms starting from specifications at the concrete level.

As for the final implementation language considered, for this type of support we
focus on JSP, a well-known language for generating dynamic web pages. Therefore, if
the application built by the designer contains at the concrete level objects supporting
access to a remote database, the tool automatically produces dynamic JSP pages to
provide support to this feature, which then will generate the implementation lan-
guages depending on the target platform. In the case of generation of applications for
database access, the tool also generates some servlets that have to be installed in the
server side in order to make the environment working properly. On the server side,
the servlet is in charge of receiving the query specification, connect to the concerned
database and execute the query to the database, sending the result of such query to a
presentation. The environment for the generation of pages accessing to remote data-
bases can provide different implementation languages (such as XHTML, XHTML
Mobile Profile, VXML…) for the modalities supported by the platforms. We can
analyse the new support by considering the possible abstraction languages.

2.1 The Task Level

The task models are specified in the ConcurTaskTrees notation [6]. At the task level,
the allocation of tasks (namely, if they are performed by the application, or the user,
or an interaction between the user and the system) and the objects manipulated by the
tasks are important information for modelling and supporting the access to a database.
Indeed, if we consider the specification of a task requiring access to a remote data-
base, we should include an interaction task through which the user defines the attrib-
ute values; then, another (application) task is supposed to be sequentially connected to

184 G. Mori, F. Paternò, and C. Santoro

the first one (from which it receives input values) and able to send such values to the
back-end module of the server accessing the database. The last task is another appli-
cation task, providing the user with the presentation of the query result. As for the
specification of the objects manipulated by the tasks, they are classified in perceivable
and application objects. The former have a direct impact on the UI as they are associ-
ated with concrete interface elements (menus, buttons, labels, etc.), whereas the “ap-
plication” objects refer to logical objects corresponding to elements of the underlying
application. When the task model is transformed into an abstract interface specifica-
tion, tasks corresponding to database access are transformed into abstract interactors
(called activators), which are associated with the functionality of the core that should
be accessed and other attributes indicating the request parameters. The tasks present-
ing information to the user can be automatically detected because they are application
tasks manipulating both perceivable and application objects. We will see that they
will be supported by a new type of object at the abstract user interface level, the table,
mapped at the concrete user interface level onto a database_table object.

2.2 The Abstract and the Concrete User Interface Description level

In TERESA XML, the logical interfaces are structured into presentations. To support
access to remote database, at least two presentations are needed: one for allowing the
user to specify the values of the query parameters and to send them to the associated
database; another one for showing the query results. In terms of Abstract Interface,
the first presentation is composed of a group of interactors allowing users to edit the
query, which are related to an object of activator type (supporting the triggering of the
functional module sending the values to the database). The second presentation in-
cludes the elements that will contain the query result. This type of element at the
abstract level is a description, mapped at the concrete level onto a new type of ele-
ment, a database_table. For the first presentation, the input elements, such as the
textedit objects are mapped into the concrete elements of type textfield, whereas the
activator is mapped onto the activate_database concrete element, introduced to sup-
port this new feature. As we said, the object activate_database, which has been in-
troduced in TERESA XML as a new type of activator interactor, enables the connec-
tion with the concerned database. It has a number of attributes for specifying the
parameters necessary to build the database query, e.g. label (for naming the concrete
object), database_properties (for specifying the properties of the considered database,
e.g. the server on which the database resides, the name of the database, user account),
attributes_names (the set of attributes on which queries will be possible), presentation
(the name of the presentation that will visualise the query result). Figure 1 shows how
the activate_database element is supported within the TERESA authoring environ-
ment: in the left part there is the list of edited presentations, in the right top part there
is the abstract specification of the currently selected presentation (the presentation
titled “Ford News”), in the right bottom part there is the concrete description of the
currently selected element of the abstract part (Activator_7_0). In the concrete user
interface language for graphical interfaces we have also introduced the table element
for managing the data corresponding to the query result. In particular, two types of
tables were introduced: database_table and normal_table. The first one is used when
the content of the table is not known at design time, as it is filled at runtime with the

 Authoring Multi-device Web Applications with Database Access 185

query result. Thus, the designers do not know the number of its rows, but they should
know the number of columns (database attributes). The normal_table is a table whose
content (both textual and graphical content) is statically decided by the designer.

Fig. 1. The specification of the activate_database element with the TERESA tool

For both tables it is possible, with the tool, to customise their visualisation (modifying
parameters such as colour and size of the table border, background colour, etc.).

3 An Example Application and a First Usability Evaluation

In this section we analyse an example application, working for both the desktop and
the mobile platform, which provides the user with a list of up-to-date news. The user
can query a database to get more information about a specific topic (eg: cars). Fig.1
shows the TERESA environment while editing the presentation allowing users to
specify the query to the concerned database about cars. In this case, the attributes
include brand name, type of fuel, number of car doors, etc. As the desktop is supposed
to have good capabilities in display size, the designer chooses to visualise all the at-
tributes: indeed, no attribute is specified in the related panel field labelled ”Attrib-
utes”. For the mobile platform, the number of attributes to be visualised should be
more limited, and listed by the designer in the field “Attributes”.

186 G. Mori, F. Paternò, and C. Santoro

Fig. 2. The final user interface for the considered example (desktop platform)

In Figure 2 shows the user interface to specify the query (left) and the correspond-
ing information result regarding all 12 attributes. For the mobile platform the case is
different. Not only the designer has to select a more limited number of attributes to be
visualised in the result (namely, the columns of the table), but, we have also to limit
the information to be shown in each presentation (namely, the number of rows that
can be reasonably presented in each table), because of the limited size of the mobile
platform screen. In the example we decided to present only two attributes (car model
name, and power type), and to enable the visualisation of only five rows in each pres-
entation. The result of such settings produces the presentations shown in Fig. 3. As
you can see the tool automatically adds the links required to navigate through the
various pages generated for presenting the query result.

Fig. 3. The final user interface for the considered example (mobile platform)

 Authoring Multi-device Web Applications with Database Access 187

A first evaluation session was performed to assess whether the new version pro-
vides designers of dynamic user interfaces with useful support and more control on
the generated UIs, and its usability. A first test was carried out involving 5 developers
recruited from the institute community, ageing between 25 and 38, and with laurea
degree in Informatics. Before the exercise, users read a short introduction text about
the tool and then instructed about the task that they were expected to carry out: build-
ing an application able to access a database with the support of the tool. Differences
initially noticed between people having some knowledge of the tool and people who
had not soon disappeared as soon as users gained familiarity with it. The intuitiveness
of the tool was rated good (the average value was 3.5 in a (min) 1-to-5 (max) scale),
although improvable. The pages built with the tool were judged usable (average rat-
ing: 4); testers reported that the final UI reflected their objectives, showing that the
tool provides a good control on the UI produced (average rating: 4). Almost all users
judged extremely valuable the help provided by the tool to the designers during the
building of UIs accessing to remote databases (average rating: 4). Especially useful
was considered the flexibility given by the tool in combining such dynamic objects
with more static parts of the user interface.

4 Conclusions and Future Work

In this paper we present a new tool for supporting generation of interactive Web ap-
plications for various types of devices and able to access remote databases. The solu-
tion developed is able to support authoring of applications for desktop and mobile
platforms, and generate page implementations in XHTML, XTML MP, VoiceXML
(only vocal interaction) and X+V (vocal and graphical). Future work will be dedicated
to further testing it in order to receive empirical feedback regarding its usability and
suggestions for further improvements.

Acknowledgments. We thank Marco Pellegrino for the help in the implementation.

References

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.A: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15(3), 289–308 (2003)

2. Ceri, S., Fraternali, P., Matera, M.: IEEE Internet Computing, 6, 4, July/August, pp.20–30
(2002)

3. Ubiquituous Web Application Activity: http://www.w3.org/2007/uwa/
4. Mori, G., Paternò, F., Santoro, C.: Design and development of multidevice user interfaces

through multiple logical descriptions. IEEE Transactions on Software Engineering 30(8),
507–520 (2004)

5. Multimodal Interaction Activity, W3C, http://www.w3.org/2002/mmi/
6. Paterno, F.: Model-Based Design and Evaluation of Interactive Applications. Springer, Ber-

lin (1999)
7. Vanderdonckt, J.: A MDA-compliant environment for developing user interfaces of infor-

mation systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
16–31. Springer, Heidelberg (2005)

	Introduction
	Design of Multi-device Applications with Database Access
	The Task Level
	The Abstract and the Concrete User Interface Description level

	An Example Application and a First Usability Evaluation
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

