
L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 1–16, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On Embedding Task Memory in Services Composition
Frameworks

Rosanna Bova1, Hye-Young Paik2, Salima Hassas3, Salima Benbernou1,
and Boualem Benatallah2

1 LIRIS, University Lyon 1, France
{rosanna.bova, salima.benbernou}@liris.cnrs.fr

2 CSE, University of New South Wales, Australia
{hpaik, boualem}@cse.unsw.edu.a

3 LIESP, University Lyon 1, France
hassas@bat710.univ-lyon1.fr

Abstract. With the increasing availability of Web services and adoption of ser-
vices oriented paradigm, there is a growing need to dynamically compose ser-
vices for realizing complex user tasks. While service composition is itself an
important problem, a key issue is also how to support users in selecting the
most appropriate compositions of services to fulfill a task. In existing dynamic
services selection approaches, combinations of services are repeatedly discov-
ered (e.g., using ontology-based matching techniques) and selected by users
whenever needed. To improve their effectiveness, we propose a new technique
that provides an efficient access to what is named a “task memory”. A task
memory is used to provide users with a context-aware service selection by rec-
ommending combinations of services that are most appropriate in a given con-
text. A task memory is formed using the service composition history and their
metadata. We present an incremental approach for building the task memory in
which we monitor how users use and rank the services. The continuous updates
of the task memory over time will result in more fine-tuned recommendations
for composite services.

Keywords: composite web services reuse, context-aware composite web
services selection, service oriented architecture.

1 Introduction

Advances in service oriented computing and semantic web technologies provide
foundations to enable automated services selection and aggregation [1]. Coupled with
other advances in communication technologies, these foundations constitute the pil-
lars of a new computing paradigm in which users and services establish on-demand
interactions, possibly in real-time, to realize useful experiences. This paradigm offers
effective automation opportunities in a variety of application domains including per-
sonal information management, office tasks, travel, healthcare, and e-government. For
example, a driver might use location, travel route computation, traffic information,
and road conditions services to get timely information regarding a trip in progress.

2 R. Bova et al.

Business travelers can cope with schedule changes by seamlessly combining services
to find and book hotels, search and book nearby rental cars, change flight reserva-
tions, modify meeting schedules and notify attendees [2].

A key issue to facilitate seamless and efficient composition of services is providing
appropriate support for services selection. This is especially important in environ-
ments where there may be large number of services offering similar functionality [3].
Services discovery and composition are very active area of research and standardiza-
tion. Efforts in these areas focused mainly on designing languages for process-based
services composition (e.g., BPEL), designing rich and machine understandable repre-
sentations of service properties, capabilities, and behavior, as well as reasoning
mechanisms to select and aggregate services (e.g., OWL-S and services matching
techniques) [4]. Main stream services discovery and selection approaches typically
rely on descriptions matching techniques (e.g., whether descriptions of services and
requests are compatible). Descriptions refer to meta-data such as service capabilities
and non-functional properties (e.g., quality of service properties) [3]. It should be
noted that, in a description-based matching approach, identifying that a service has a
capability to answer a user request, does not mean that the service will be selected by
the user. For example, not all travel services offer airfares from Lyon to Sydney.
Other approaches improve the effectiveness of description-based approaches by
considering also content-based matching (e.g., using content summary [5] or using
service probing [6]).

Although existing techniques have produced promising results that are certainly
useful, more advanced techniques that cater for context (e.g., user location, computer
environment), specially in large and dynamic environments, are necessary. This will
relieve users from repeating the same selection refinement process to deal with a
potentially large number of relevant services returned by a matching system every
time they need to perform an activity. We observe that, while performing routine
tasks, there is valuable knowledge being exposed to the service matching and selec-
tion component of a service infrastructure, that is, the information about the contexts
in which a certain combination services were considered most appropriate by users.
This information can be helpful in terms of reuse because users would select similar
services in similar contexts (e.g., repetitive, regular tasks). Unfortunately, this infor-
mation is not effectively captured and utilized in existing service matching and selec-
tion approaches. In this paper, we present an approach that leverages and seamlessly
extends existing service matching and selecting techniques to cater for context-aware
services selection by utilizing the knowledge on past experience. More precisely, we
make the following contributions:

1. We introduce a notion of task memories that effectively represent the knowledge
about service selection and contexts. We use task memories during services selec-
tion to suggest most relevant candidate services.

2. We use incremental acquisition techniques to build and update task memory. By
applying continuous feedback and monitoring of ongoing usage of services, the
system is able to maintain and evolve the task memory. Keeping the task memory
up-to-date should result in more fine-tuned services selection.

3. We propose a multi-agent architecture; called, WS-Advisor, that seamlessly extends
existing service matching and service selection techniques. The interactions among

 On Embedding Task Memory in Services Composition Frameworks 3

the agents are well coordinated to cater for a comprehensive service provisioning
environment which supports effective capturing and utilization of user knowledge
during service matching and selection.

2 WS-Advisor: Design Overview

The proposed architecture builds on existing services matching, selection, and com-
position frameworks. This is to take advantage of the already known techniques [7],
[8], but, more importantly, to strengthen the notion of reuse in the frameworks. We
propose that using incrementally acquired knowledge about service capabilities and
their usage history during service matching and selection will help promote effective
adoption of reuse. The added value of this extension is making the system (named
WS-Advisor) capable of providing context-aware and adaptive service provisioning in
dynamic environments.

Fig. 1. Overview of WS-Advisor architecture

The main proposition of WS-Advisor is to offer effective recommendations on
“best-fit” services during the process of service selection. The architecture as a whole
relies on the notion of building, maintaining and querying a service usage history. By
continuously monitoring which services are used in which context and how users rate
the services after execution, WS-Advisor can build up extensible knowledge about a
history of service usage. The knowledge is stored in the form of task memories, which
are then queried during the selection of services to draw recommendations which are
based on past experience (i.e., the best candidate services that performed well for the
given task and context). In summary, WS-Advisor has two core functions, namely: (i)
constructing task memories, and (ii) using task memories to recommend “best-fit”
services based on the past experience.

It is noted that WS-Advisor is based on a multi-agent architecture. Figure 1 shows
the agents involved in the system, namely: user agent, adviser agent, task memory
builder agent and context agent. These agents use their internal knowledge and

 User Agent Memory
Builder Agent

Context
Provider

Interact

Tasks Memory
Repository

Temporary
Tasks
Repository

Update
Task
Memory

Query for
Tasks Memory

Stores
Temporary
Tasks

User

 Adviser Agent

 Context Agent

Retrieval-
Context

Context
Provider

Context
Provider

Contexts

Entry New Tasks
Memory

Recommend
Task Memory

Send Events
for Update TM

4 R. Bova et al.

policies to perform their functions. They interact pro actively to collect information
for building the task memories and adapt continuously to provide effective service
selection in dynamic environments. In the following, we introduce each agent.

User Agent (UA). There are two types of users in WS-Advisor: administrators and
end users. An administrator interacts with a user agent to manage tasks (i.e., create,
update or delete). For an end user, a user agent acts like a proxy, performing various
actions on behalf of the user. A user agent maintains a folder of tasks (e.g., travel
booking, organizing a board meeting). The user can browse, select, and execute the
tasks. When a task is chosen, the user agent performs the following automatic actions:
(i) it contacts a context agent (see below) to retrieve context information, (ii) after
obtaining the necessary contexts, it asks the adviser agent to recommend the services
suitable for the chosen task. These recommendations are passed back to the user agent
who makes the final decision on which services to run, (iii) when the services are
finally chosen, the user agent interacts with a service orchestration engine (e.g., BPEL
execution engine) to execute the task by invoking the involved services and orches-
trating their interactions.

Adviser Agent (AA). A recommendation request from the user agent includes task
attributes (e.g., departure date and destination city for a travel booking task) and con-
text (e.g., current time and location) attributes. The knowledge that the adviser agent
uses for recommendation is encoded in task memories. Briefly stated, a task memory
consists of tuples, each tuple containing a combination of services, the contexts in
which the services were selected and executed, a score indicating how “successful”
the execution was. More detailed description of task memories and the scores will be
given in the later sections.

Builder Agent (BA). This agent is responsible for incremental knowledge acquisition
in the task memories. It interacts with the user agent to gather service usage history
(e.g., which services were recommended in which contexts, which of the recom-
mended services were eventually chosen to be executed in the end, etc). It also con-
tinuously monitors and collects information about how the users rank the service
performance after a task is completed and carry out updates in the task memories
accordingly. We will discuss this agent in details in the later sections.

Context Agent (CA). The context agent collects an assortment of contexts from con-
text providers and disseminates the information to the user agent. A context may refer
to a user context (e.g., preferences, location, timezone), an environment context (e.g.,
hardware and software characteristics of the user’s devices). We assume that a context
providing service, such as the one implemented in [9], [10], exists and it will generate
the context attributes and value pairs.

3 User Agent

In this section, we describe the concepts that are important, namely, service and con-
text ontologies; tasks, to explain the activities performed by a user agent during task
provisioning.

 On Embedding Task Memory in Services Composition Frameworks 5

3.1 Concepts and Definitions

Service Ontology. Briefly stated, the service ontology provides a description (e.g.,
domain, properties and capabilities) of potential services that could be used to execute
specific activities. A service ontology can be described using an ontology description
language such as OWL-S. In our approach, the service ontology is described by a
name that represents the domain of services and a set of service categories. A service
category is specified by a set of attributes and a set of operations. An attribute
describes a service property and is described by its name and type.

An operation describes a service behavior and is described by its name and signa-
ture (i.e, input and output parameters of the service). Categories within a service ontol-
ogy can be related by specialization and generalization relationships. In this paper, we
assume that service ontologies are available and accessible for instance from registries
(e.g. UDDI registries). For example, in Figure 2, the domain Travel has a category
Transportation, which is described using attributes origin, destination
and price, etc., and this category has three sub-categories.

A service provider advertises a service by specifying which ontology the service is
complaint to and the service categories that are supported by the service. Let us as-
sume that the service Alitalia offers a range of flight information. The service
may register itself with the Transportation ontology and advertise that it sup-
ports all operations in the category Flight as well as all attributes inherited from the
categories AirTransport and Transportation.

Fig. 2. An example of Service Ontology: “Travel Service Ontology”

Context Ontology. Various definitions exist in the literature for the notion context
[11], [12]. For the purpose of our work, a context represents environmental or circum-
stantial factors that are relevant to effectively selecting services to perform a given
task. We use a simple context ontology that consists of a set of context classes. Each
class represents a specific aspect of task context (e.g., Spatio-Temporal context,

6 R. Bova et al.

Computing Environment context, ConditionalEnvironment context,
User context etc). These are generic classes in the sense that they are used to de-
scribe context of any task. Each class is described by a set of attributes representing
specific state of the task environment. For instance, the class Hardware that is a
sub-class of ComputingEnvironment contains the attributes: memoryFree,
cpuUsage, storage and network and etc. It should be noted that, although the
adopted context ontology has a limited number of context classes (for the sake of
illustration), it is extensible: new classes can be added without fundamentally altering
the service selection techniques built on top of this ontology.

Task Definition. A task in WS-Advisor represents a set of coordinated activities that
realize recurrent needs (i.e. a process that orchestrates the execution a number of
individual activities). For example, a user may define a business travel task or a driv-
ing planning task. The business travel task may include activities such as hotel book-
ing, car rental, flight reservation, meeting scheduling and attendee’s notification. A
driving planning task may include activities such as gathering traffic and road condi-
tions and producing an optimum driving route. An activity can be one of three types:
(i) an elementary task that refers to an operation of an actual service, (ii) an elemen-
tary task that refers to an operation defined in a service ontology, or (iii) a sub-task
(i.e., a task consists of other tasks).

The user agent provides support for defining new tasks and a repository for storing
them. Tasks are, for example, defined by an administrator based on common patterns
in recurring processes. A task is described in terms of services ontologies and is rep-
resented using state charts [7]. The choice of such notation is motivated by the fact
that state charts offer main constructs that are needed to define typical user tasks such
as sequence of activities, branching, and parallel activities. In addition, to their ex-
pressive power, well-defined semantics, state charts can also be translated to executa-
ble processes such BPEL. It should be noted however, that any other task modeling
notation such as petri nets could be used to define tasks in our approach.

In a nutshell, a state chart representing a user task consists of states and transitions.
A state can be basic, or composite. Each basic state is labeled with an execution of
activity that refers to:

− An invocation of a concrete service operation in case the service is deemed rele-

vant the corresponding activity whenever the task is performed. This means that,
the binding of an activity to a service operation is done at task definition time.

− An invocation of operation defined in a category of a service ontology. The binding
of this operation to an operation of a concrete service of the corresponding ontol-
ogy is done at run-time. In this case, an activity represents a request for a service
instead of an invocation of a service. Since, activities describing a user task are la-
beled with requests for services, concrete Web services belonging to the required
service ontologies are selected during the execution of the composite task. Hence,
it is possible to execute tasks in different ways by allocating different Web services
to execute component activities in the task.

A composite state allows the nesting sub-tasks (represented as state-charts) inside a
parent task. Transitions represent dependencies among the activities of a task (e.g., a

 On Embedding Task Memory in Services Composition Frameworks 7

transition may represent that an activity a1 should be executed after an activity a2 or
a1 and a2 should be executed in parallel). A simplified state chart diagram specifying
a “Travel Planner” task is depicted in figure 3. In this task, a search is per-
formed to find a flight reservation service. After that, if the flight reservation is suc-
cessful, an AND state follows, in which a search hotel booking service is performed
in parallel with an invocation of a car rental service, and finally a search for an enter-
tainment is performed. Note that states BookFlight and BookHotel are labeled
with requests for services whereas the state RentCar is labeled with an invocation to
an actual service (called “Avis”). The latter invocation style is useful when the ser-
vice to use for executing specific task is the preferred (e.g., Avis is the preferred car
rental service in the country of destination by the user of the task).

Fig. 3. State chart of the “Travel Planner”

Annotating Tasks with Context Information. To cater for context-aware service
selection, in addition to the activities and their dependencies, a task definition in-
cludes context attributes from the context ontology. The administrator associates each
task with its relevant contexts (e.g., for a travel booking task, the user's timezone,
local currency, type of Web browser, may be relevant). Therefore, when a user
chooses a task to perform, the user agent is able to determine the contexts associated
with the task and contacts the context agent to retrieve the values of each context
attribute. For example, in the “Travel Planner” task, the administrator may
choose the following relevant context attributes:

− for the state BookFlight, the attributes preferences of the context class
User and time and location of the context class Spatio-Temporal. This
may be needed because the user may have some preferences in the choice of airline
company and this choice depends from time and location of this user;

− for the state HotelBooking, the attribute noise of the context class Condi-
tionalEnvironment. This may be needed because the user may want, for ex-
ample, a room with low noise level.

3.2 Provisioning Task

At a usage phase, a user chooses a task to perform from task repository (a repository
maintained by the user agent). The user configures the required information to exe-
cute the task. In other words, user needs to specify a query that will be used by the
system to select services to execute activities of the task. A user query is expressed in
terms of attributes of service ontologies associated with the task. To simplify the

8 R. Bova et al.

process of expressing queries, each task is associated with task service schema (ser-
vice schema for short). Given a task definition, a service schema describes the attrib-
utes that can be seen as a global schema for selecting the services to execute such
tasks. The attributes of such service schema are derived from the attributes, inputs and
outputs of operations referenced in that task definition. In addition, since our ap-
proach caters for task context, a query is expanded by the user agent to specify the
current context. The user agent interacts with the context agent to get the values of
context attributes that are relevant to a given task.

Example. Assume, that the schema of the task shown in Figure 3 contains: (i) the context
attributes preferences, time, location, temperature, (ii) the service attrib-
utes origin, destination, departureDate, returnDate, specialSer-
vice, numberOfFlight, price, location, star, hasRestaurant, pe-
riod. The user agent retrieves the values of the context agent from the context agent.
For instance, the result of querying of the context agent can be: (preferences =
“Austrian Airlines”, time = “8:30 AM CET”, location = “Lyon”, noise = “no”,
temperature = “25°C”). After that, the user fills the value of service attributes if
desired and the input/output of operations. For instance the user query in this case can be:
(origin = “Lyon”, destination = “Sydney”, departureDate = “02/01/2007”,
returnDate = “04/03/2007”, specialService = “seat far to window”, number-
OfFlight = “OS 402”, price “1000,00€€ ”, location = “Randwick”, star = “2”,
hasRestaurant = “no”, period = “03/01/2007 – 03/03/2007”).

4 Adviser Agent

The core idea of our services selection approach is to recommend combinations of
services that are most appropriate to meet the user's needs in given contexts. The rec-
ommendations are based on the past execution history of a task (i.e., task memories).
In this section, we define the notion of task memories and discuss how the adviser
agent makes service selection recommendations. The issue of building a task memory
will be discussed in the next section when we discuss the memory builder agent.

4.1 Task Memory

A task memory is associated with a specific task and it captures the information about
the contexts and combinations of services that have been successfully used in the past
to execute the task. It is a kind of a dynamic folder that associates contexts to combi-
nations of services. Dynamic, here, means that the contexts and the combinations of
services may evolve over time. In this way, service selection is not only based on the
description or content of services but also on how likely they will be relevant in a
given context. We represent a task memory as a table that has two attributes, namely,
context summary, and recommendations.

Context Summary. Briefly stated, a context summary is a query representing a context
that is considered by the system (or a system administrator) as relevant for selecting a
combination of services to execute a task. It is specified using a conjunctive query of

 On Embedding Task Memory in Services Composition Frameworks 9

atomic comparisons involving context attributes, service attributes, service operation
inputs/outputs, and constants. The second column of the table 1 shows examples of
context summary queries. While context summaries could be defined using
sophisticated query languages such as XQuery or Xpath, without loss of generality, we
choose to use a simplified representation model in terms of attribute/value comparisons
for clarity of presentation. The concept of context summary allows capturing a set of
possibly relevant contexts to effectively select services instead of encoding all possible
service selection queries which may incur high performance cost. In other word, the
notion of context summary allows the adviser agent to maintain a partial, concise and
effective index of service selection queries.

Table 1. An example of task memory table

ID CSQ Combination_GA
CSQ1 origin = ‘Lyon’ ^ destination = ‘Sydney’ ^ 100 < p < 250 {[(Quantas, Hilton), 0.6], (Quantas, Paradise), 0.4]}

CSQ2 origin = ‘Lyon’ ^ destination = ‘Hong Kong’ ^ 100 < p < 250 {[(VolareWeb, Paradise), 0.7], (Alitalia, Paradise), 0.75]}

CSQ3 origin = ‘Milan’ ^ destination = ‘Sydney’ ^ 300 < p < 500 {[(Alitalia, Hilton), 0.8], (Alitalia, Paradise), 0.65]}

We assume that an administrator can identify a set of context summary queries that
are relevant to a give task. This can be done by identifying a subset of attributes of the
task schema that can be used to specify context summary queries. For each of these
attributes, ranges of values are formed by dividing the domain of the attribute into a
set of non-overlapping ranges known as Attribute Value Groups (AVGs). For nominal
attributes, an AVG contains one or more distinct nominal values; for continuous at-
tributes, an AVG specifies values range [5]. The union of AVGs of attribute is
equivalent to the domain of the attribute. The Context Summary Queries (CSQs) are
generated based on a cartesian product of these values. Table 2 lists examples of
AVGs, assuming origin, destination, price, star, memoryFree and
temperature are selected as summary attributes for the task “Travel Planner”. The
AVGs can be either manually defined by an administrator or discovered from query
logs using query or context discovery techniques such as those presented in [13].
Once summary attributes are selected and AVGs are defined, the context summary
queries are fixed.

Table 2. Example AVGs of summary attributes

Attribute AVGs
Origin
Destination
Price
Star
Temperature (°C)

‘Lyon’, ‘Milan
‘Sydney’, ‘Hong Kong’
100 < p <250, 300 < p < 500
1 < s < 3, 4 < s < 5
20 < t < 25, 4 < t < 7

Recommendations. For each context summary query, the task memory maintains the
K (K>= 0) most preferred combinations of services to execute a given task. Each ser-
vices combination is associated with a positive weight value, called Global Affinity

10 R. Bova et al.

(GA), exceeding a predefined threshold (parameter sets by a system administrator, for
example). A task memory is represented by a table that as three columns: ID (identifier
of context summary query), CQS (Context Summary Query), Combination_GA
(combinations of services with their associate Gas). For instance, the column
Combination_GA of Table 1 shows examples of service combinations and their
associated GAs. The global affinity of a services combination measures the relevance
of this combination to perform a task in a given context. More precisely, this value
represents a weighted average of the values that measure the level of satisfaction of
users, about a services combination, which respect to all the possible combinations in
the that have been selected in that context. A more detailed description the notion of
global affinity and its computation is given in [14].

4.2 Making Services Selection Recommendation

During services selection, in a response to a query from the UA, the AA identifies the
potential combinations of services having answers to the query. The AA provides an
operation called recommendCombinations(), that takes as input a selection
query and returns a set of service combinations that can be potentially used to executed
the corresponding task. The AA matches the user query against context summary
queries of the corresponding task memory. The matching process relies on subsumption
(containment) or equivalence between a user query and context summaries queries. If
no combination is found to be appropriate based on the task memory, the AA forwards
the query to a matching service engine to discover new possible combinations of
services. For instance, the query Q: (category = “TravelToSydney”, attributes:
origin, destination, price and values: origin = “not defined”,
destination = Sydney, price = 150€€) may not pass through the context filter of
CSQ3 as the price is not included in its range. Hence any service associated to CQ2 is
selected to answer to query Q, but CSQ1 can be used recommended to user.

5 Task Memory Builder Agent

The task of building a task memory is to associate context summary queries to com-
binations of services. This process is facilitated by a task memory builder agent (or
simply builder agent). The Builder Agent (BA) is responsible for the incremental
acquisition and to update of the elements the task memory table. Instead of asking an
administrator to populate and update the task memory table, this agent incrementally
captures the combinations of services that should be associated to context summary
queries, by continuously monitoring how users use and rank services through interac-
tions with the user agent.

This agent has access to operational knowledge such as service usage patterns as
well as means for analyzing such patterns and updating task memories. There can be
two approaches to build a task memory.

− A lazy approach consists to consider that the builder agent incrementally update
a task memory starting from an initial table (e.g., an empty or a manually crafted
table), during the service selection process. In this approach the builder agent

 On Embedding Task Memory in Services Composition Frameworks 11

maintains a usage table that consists of context summary queries and their associ-
ated service combinations. The usage table contains only combinations that have
been used at least once with satisfaction. Every time that a combination is used
with satisfaction (respectively dissatisfaction) the associated global affinity will be
upgraded (respectively, degraded).

− An eager approach that consists to periodically search for services usage patterns by
calculating the global affinities of previously selected service combinations. This
can be achieved for instance by a logging facility associated with the builder agent.
The agent logs events related to services selection. The logged information could be
analyzed in real-time (during services selection phase) or periodically to identify
patterns that help updating the task memory. Then, each pattern is associated to a
task memory update operation (e.g., adding a new combination of services).

More specifically, in the current architecture, the builder agent relies on the following
building blocks to incrementally construct selection policies:

− Logging service selection events. Table 3 summarizes basic events that are logged
by the builder agent. Over time, these events are used as a basis to identify service
usage patterns (e.g., identify that a combination of services needs to associate to a
given context because the number of times this combination was selected with sat-
isfaction is greater than a given threshold).

− Task memory table update operations. Table 4 summarized main task memory
update operations. The evolution of a task memory table is realized through update
operations.

− Task memory table update rules. Table 5 summarizes the main update operations
supported in our framework. Operations to perform for updating a task memory ta-
ble as a result of the occurrence certain service usage pattern are captured using
Pattern Action where Pattern is a condition over service selection events, and Ac-
tion is a table update operation. More precisely, a condition of a rule is a sequence
over service selection events. A rule is defined for each update operation.

In the lazy update strategy, whenever a combination is selected, the builder agent
checks if an update rule can be triggered (i.e, checks if the associated event pattern is
true, and eventually performs the rule action if true). In the eager strategy, the agent
relies on a pre-defined rule triggering policy (e.g, specified by an administrator). For
instance a triggering policy may say “analyze the logged events periodically
(e.g, each 2 days) to detect the occurrence of event patterns” or “whenever the task

Table 3. Selected events supported in WS-Advisor

Events Descriptions
services_selected (cs, cqs) The combination of services cs is selected by the AA as a relevant

candidate in a context identified by context query summary cqs
services_used (cs, cqs) The combination of services cs was selected by the AA as a relevant

candidate and used with satisfaction by the user in context identified by
context query summary cqs

services_discarded used (cs,
cqs)

The combination of services cs is selected by the AA as a relevant
candidate but discarded by the user in context identified by context
query summary cqs

12 R. Bova et al.

Table 4. Selected operations supported in WS-Advisor

Operations Description
Upgrade_Score (cs, cqs) The GA of combination cs is upgraded with regard to context query

summary cqs
Downgrade_Score (cs, cqs) The GA of the combination cs with regard to context query summary cqs
Add_combination (cs, cqs) A new combination cs is added and its score is initialized with regard to

context query summary cqs
Remove_Combination (cs,
cqs)

A combination cs is removed with regard to context query summary cqs

Table 5. Selected rules supported in WS-Advisor

Rules Pattern Action
Upgrade_Score_Rule (cs, cqs) <services_selected (cs, cqs),

services_used (cs, cqs)>
Upgrade_Score (cs, cqs)

Downgrade_Score_Rule (cs,
cqs)

<services_selected (cs, cqs),
services_discarded (cs, cqs)>.

Downgrade_Score (cs, cqs)

Add_Combination (cs, cqs) <services_selected (cs, cqs),
services_used (cs, cqs)>

Add_combination (cs, cqs)

Remove_Combination (cs, cqs) <services_selected (cs, cqs),
services_discarded (cs, cqs)>

Remove_Combination (cs, cqs)

memory becomes a bottleneck.” Note that a task memory might become a bottleneck
when the AA forwards the user query to a service matching engine frequently as the
user is never happy with the recommendations of the AA or the agent does not find
any relevant services combination.

6 WS-Advisor: Implementation Architecture

We adopt a layered architecture for the implementation of the whole WS-Advisor
system. Figure 4 shows the elements of this architecture which are grouped into two
layers: the agents layer and the infrastructure services layer. The agent layer consists of
services implementing the user, adviser, builder, and context agents. The implementa-
tion of the agents is based on Java (using JADE platform), XML, and some generic
services provider by the infrastructure layer of the architecture. In other words, all the
agents are implemented as Java classes. The infrastructure services layer consists of
generic services that we reuse from existing Web services environments to implement
specific functionalities of the agents proposed in our approach.

The user agent provides a GUI to assist administrators in the creation and mainte-
nance of tasks. It provides an editor for describing a statechart of a task. The editing
process consists of annotating states of a task with services descriptions based on
services ontologies. In addition, a task is also associated to a number of context at-
tributes from the Context ontology. After the editing process, the user agent generates
an XML file that represents a BPEL skeleton (a parametric process where invocations
refer to service definitions instead of concrete services). The implementation of the
task editor and the generation of BPEL process skeleton rely on the state-charts editor
and BPEL process generation components of the Self-Serv Prototype [7]. The user
agent also provides a GUI to assist users in browsing tasks, selecting services, and

 On Embedding Task Memory in Services Composition Frameworks 13

execute tasks. It invokes the adviser agent to select services for executing a task. Once
services are selected the user agent generates a BPEL executable process from the
BPEL skeleton of the task and invokes a BPEL engine (ActiveBPEL) [15] to perform
the execution of a task. The user agent provides means to inform the builder agent
about the selected services.

The adviser agent provides methods for querying a Task Memory which repre-
sented as XML file. It also provides methods to query the service discovery engine.
The service discovery engine facilitates the location Web services from external ser-
vice registries. The implementation of this component relies on the services matching
component of the WS-CatalogNet prototype [8]. The builder agent provides methods
receiving notifications from the user agent, registering event patterns to the event
monitoring service, and triggering actions for updating the task memory file. The
event monitoring service is used for tracking and monitoring service usage and relies
on the event management component of the WS-CatalogNet prototype. The context
agent provides a method for querying context information. The implementation of this
agent is a work in progress and will rely on the context service implemented in the
PCAP prototype [7] which is an extension of Self-Serv to cater for context awareness
in service oriented architectures.

Service &
Context Onto

Task Repository

Task Memory

Service Usage Report

User Agent

Adviser Agent

Task Memory
Builder Agent

Context Agent

Uses

Monitor/ Update

Monitor

User
Interface

Event Service

BPEL Engine

BPEL Generator

State Chart Editor

Service Discovery Engine

Context Service

Uses

Submit Query/
Display Result

Fig. 4. WS-Advisor: Implementation Architecure

7 Discussion and Conclusions

A large body of research exists in the general area of web services discovery, selec-
tion, and composition. For example, early approaches based on the UDDI standard

14 R. Bova et al.

provide limited services search facilities, supporting only keyword-based search of
businesses, services, category names, and service identifiers [16]. To cope with this
limitation, other approaches based on semantic web technology, and in particular web
ontology languages such OWL-S, to support service description and discovery
emerged. Main stream approaches in this area focus on description-based matchmak-
ing techniques based on subsumption and equivalence relationships [17]. As pointed
out before, other approaches leverage content summarization techniques to improve
the accuracy of description-based services selection and matching approaches. It
should be also noted that the problem of description based matching has also been
addressed by several other research communities, e.g., federated databases, informa-
tion retrieval, software reuse systems and multi-agent communities. More details
about these approaches and their applicability in the context of the semantic Web
services area can be found in [18] and in [19].

Our work is also related to the general area of recommender systems, especially
those based on multi-agents. (e.g., Amalthea [20], SAGE [21]). These efforts focused
on analyzing documents (e.g., web pages, email folders) to recommend relevant docu-
ments as in search engines or products as e-commerce systems. Efforts in this area
build upon personalization techniques in Web applications including content-based,
collaborative and rule-based filtering [22]. Other agent-based approaches catered for
context awareness in the orchestration of interactions among components of a compos-
ite service [23]. Our work is complementary to efforts in user context modelling [10,
24, 25]. We focus on capturing task memories to allow effective services selection.

Our approach features embedding intelligence, consisting of task memories, into
services composition frameworks allowing context-aware services selection. It builds
upon ontology support as in web services, services discovery, selection and composi-
tion to develop a context-aware services recommender facility during execution of
routine tasks. This approach is based on the observation that, in performing routine
tasks, the service matching and selection component of service infrastructure may
produce valuable information on the contexts in which combinations of services
where considered most appropriate by users. This information can be helpful to users
in selecting services to perform a task because sometimes users would select similar
services in similar contexts. Unfortunately, this information, which we call task mem-
ory in our framework, is not effectively captured in existing service matching and
selection approaches.

We use task memory during services selection to suggest most relevant candidate
services. We proposed to use incremental acquisition techniques to build and update
task memory. A task is associated to an agent that monitors how users use and rank
services. We believe that the proposed approach is an essential ingredient that will
work in a tandem with services discovery and selection cooperative service techniques
to provide more personalized and context-aware selection of services. Ongoing work
consists of extending the agent-based architecture presented in this paper to cater for
collaboration among different users via social networks to share task memories. Our
future work will focus on experimenting with the proposed approach using some case
studies to test its validity in real settings. More specifically, we will investigate the
validity of the assumptions and approaches related to context summary queries acquisi-
tion and global affinity computation. We also plan to investigate the use of incremental
knowledge acquisition techniques as means to learn context summary queries.

 On Embedding Task Memory in Services Composition Frameworks 15

References

1. Huhns, M.N., Singh, M.P.: Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing 9, 75–81 (2005)

2. Teevan, J., Jones, W., Bederson, B., B.: Special issue on Personal information manage-
ment, vol. 49 (2006)

3. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware
Middleware for Web Services Composition. IEEE Trans. Software Eng., 30, 311–327
(2004)

4. Medjahed, B., Bouguettaya, A.: A Dynamic Foundational Architecture for Semantic Web
Services. Distributed and Parallel Databases 17, 179–206 (2005)

5. Sun, A., Benatallah, B., Hassan, M., Hacid, M.S.: Querying E-Catalogs Using Content
Summaries. In: Cooperative Information System (2006)

6. Caverlee, J., Liu, L., Rocco, D.: Discovering and ranking web services with BASIL: a per-
sonalized approach with biased focus. ICSOC, pp. 153–162 (2004)

7. Sheng, Z., Benatallah, B., Dumas, M., E., O.Y.: SELF-SERV: A Platform for Rapid Com-
position of Web Services in a Peer-to-Peer Environment. In: Proc. of the 28th International
Conference on Very Large Databases. Hong Kong, China. September (2002)

8. Baina, K., Benatallah, B., Paik, H., Rey, C., Toumani, F.: WS-CatalogNet: An Infrastruc-
ture for Creating, Peering, and Querying e-Catalog Communities. In: Proc. of the 30th In-
ternational Conference on Very Large Databases. Toronto, Canada (2004)

9. Sheng, Q.: CompositeWeb Services Provisioning in Dynamic Environments. PhD thesis,
School of Computer Science, University of New South Wales, Sydney, Australia (2005)

10. Dey, A. K.: Providing Architectural Support for Building Context-Aware Applications.
PhD thesis, College of Computing, Georgia Institute of Technology (2000)

11. Lei, H.: Context Awareness: a Practitioner’s Perspective. In: IEEE International Workshop
on Ubiquitous Data Management (UDM 2005), in conjunction with ICDE 2005, Tokyo,
Japan, April (invited paper, 2005)

12. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. Technical Report GIT-GVU-99-22, GVU Center, Georgia Institute of Tech-
nology, June (1999)

13. Chakrabarti, K., Chaudhuri, S., Hwang, W., S.: Automatic categorization of query results.
In: Proc. of ACM SIGMOD’04, Paris, France, June, pp. 755–766 (2004)

14. Bova, R., Hassas, S., Benbernou, S.: An Immune System-Inspired Approach for Compos-
ite Web Service Reuse. In: Int. Workshop of ECAI06 Artificial Intelligence for Service
Composition. Riva del Garda, Trento, Italy (2006)

15. ActiveBPEL Engine http://www.activebpel.org/
16. Dustdar, S., Treiber, M.: A View Based Analysis on Web service Registries. In: Distrib-

uted and Parallel Databases, Springer, Heidelberg (2006)
17. Benatallah, B., Hacid, M., Leger, A., Rey, C., Toumani, F.: On automating Web services

discovery. VLDB J. 14, 84–96 (2005)
18. Paolucci, M., Kawamura, T., Payne, T., R., Sycara, K., P.: Semantic Matching of Web

Services Capabilities. In: International Semantic Web Conference, pp. 333–347 (2002)
19. Bernstein, A., Klein, M.: Towards High-Precision Service Retrieval. In: International Se-

mantic Web Conference, pp. 84-101 (2002)
20. Moukas, A., Maes, P.: Amalthea: An Evolving Multi-Agent Information Filtering and

Discovery System for the WWW. Journal of Autonomous Agents and Multi-Agent Sys-
tems 1(1), 59–88 (1998)

16 R. Bova et al.

21. Blake, M.B., Kahan, D., R., Nowlan, M., F.: Context-aware agents for user-oriented web
services discovery and execution. In: Distributed and Parallel Databases, Springer, Heidel-
berg (2006)

22. Paik, H.: Community-Based Integration Adaptation of Electronic Catalogs. PhD thesis,
School of Computer Science, University of New South Wales, Sydney, Australia (2004)

23. Maamar, Z., Mostefaoui, S., M., Yahyaoui, H.: Toward an Agent-Based and Context-
Oriented Approach for Web Services Composition. In: IEEE Transactions on Knowledge
and Data Engineering (2005)

24. Jovanovic, J., Knight, C., Gasevic, D., Richards G.: Learning Object Context on the Se-
mantic Web. In: Sixth IEEE International Conference on Advanced Learning Technolo-
gies (ICALT’06). Netherlands. July 5-7 (2006)

25. McCalla, G.: The Ecological Approach to the Design of E-Learning Environments: Pur-
pose-based Capture and Use of Information About Learners. Journal of Interactive Media
in Education (2004)

	Introduction
	WS-Advisor: Design Overview
	User Agent
	Concepts and Definitions
	Provisioning Task

	Adviser Agent
	Task Memory
	Making Services Selection Recommendation

	Task Memory Builder Agent
	WS-Advisor: Implementation Architecture
	Discussion and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

