A Spatio-temporal Role-Based Access Control Model

Indrakshi Ray and Manachai Toahchoodee

Department of Computer Science
Colorado State University
{iray, toahchoo}@cs.colostate.edu

Abstract. With the growing advancement of pervasive computing technologies,
we are moving towards an era where spatio-temporal information will be neces-
sary for access control. The use of such information can be used for enhancing
the security of an application, and it can also be exploited to launch attacks. For
critical applications, a formal model for spatio-temporal-based access control is
needed that increases the security of the application and ensures that the loca-
tion information cannot be exploited to cause harm. In this paper, we propose a
spatio-temporal access control model, based on the Role-Based Access Control
(RBAC) model, that is suitable for pervasive computing applications. We show
the association of each component of RBAC with spatio-temporal information.
We formalize the model by enumerating the constraints. This model can be used
for applications where spatial and temporal information of a subject and an object
must be taken into account before granting or denying access.

1 Introduction

With the increase in the growth of wireless networks and sensor and mobile devices,
we are moving towards an era of pervasive computing. The growth of this technology
will spawn applications such as, the Aware Home [3] and CMU’s Aura [[7]], that will
make life easier for people. Pervasive computing applications introduce new security
issues that cannot be addressed by existing access control models and mechanisms. For
instance, access to a computer should be automatically disabled when a user walks out
of the room. Traditional models, such as Discretionary Access Control (DAC) or Role-
Based Access Control (RBAC) do not take into account such environmental factors in
determining whether access should be allowed or not. Consequently, new access control
models and mechanisms are needed that use environmental factors, such as, time and
location, while determining access.

The use of spatial and temporal information for access can be used for enhancing
the security of other applications as well. For instance, a user should be able to fire a
missile from specific high security locations only. Moreover, the missile can be fired
only when it is in a certain location. For such critical applications, we can include
additional checks, such as the verification of the location of the user and that of the
missile, that must be satisfied before the user is granted access. With the reduction in
the cost of Global Positioning System, this is indeed a viable option.

In this paper, we propose a formal spatio-temporal model that is suitable for com-
mercial applications. Since RBAC is policy-neutral, simplifies access management, and

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 211226 2007.
© IFIP International Federation for Information Processing 2007

212 I. Ray and M. Toahchoodee

used by commercial applications, we decide to base our work on it. We show how
RBAC can be extended to incorporate the notion of time and location. We illustrate
how each component of RBAC is related with time and location. In other words, we
explain how time and location impact each component of RBAC. Finally, we show how
this spatio-temporal information can be used to determine whether an user has access to
a given object. The correct behavior of this model is formulated in terms of constraints
that must be satisfied by any application using this model.

The rest of the paper is organized as follows. Section [2] describes the related work.
Section 13| briefly illustrates how time and location are represented in our model.
Section [shows the relationship of each component of Core RBAC with location.
Sections [l [] and [7] propose different types of hierarchies and separation of duty con-
straints that we can have in our model. Section[8 discusses a simple example using our
model. Section[9]concludes the paper with some pointers to future directions.

2 Related Work

Recently, some research attempts have been done under the area of context aware ac-
cess control. Yu et al. [13] proposed LTAM a location-temporal authorization model,
which is based on a Discretionary Access Control (DAC) model. The goal of this pa-
per is different than ours; it focuses on controlling access to the different locations. For
example, access rules may have temporal constraints that can specify when a user can
enter or leave a location or how many times a user can enter a location. However, it
does not address the issue of where and when a subject can access a given object. Since
this model is based on DAC, authorization management is a problem.

Role-based access control model [6] is used for addressing the access control needs
of commercial organizations. In RBAC permissions are attached to roles and users must
be assigned to roles to get the permissions. Permissions determine what operations can
be carried out on resources under access control. A user must establish a session to
activate a subset of roles to which the user is assigned. Each user can activate multi-
ple sessions, however, each session is associated with only one user. The operations
that a user can perform in a session depend on the roles activated in that session and
the permissions associated with those roles. RBAC also supports role hierarchies. Role
hierarchies define an inheritance relationship between roles. To prevent conflict of inter-
ests that arise in an organization, RBAC allows the specification of Static and Dynamic
Separation of Duty constraints.

Several work exists that improve RBAC functionality. We discuss only those that
are very closely related to ours. Some of these work focus on how RBAC can be ex-
tended to make it context aware. Sampemane et al. [12] present a new access control
model for active spaces. Active space denotes the computing environment integrating
physical spaces and embedded computing software and hardware entities. The active
space allows interactive exchange of information between the user and the space. Envi-
ronmental aspects are adopted into the access control model for active spaces, and the
space roles are introduced into the implementation of the access control model based

A Spatio-temporal Role-Based Access Control Model 213

on RBAC. The model supports specification of MAC policies in which system admin-
istrator maintains the access matrix and DAC policies in which users create and update
security policies for their devices.

Covington et al. [5]] introduce environment roles in a generalized RBAC model (GR-
BAC) to help control access control to private information and resources in ubiquitous
computing applications. The environments roles differ from the subject roles in RBAC
but do have similar properties including role activation, role hierarchy and separation
of duty. In the access control framework enabled by environment roles, each element of
permission assignment is associated with a set of environment roles, and environment
roles are activated according to the changing conditions specified in environmental con-
ditions; in this way, environmental properties like time and location are introduced to
the access control framework. In a subsequent work [4]], Covington et al. describes the
Context-Aware Security Architecture (CASA) which is an implementation of the GR-
BAC model. The access control is provided by the security services in the architecture.
In CASA, polices are expressed as roles and managed by the security management ser-
vice, authentication and authorization services are used to verify user credentials and
determine access to the system resources. The environmental role activation services
manage environmental role activation and deactivation according to the environment
variables collected by the context management services.

Other extensions to RBAC include the Temporal Role-Based Access Control Model
(TRBAC) proposed by Bertino et al. [1]. This work adds the time dimension to the
RBAC model. The authors in this paper introduce the concept of role enabling and
disabling. Temporal constraints determine when the roles can be enabled or disabled.
A role can be activated only if it has been enabled. Joshi et al.[8] extend this work by
proposing the Generalized Temporal Role Based Access Control Model (GTRBAC). In
this work the authors introduce the concept of time-based role hierarchy and time-based
separation of duty. These works do not discuss the impact of spatial information.

Researchers have also extended RBAC to incorporate spatial information. The most
important work in this regard is the GEO-RBAC [2]]. In this model, role activation is
based on the location of the user. For instance, a user can acquire the role of teacher
only when he is in the school. Outside the school, he can acquire the role of citizen. The
model supports role hierarchies but does not deal with separation of duties. Another
work incorporating spatial information is by Ray et al. [I1]. Here again, the authors
propose how each component of RBAC is influenced by location. The authors define
their formal model using the Z specification language. Role hierarchy and separation
of duties are not addressed in this paper. None of these work discuss the impact of
time on location. Location-based access control has been addressed in other works not
pertaining to RBAC [[7I9/10].

To the best of our knowledge, the only work which propose incorporating both time
and location in RBAC is by Chandran et al. [3]]. The paper combines the main features
of GTRBAC and GEO-RBAC. Here again, role is enabled by time constraints. The user
can activate the role if the role is enabled and the user satisfies the location constraints
associated with role activation. Our current work is closely related to this work. The
similarity is that in both the models role activation occurs when temporal and spatial
constraints are satisfied. However, there are a number of points where we differ. First,

214 I. Ray and M. Toahchoodee

in Chandran’s work, role assignment is not dependent on location or time. A number
of motivating examples indicate that role assignment should be dependent on role and
time. Consequently, we incorporate this feature in our model. Second, in Chandran’s
work, when a role can be activated all the permissions associated with the role can
be invoked. This may not be true in real world. For instance, a system administrator’s
role can be activated from 9:00 a.m. to 9:00 p.m. everyday. However, he can perform
backup only during 8:00 to 9:00 p.m. on Fridays. Chandran’s model cannot express this
situation. We associate a permission with additional location and temporal constraints
that must be satisfied before a permission can be invoked. Third, Chandran’s work does
not discuss the impact of location and time on role hierarchy or separation of duty.
We propose different types of time and location based hierarchy and separation of duty
constraints in our model which will be useful for real-world applications.

3 Representing Location and Time

3.1 Representing Location

In order to perform location-based access control, we need to perform operations on
location information and protect the location information. In this section, we formalize
the concept of location and propose the location comparison operators that are
used in our model.

There are two types of locations: physical and logical. All users and objects are
associated with locations that correspond to the physical world. These are referred to
as the physical locations. A physical location is formally defined by a set of points in a
three-dimensional geometric space.

Definition 1. [Physical Location] A physical location PLoc; is a non-empty set of
points {pi,pj...,pn} where a point py is represented by three co-ordinates.

Physical locations are grouped into symbolic representations that will be used by ap-
plications. We refer to these symbolic representations as logical locations. Examples of
logical locations are Fort Collins, Colorado etc.

Definition 2. [Logical Location] A logical location is an abstract notion for one or
more physical locations.

We assume the existence of two translation functions, m and »?/, that convert from log-
ical locations to physical locations and vice-versa.

Definition 3. [Mapping Functions m and m'] m is a total function that converts a
physical location into a logical one. m' is a total function that converts a logical location
into a physical one. Let P be the set of all possible physical locations and L be the set
of all logical locations. The following formalizes the functions.

-m:P— L

-m:L—P

For any logical location Loc;, m(m'(Loc;)) = Loc;.

For any physical location PLoc j, m'(m(PLocj)) = PLoc;.

A Spatio-temporal Role-Based Access Control Model 215

Different kinds of relationships may exist between a pair of locations. We discuss one
such relationship, known as containment, that will be used in this paper. Containment
formalizes the idea whether one location is contained within another. Intuitively, a phys-
ical location ploc; is contained in another physical location plocy, if all points in ploc;
also belong to plocy. This is formalized as follows.

Definition 4. [Containment Relation] A physical location ploc; is said to be con-
tained in another physical location plocy, denoted as, ploc; C plocy, if the following
condition holds: ¥p; € plocj,p; € plocy. The location ploc; is called the contained
location and plocy is referred to as the containing or the enclosing location. A log-
ical location llocy, is contained in llocy,, denoted as, lloc,, C llocy, if and only if
the physical location corresponding to llocy, is contained within that of lloc,, that
is m'(llocy,) C m/(llocy).

Note that, a physical location may be contained in a logical location or vice-versa. In
such cases, we use the mapping functions to convert the logical locations into physical
ones and then test whether one is contained within the other.

We assume the existence of a logical location called universe that contains all other
locations.

In the rest of the paper, we do not discuss physical locations any more. The locations
referred to are logical locations.

3.2 Representing Time

Our model uses two kinds of temporal information. We feel it is necessary to distinguish
between these two kinds of information because they have very different semantics. The
first is known as time instant and the other is time interval. Time can be represented as
a set of discrete points on the time line.

Definition 5. [Time Instant] A time instant is one discrete point on the time line.

The exact granularity of a time instant will be application dependent. For instance, in
some application a time instant may be measured at the nanosecond level and in another
one it may be specified at the millisecond level.

Definition 6. [Time Interval] A time interval is a set of time instances. When the time
instances making up an interval are consecutive, we refer to the interval as a continuous
one. Otherwise, the interval is said to be non-continuous.

Example of a continuous interval is 9:00 a.m. to 3:00 p.m. on 25th December. Example
of a non-continuous interval is 9:00 a.m. to 6:00 p.m. on Mondays to Fridays in the
month of March. Some researchers refer to time intervals as time expressions. We use
the notation #; € d to mean that ¢; is a time instance in the time interval d.

Two time intervals can be related by any of the following relations: disjoint, equality,
and overlapping. Two time intervals tv; and tv; are disjoint if the intersection of the set
of time instances in tv; with those of #v; results in the null set. Two time intervals #v; and
tv; are equal if the set of time instances in tv; is equal to those of tv;. Two time intervals
tv; and tv; are overlapping if the intersection of the set of time instances in 7v; with those

216 I. Ray and M. Toahchoodee

of tv; results in a non-empty set. A special case of overlapping relation is referred to
as containment. A time interval tv; is contained in another interval v if the set of time
instances in 7v; is a subset of those in #v;. We formally denote this as tv; < tv;.

4 Relationship of Core-RBAC Entities with Time and Location

In this section, we describe how the entities in RBAC are associated with location and
time. The different entities of RBAC are Users, Roles, Sessions, Permissions, Objects
and Operations. We discuss how each of these components are associated with location
and time.

4.1 Users

We assume that each valid user, interested in doing some location-sensitive operation,
carries a locating device which is able to track his location. The location of a user
changes with time. The relation UserLocation(u,t) gives the location of the user at any
given time instant ¢. Since a user can be associated with only one location at any given
point of time, we have the following constraint:

UserLocation(u,t) = l; AUserLocation(u,t) =1; < (; C1;)V (I; C ;)

We define a similar function UserLocations(u,d) that gives the location of the user
during the time interval d. Note that, a single location can be associated with multiple
users at any given point of time.

4.2 Objects

Objects can be physical or logical. Example of a physical object is a computer. Files
are examples of logical objects. Physical objects have devices that transmit their lo-
cation information with the timestamp. Logical objects are stored in physical objects.
The location and timestamp of a logical object corresponds to the location and time of
the physical object containing the logical object. We assume that each object is asso-
ciated with one location at any given instant of time. Each location can be associated
with many objects. The function ObjLocation(o,t) takes as input an object o and a time
instance ¢ and returns the location associated with the object at time 7. Similarly, the
function ObjLocations(o,d) takes as input an object o and time interval d and returns
the location associated with the object.

4.3 Roles

We have three types of relations with roles. These are user-role assignment, user-role
activation, and permission-role assignment.

We begin by focusing on user-role assignment. Often times, the assignment of user
to roles is location and time dependent. For instance, a person can be assigned the role
of U.S. citizen only in certain designated locations and at certain times only. To get the
role of conference attendee, a person must register at the conference location during

A Spatio-temporal Role-Based Access Control Model 217

specific time intervals. Thus, for a user to be assigned a role, he must be in designated
locations during specific time intervals. In our model, a user must satisfy spatial and
temporal constraints before roles can be assigned. We capture this with the concept
of role allocation. A role is said to be allocated when it satisfies the temporal and
spatial constraints needed for role assignment. A role can be assigned once it has been
allocated. RoleAllocLoc(r) gives the set of locations where the role can be allocated.
RoleAllocDur(r) gives the time interval where the role can be allocated. Some role s
can be allocated anywhere, in such cases RoleAllocLoc(s) = universe. Similarly, if role
p can be assigned at any time, we specify RoleAllocDur(p) = always.

Some roles can be activated only if the user is in some specific locations. For in-
stance, the role of audience of a theater can be activated only if the user is in the theater
when the show is on. The role of conference attendee can be activated only if the user is
in the conference site while the conference is in session. In short, the user must satisfy
temporal and location constraints before a role can be activated. We borrow the concept
of role-enabling to describe this. A role is said to be enabled if it satisfies the
temporal and location constraints needed to activate it. A role can be activated only if
it has been enabled. RoleEnableLoc(r) gives the location where role r can be activated
and RoleEnableDur(r) gives the time interval when the role can be activated.

The predicate UserRoleAssign(u,r,d,l) states that the user u is assigned to role r
during the time interval d and location /. For this predicate to hold, the location of the
user when the role was assigned must be in one of the locations where the role allocation
can take place. Moreover, the time of role assignment must be in the interval when role
allocation can take place.

UserRoleAssign(u,r,d,l) = (UserLocation(u,d) = 1)\
(I C RoleAllocLoc(r)) A (d C RoleAllocDur(r))

The predicate UserRoleActivate(u,r,d,l) is true if the user u activated role r for the
interval d at location /. This predicate implies that the location of the user during the
role activation must be a subset of the allowable locations for the activated role and all
times instances when the role remains activated must belong to the duration when the
role can be activated and the role can be activated only if it is assigned.

UserRoleActivate(u,r,d,l) =
(I C RoleEnableLoc(r)) N(d C RoleEnableDur(r)) AUserRoleAssign(u,r,d,l)

The additional constraints imposed upon the model necessitates changing the precondi-
tions of the functions AssignRole and ActivateRole.
The permission role assignment is discussed later.

4.4 Sessions

In mobile computing or pervasive computing environments, we have different types
of sessions that can be initiated by the user. Some of these sessions can be location-
dependent, others not. Thus, sessions are classified into different types. Each instance
of a session is associated with some type of a session. The type of session instance s is
given by the function Type(s). The type of the session determines the allowable loca-
tion. The allowable location for a session type st is given by the function SessionLoc(st).

218 I. Ray and M. Toahchoodee

When a user u wants to create a session si, the location of the user for the entire du-
ration of the session must be contained within the location associated with the session.
The predicate SessionUser(u,s,d) indicates that a user u has initiated a session s for
duration d.

SessionUser(u,s,d) = (UserLocation(u,d) C SessionLoc(Type(s)))

Since sessions are associated with locations, not all roles can be activated within
some session. The predicate SessionRoles(u,r,s,d,[) states that user u initiates a session
s and activates a role for duration d and at location /.

SessionRole(u,r,s,d) = UserRoleActivate(u,r,d,l) N1 C SessionLoc(Type(s)))

4.5 Permissions

The goal of our model is to provide more security than their traditional counterparts.
This happens because the time and location of a user and an object are taken into ac-
count before making the access decisions. Our model also allows us to model real-world
requirements where access decision is contingent upon the time and location associated
with the user and the object. For example, a teller may access the bank confidential
file if and only if he is in the bank and the file location is the bank secure room and
the access is granted only during the working hours. Our model should be capable of
expressing such requirements.

Permissions are associated with roles, objects, and operations. We associate three
additional entities with permission to deal with spatial and temporal constraints: user
location, object location, and time. We define three functions to retrieve the values of
these entities. PermRoleLoc(p,r) specifies the allowable locations that a user playing
the role r must be in for him to get permission p. PermOb jLoc(p, o) specifies the al-
lowable locations that the object 0 must be in so that the user has permission to operate
on the object 0. PermDur(p) specifies the allowable time when the permission can be
invoked.

We define another predicate which we term PermRoleAcquire(p,r,d,l). This pred-
icate is true if role r has permission p for duration d at location /. Note that, for this
predicate to be true, the time interval d must be contained in the duration where the
permission can be invoked and the role can be enabled. Similarly, the location / must be
contained in the places where the permission can be invoked and role can be enabled.

PermRoleAcquire(p,r,d,l) = (I C (PermRoleLoc(p,r) N RoleEnableLoc(r)))
A(d C (PermDur(p) N RoleEnableDur(p)))

The predicate PermUserAcquire(u,o0,p,d,l) means that user u can acquire the per-
mission p on object o for duration d at location /. This is possible only when the per-
mission p is assigned some role r which can be activated during d and at location [, the
user location and object location match those specified in the permission, the duration
d matches that specified in the permission.

PermRoleAcquire(p,r,d,l) NUserRoleActivate(u,r,d,l)
N(ObjectLocation(o,d) C PermOb jectLoc(p,0)) = PermUserAcquire(u,0,p,d,l)

A Spatio-temporal Role-Based Access Control Model 219
5 Impact of Time and Location on Role-Hierarchy

The structure of an organization in terms of lines of authority can be modeled as an
hierarchy. This organization structure is reflected in RBAC in the form of a role hi-
erarchy [13]]. Role hierarchy is a relation among roles. This relation is transitive, and
anti-symmetric. Roles higher up in the hierarchy are referred to as senior roles and those
lower down are junior roles. The major motivation for adding role hierarchy to RBAC
was to simplify role management. Senior roles can inherit the permissions of junior
roles, or a senior role can activate a junior role, or do both depending on the nature of
the hierarchy. This obviates the need for separately assigning the same permissions to
all members belonging to a hierarchy.

Joshi et al. [8]] identify two basic types of hierarchy. The first is the permission in-
heritance hierarchy where a senior role x inherits the permission of a junior role y. The
second is the role activation hierarchy where a user assigned to a senior role can activate
a junior role. Each of these hierarchies may be constrained by location and temporal
constraints. Consequently, we have a number of different hierarchical relationships in
our model.

Definition 7. [Unrestricted Permission Inheritance Hierarchy] Let x and y be roles
such that x >y, that is, senior role x has an unrestricted permission-inheritance relation
over junior role y. In such a case, x inherit’s y’s permissions but not the locations and
time associated with it. This is formalized as follows:

Vp, (x > y) A PermRoleAcquire(p,y,d,l) = PermRoleAcquire(p,x,d’,l")

In the above hierarchy, a senior role inherits the junior roles permissions. However, un-
like the junior role, these permissions are not restricted to time and location. Account
auditor role inherits the permissions from the accountant role. He can use the permis-
sions at any time and at any place.

Definition 8. [Unrestricted Activation Hierarchy] Lef x and y be roles such that x =
Y, that is, senior role x has a role-activation relation over junior role y. Then, a user
assigned to role x can activate role y at any time and at any place. This is formalized as
follows:

Yu, (x 3= y) AUserRoleActivate(u,x,d,l) = UserRoleActivate(u,y,d’,l")

Here again a user who can activate a senior role can also activate a junior role. This
junior role can be activated at any time and place. A project manager can activate the
code developer role at any time and at any place.

Definition 9. [Time Restricted Permission Inheritance Hierarchy] Let x and y be
roles such that x >, y, that is, senior role x has a time restricted permission-inheritance
relation over junior role y. In such a case, x inherit’s y’s permissions together with the
temporal constraints associated with the permission. This is formalized as follows:

Vp, (x >1; y) A PermRoleAcquire(p,y,d,l) = PermRoleAcquire(p,x,d,l’)

220 I. Ray and M. Toahchoodee

In the above hierarchy, a senior role inherits the junior roles permissions. However,
the duration when the permissions are valid are those that are associated with the ju-
nior roles. A contact author can inherit the permissions of the author until the paper is
submitted.

Definition 10. [Time Restricted Activation Hierarchy] Let x and y be roles such that
X =¢ Y, that is, senior role x has a role-activation relation over junior role y. Then, a
user assigned to role x can activate role y only at the time when role y can be enabled.
This is formalized as follows:

Yu, (x =4 y) AUserRoleActivate(u,x,d,l) Nd C RoleEnableDur(y) =
UserRoleActivate(u,y,d,l")

Here again a user who can activate a senior role can also activate a junior role. However,
this activation is limited to the time when the junior role can be activated. A program
chair can activate a reviewer role only during the review period.

Definition 11. [Location Restricted Permission Inheritance Hierarchy] Let x and
y be roles such that x >y, that is, senior role x has a location restricted permission-
inheritance relation over junior role y. In such a case, x inherit’s y’s permissions to-
gether with the location constraints associated with the permission. This is formalized
as follows:

Vp, (x >11 y) A PermRoleAcquire(p,y,d,l) = PermRoleAcquire(p,x,d’|1)

In the above hierarchy, a senior role inherits the junior roles permissions. These permis-
sions are restricted to the locations imposed on the junior roles. A top secret scientist
inherits the permission of top secret citizen only when he is in top secret locations.

Definition 12. [Location Restricted Activation Hierarchy] Let x and y be roles such
that x =, y, that is, senior role x has a role-activation relation over junior role y. Then, a
user assigned to role x can activate role y only at the places when role y can be enabled.
This is formalized as follows:

Yu, (x =4 y) AUserRoleActivate(u,x,d,l) Nl C RoleEnableLoc(y) =
UserRoleActivate(u,y,d’ 1)

Here again a user who can activate a senior role can also activate a junior role. How-
ever, this activation is limited to the place where the junior role can be activated. A
Department Chair can activate a Staff role only when he is in the Department.

Definition 13. [Time Location Restricted Permission Inheritance Hierarchy] Let
x and y be roles such that x >y, that is, senior role x has a time-location restricted
permission-inheritance relation over junior role y. In such a case, x inherit’s y’s per-
missions together with the temporal and location constraints associated with the per-
mission. This is formalized as follows:

Vp, (x > y) A PermRoleAcquire(p,y,d,l) = PermRoleAcquire(p,x,d,l)

A Spatio-temporal Role-Based Access Control Model 221

In the above hierarchy, a senior role inherits the junior roles permissions. These permis-
sions are restricted to time and locations imposed on the junior roles. Daytime doctor
role inherits permission of daytime nurse role only when he is in the hospital during the
daytime.

Definition 14. [Time Location Restricted Activation Hierarchy] Let x and y be roles
such that x = y, that is, senior role x has a role-activation relation over junior role y.
Then, a user assigned to role x can activate role y only at the places and during the time
when role y can be enabled. This is formalized as follows:

Yu, (x =4 y) ANUserRoleActivate(u,x,d,l) Nd C RoleEnableDur(y)
Al C RoleEnableLoc(y) = UserRoleActivate(u,y,d,l)

Here again a user who can activate a senior role can also activate a junior role. However,
this activation is limited to the time and place where the junior role can be activated.
User who has a role of mobile user can activate the weekend mobile user role only if
he/she is in the US during the weekend.

It is also possible for a senior role and a junior role to be related with both permission
inheritance and activation hierarchies. In such a case, the application will choose the
type of inheritance hierarchy and activation hierarchy needed.

6 Impact of Time and Location on Static Separation of Duties

Separation of duties (SoD) enables the protection of the fraud that might be caused by
the user [14]. SoD can be either static or dynamic. Static Separation of Duty (SSoD)
comes in two varieties. First one is with respect to user role assignment. The second one
is with respect to permission role assignment. In this case, the SoD is specified as a re-
lation between roles. The idea is that the same user cannot be assigned to the same role.
Due to the presence of temporal and spatial constraints, we can have different flavors
of separation of duties — some that are constrained by temporal and spatial constraints
and others that are not. In the following we describe the different separation of duty
constraints.

Definition 15. [Weak Form of SSoD - User Role Assignment] Let x and y be two
roles such that x # y. x,y € SSOD,,(ROLES) if the following condition holds:

UserRoleAssign(u,x,d,l) = — UserRoleAssign(u,y,d,)

The above definition says that a user u assigned to role x during time d and location
[cannot be assigned to role y at the same time and location if x and y are related by
SSOD,,. An example where this form is useful is that a user should not be assigned the
audience role and mobile user role at the same time and location.

Definition 16. [Strong Temporal Form of SSoD - User Role Assignment] Let x and
y be two roles such that x # y. (x,y) € SSOD,(ROLES) if the following condition holds:

UserRoleAssign(u,x,d,l) = — (3d' C always e UserRoleAssign(u,y,d’,1))

222 I. Ray and M. Toahchoodee

The above definition says that a user u assigned to role x during time d and location /
cannot be assigned to role y at any time in the same location if x and y are related by
SSOD;. The consultant for oil company A will never be assigned the role of consultant
for oil company B in the same country.

Definition 17. [Strong Spatial Form of SSoD - User Role Assignment] Let x and y
be two roles such that x # y. (x,y) € SSOD;(ROLES) if the following condition holds:

UserRoleAssign(u,x,d,l) = — (3I' C universe e UserRoleAssign(u,y,d,l’))

The above definition says that a user u assigned to role x during time d and location [,
he cannot be assigned to role y at the same time at any location if x and y are related by
SSOD;. A person cannot be assigned the roles of realtor and instructor at the same time.

Definition 18. [Strong Form of SSoD - User Role Assignment] Let x and y be two
roles such that x #y. (x,y) € SSODs(ROLES) if the following condition holds:

UserRoleAssign(u,x,d,l) = — (' C universe,3d’ C always e UserRoleAssign(u,y,d’,l'))

The above definition says that a user u assigned to role x during time d and location [,
he cannot be assigned to role y at any time or at any location if x and y are related by
SSOD;. The same employee cannot be assigned the roles of male and female employee
at any given corporation.

We next consider the second form of static separation of duty that deals with per-
mission role assignment. The idea is that the same role should not acquire conflicting
permissions. The same manager should not make a request for funding as well as ap-
prove it.

Definition 19. [Weak Form of SSoD - Permission Role Assignment] Let p and g be
two permissions such that p # q. (p,q) € SSOD PRA,, if the following condition holds:

PermRoleAcquire(p,x,d,l) = — PermRoleAcquire(q,x,d,l))

The above definition says that if permissions p and g are related through weak SSoD
Permission Role Assignment and x has permission p at time d and location /, then x
should not be given permission g at the same time and location.

Definition 20. [Strong Temporal Form of SSoD - Permission Role Assignment] Let
p and q be two permissions such that p # q. (p,q) € SSOD PRA, if the following con-
dition holds:

PermRoleAcquire(p,x,d,l) = — (3d' C always e PermRoleAcquire(q,x,d’,[))

The above definition says that if permissions p and g are related through strong temporal
SSoD Permission Role Assignment and x has permission p at time d and location /, then
x should not get permission g at any time in location /.

Definition 21. [Strong Spatial Form of SSoD - Permission Role Assignment] Let p
and q be two permissions such that p # q. (p,q) € SSOD PRA, if the following condi-
tion holds:

A Spatio-temporal Role-Based Access Control Model 223

PermRoleAcquire(p,x,d,l) = — (3I' C universe @ PermRoleAcquire(q,x,d,l'))

The above definition says that if permissions p and ¢ are related through strong spatial
SSoD Permission Role Assignment and x has permission p at time d and location I,
then x should not be given permission g at the same time.

Definition 22. [Strong Form of SSoD - Permission Role Assignment] Le? p and g be
two permissions such that p # q. (p,q) € SSOD PRA; if the following condition holds:

PermRoleAcquire(p,x,d,l) = — (3I' C universe,d’ C always e PermRoleAcquire(q,x,d’,l"))

The above definition says that if permissions p and ¢ are related through strong SSoD
Permission Role Assignment, then the same role should never be given the two con-
flicting permissions.

7 Impact of Time and Location on Dynamic Separation of Duties

Static separation of duty ensures that a user does not get assigned conflicting roles or a
role is not assigned conflicting permissions. Dynamic separation of duty addresses the
problem that a user is not able to activate conflicting roles during the same session.

Definition 23. [Weak Form of DSoD] Let x and y be two roles such that x £ y. (x,y) €
DSOD; if the following condition holds:

SessionRole(u,x,s,d,l) = — SessionRole(u,y,s,d,l))

The above definition says that if roles x and y are related through weak DSoD and if
user u has activated role x in some session s for duration d and location /, then u cannot
activate role y during the same time and in the same location in session s. In the same
session, a user can activate a sales assistant role and a customer role. However, both
these roles should not be activated at the same time in the same location.

Definition 24. [Strong Temporal Form of DSoD] Let x and y be two roles such that
x#y. (x,y) € DSODj if the following condition holds:

SessionRole(u,x,s,d,l) = — (3d' C always, eSessionRole(u,y,s,d’ 1))

The above definition says that if roles x and y are related through strong temporal DSoD
and if user u has activated role x in some session s, then u can never activate role y any
time at the same location in the same session. In a teaching session in a classroom, a
user cannot activate the the grader role once he has activated the student role.

Definition 25. [Strong Spatial Form of DSoD] Let x and y be two roles such that
x#y. (x,y) € DSODj if the following condition holds:

SessionRole(u,x,s,d,l) = — (31" C universe ® SessionRole(u,y,s,d,l'))

The above definition says that if roles x and y are related through strong DSoD and if
user u has activated role x in some session s, then u can never activate role y in session
s during the same time in any location. If a user has activated the Graduate Teaching
Assistant role in his office, he cannot activate the Lab Operator role at the same time.

224 I. Ray and M. Toahchoodee

Definition 26. [Strong Form of DSoD] Let x and y be two roles such that x # y. (x,y) €
DSODg if the following condition holds:

SessionRole(u,x,s,d,l) = — (3I' C universe,3d' C always ® SessionRole(u,y,s,d’,l"))

The above definition says that if roles x and y are related through strong DSoD and if
user u has activated role x in some session s, then u can never activate role y in the
same session. A user cannot be both an code developer and a code tester in the same
session.

8

Example Scenario

Example 1. Consider the following access control policy of SECURE bank

1.
2.

Nk wh =

The organization has five users: Tom, Leena, Diana, Nina and Sam.

The organization consists of six roles: teller, loan officer, daytime system operator,
nighttime system operator, system operator manager, auditor

The teller can read and write teller files only from the teller booth during working
hours, that is, 9:00AM - 6:00PM, Monday to Friday.

The loan officer can read and write loan files only from the loan office during work-
ing hours, that is, 9:00AM - 6:00PM, Monday to Friday.

The daytime system operator (DTSO) can backup any file from anywhere in the
SECURE bank building during working hours, that is, 9:00AM - 6:00PM, Monday
to Friday.

The nighttime system operator (NTSO) can backup and restore any file from any-
where in the SECURE bank building during nighttime shift, that is, 6:00PM -
9:00AM, Monday to Friday.

The system operator manager (SOM) rights consist of all rights from daytime sys-
tem operator and night time system operator.

The auditor can audit teller files during the working hours.

The same person cannot be the teller and the auditor in the same session.

. Teller files and loan files can be written during working hours only

We can represent the above access control policy using STRBAC.

WorkingHours = {{2,3,4,5,6} .Days + 10.Hours>9.Hours}
NightTime = {{2,3,4,5,6} .Days + 19.Hours>14.Hours}
Set of Time Intervals = {WorkingHours,NighTime}
Set of locations = {TellerBooth, LoanOf fice, ComputerRoom, Building}
Users = {Tom,Leena, Diana,Nina,Sam}
Roles = {Teller,LoanOf ficer,Auditor, DTSO,NTSO,SOM }
RoleEnable = {(Teller, WorkingHours, TellerBooth), (Loaner, WorkingHours,
LoanerOffice), (DTSO, WorkingHours, Building), (NTSO, NightTime, Building),
(SOM, AnyTime, Building)}
Permissions consists of
— readTellerFile = (Read, TellerFile, AnyTime, TellerBooth, ComputerRoont)

A Spatio-temporal Role-Based Access Control Model 225

— writeTellerFile = (Write, TellerFile, WorkingHours, TellerBooth, Computer-
Room)

— readLoanerFile = (Read, LoanerFile, AnyTime, LoanerOffice, Computer-
Room)

— writeLoanerFile = (Write, LoanerFile, WorkingHours, LoanerOffice, Comput-
erRoom)

— WHBackupFile = (Backup, AllFile, WorkingHours, Anywhere, Computer-
Room)

— NTBackupFile = (Backup, AllFile, NightTime, Anywhere, ComputerRoom)

— NTRestoreFile = (Restore, AllFile, NightTime, Anywhere, ComputerRoom)

9. UserAssignment = {(Tom, Teller), (Leena, Loaner), (Diana, DTSO), (Nina,
NTSO), (Sam, SOM)}

10. PermAssign = {(Teller, readTellerFile), (Teller, writeTellerFile), (Loaner, read-
LoanerFile), (Loaner, writeLoanerFile), (DTSO, WHBackupFile), (NTSO, NTBack-
File), (NTSO, NTRestoreFile)}

11. Role hierarchy RH = (SOM ;4 DTSO) A (SOM 741 NTSO)

12. DSOD; = (Teller,Auditor)

This is just one possible way to model the requirements. Other models are possible
as well.

9 Conclusion and Future Work

Traditional access control models do not take into account environmental factors before
making access decisions. Such models may not be suitable for pervasive computing ap-
plications. Towards this end, we proposed a spatio-temporal role based access control
model. We identified the entities and relations in RBAC and investigated their depen-
dence on location and time. This dependency necessitates changes in the invariants and
the operations of RBAC. The behavior of the model is formalized using constraints.

A lot of work remains to be done. One is the analysis of the model. We have proposed
many different constraints. We need to understand the interaction of these constraints
and the different types of relationships between them. Specifically, we are interested in
finding conflicts and redundancies among the constraint specification. Such analysis is
needed before our model can be used for real world applications. We plan to investi-
gate how to automate this analysis. We also plan to implement our model. We need to
investigate how to store location and temporal information and how to automatically
detect role allocation and enabling using triggers. Once we have an implementation, we
validate our model using some prototype application.

Acknowledgement

This work was supported in part by AFOSR under contract number FA9550-07-1-0042.

226

I. Ray and M. Toahchoodee

References

10.

11.

12.

13.

14.

15.

Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: a temporal role-based access control model.
In: RBAC ’00: Proceedings of the fifth ACM workshop on Role-based access control, pp.
21-30. ACM Press, New York, NY, USA (2000)

Bertino, E., Catania, B., Damiani, M.L., Perlasca, P.. GEO-RBAC: a spatially aware RBAC.
In: SACMAT °05: Proceedings of the tenth ACM symposium on Access control models and
technologies, pp. 29-37. ACM Press, New York, NY, USA (2005)

Chandran, S.M., Joshi, J.B.D.: LoT-RBAC: A Location and Time-Based RBAC Model. In:
WISE, pp. 361-375 (2005)

Covington, MLJ., Fogla, P., Zhan, Z., Ahamad, M.: A Context-Aware Security Architecture
for Emerging Applications. In: Proceedings of the Annual Computer Security Applications
Conference, Las Vegas, NV, USA, pp. 249-260 (December 2002)

Covington, M.J., Long, W., Srinivasan, S., Dey, A., Ahamad, M., Abowd, G.: Securing
Context-Aware Applications Using Environment Roles. In: Proceedings of the 6th ACM
Symposium on Access Control Models and Technologies, pp. 10-20. Chantilly, VA, USA
(May 2001)

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST Stan-
dard for Role-Based Access Control. ACM Transactions on Information and Systems Secu-
rity 4(3) (August 2001)

Hengartner, U., Steenkiste, P.: Implementing Access Control to People Location Information.
In: Proceeding of the SACMAT 04 Yorktown Heights, California, USA (June 2004)

Joshi, J.B.D., Bertino, E., Latif, U., Ghafoor, A.: A Generalized Temporal Role-Based Access
Control Model. IEEE Transactions on Knowledge and Data Engineering 17(1), 4-23 (2005)
Leonhardt, U., Magee, J.: Security Consideration for a Distributed Location Service. Imperial
College of Science, Technology and Medicine, London, UK (1997)

Ray, I., Kumar, M.: Towards a Location-Based Mandatory Access Control Model. Computers
& Security 25(1) (February 2006)

Ray, ., Kumar, M., Yu, L.: LRBAC: A Location-Aware Role-Based Access Control Model.
In: Proceedings of the 2nd International Conference on Information Systems Security,
Kolkata, India, pp. 147-161 (December 2006)

Sampemane, G., Naldurg, P., Campbell, R.H.: Access Control for Active Spaces. In: Pro-
ceedings of the Annual Computer Security Applications Conference, Las Vegas, NV, USA,
pp. 343-352 (December 2002)

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models.
IEEE Computer 29(2), 38-47 (1996)

Simon, R., Zurko, M.E.: Separation of duty in role-based environments. In: CSFW *97: Pro-
ceedings of the 10th Computer Security Foundations Workshop (CSFW ’97), Washington,
DC, USA, pp. 183-194. IEEE Computer Society Press, Los Alamitos (1997)

Yu, H., Lim, E.-P.: LTAM: A Location-Temporal Authorization Model. In: Jonker, W.,
Petkovié¢, M. (eds.) SDM 2004. LNCS, vol. 3178, pp. 172-186. Springer, Heidelberg (2004)

	A Spatio-temporal Role-Based Access Control Model
	Introduction
	Related Work
	Representing Location and Time
	Representing Location
	Representing Time

	Relationship of Core-RBAC Entities with Time and Location
	Users
	Objects
	Roles
	Sessions
	Permissions

	Impact of Time and Location on Role-Hierarchy
	Impact of Time and Location on Static Separation of Duties
	Impact of Time and Location on Dynamic Separation of Duties
	Example Scenario
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

